Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (858)

Search Parameters:
Keywords = variable thermal conductivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2486 KB  
Article
Optimization of Exergy Output Rate in a Supercritical CO2 Brayton Cogeneration System
by Jiachi Shan, Shaojun Xia and Qinglong Jin
Entropy 2025, 27(10), 1078; https://doi.org/10.3390/e27101078 - 18 Oct 2025
Viewed by 44
Abstract
To address low energy utilization efficiency and severe exergy destruction from direct discharge of high-temperature turbine exhaust, this study proposes a supercritical CO2 Brayton cogeneration system with a series-connected hot water heat exchanger for stepwise waste heat recovery. Based on finite-time thermodynamics, [...] Read more.
To address low energy utilization efficiency and severe exergy destruction from direct discharge of high-temperature turbine exhaust, this study proposes a supercritical CO2 Brayton cogeneration system with a series-connected hot water heat exchanger for stepwise waste heat recovery. Based on finite-time thermodynamics, a physical model that provides a more realistic framework by incorporating finite temperature difference heat transfer, irreversible compression, and expansion losses is established. Aiming to maximize exergy output rate under the constraint of fixed total thermal conductance, the decision variables, including working fluid mass flow rate, pressure ratio, and thermal conductance distribution ratio, are optimized. Optimization yields a 16.06% increase in exergy output rate compared with the baseline design. The optimal parameter combination is a mass flow rate of 79 kg/s and a pressure ratio of 5.64, with thermal conductance allocation increased for the regenerator and cooler, while decreased for the heater. The obtained results could provide theoretical guidance for enhancing energy efficiency and sustainability in S-CO2 cogeneration systems, with potential applications in industrial waste heat recovery and power generation. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

22 pages, 3995 KB  
Article
Correlation Between Albedo and Aging of Construction Materials Impacting Urban Heat Island Effects
by Foivos-Evangelos Sotiriadis-Tselektsidis, Stamatis Zoras, Pavlos Toumpoulidis and Argyro Dimoudi
Buildings 2025, 15(20), 3765; https://doi.org/10.3390/buildings15203765 - 18 Oct 2025
Viewed by 47
Abstract
The built environment influences urban quality of life, particularly through material properties and design decisions that affect thermal comfort, energy consumption, and environmental performance. Among the physical parameters shaping urban microclimates, surface reflectivity—albedo plays a central role in regulating both surface and ambient [...] Read more.
The built environment influences urban quality of life, particularly through material properties and design decisions that affect thermal comfort, energy consumption, and environmental performance. Among the physical parameters shaping urban microclimates, surface reflectivity—albedo plays a central role in regulating both surface and ambient temperatures. While high-albedo materials are widely recognized for mitigating the urban heat island (UHI) effect and lowering energy demand, limited attention has been given to how material aging alters albedo and, by extension, thermal performance over time. This study investigates that relationship through field measurements conducted at 18 outdoor locations in Xanthi, Greece, across four dates with varying environmental conditions. Variables such as material color, age, and temperature were analyzed through statistical methods and linear regression. Results confirmed a strong correlation between color and albedo and identified a statistically significant relationship between aging and albedo. Additionally, the expected inverse correlation between albedo and surface temperature was reaffirmed. These findings underscore the dynamic nature of material performance and highlight the need for incorporating aging behavior into sustainable urban design. The study contributes data to the field and supports the development of long-term strategies in urban planning and maintenance aimed at preserving the reflective efficiency of surface materials. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 2917 KB  
Article
Multi-Objective Optimization and Reliability Assessment of Date Palm Fiber/Sheep Wool Hybrid Polyester Composites Using RSM and Weibull Analysis
by Mohammed Y. Abdellah, Ahmed H. Backar, Mohamed K. Hassan, Miltiadis Kourmpetis, Ahmed Mellouli and Ahmed F. Mohamed
Polymers 2025, 17(20), 2786; https://doi.org/10.3390/polym17202786 - 17 Oct 2025
Viewed by 155
Abstract
This study investigates date palm fiber (DPF) and sheep wool hybrid polyester composites with fiber loadings of 0%, 10%, 20%, and 30% by weight, fabricated by compression molding, to develop a sustainable and reliable material system. Experimental data from prior work were modeled [...] Read more.
This study investigates date palm fiber (DPF) and sheep wool hybrid polyester composites with fiber loadings of 0%, 10%, 20%, and 30% by weight, fabricated by compression molding, to develop a sustainable and reliable material system. Experimental data from prior work were modeled using Weibull analysis for reliability evaluation and response surface methodology (RSM) for multi-objective optimization. Weibull statistics fitted a two-parameter distribution to tensile strength and fracture toughness, extracting shape (η) and scale (β) parameters to quantify variability and failure probability. The analysis showed that 20% hybrid content achieved the highest scale values (β = 28.85 MPa for tensile strength and β = 15.03 MPam for fracture toughness) and comparatively low scatter (η = 10.39 and 9.2, respectively), indicating superior reliability. RSM quadratic models were developed for tensile strength, fracture toughness, thermal conductivity, acoustic attenuation, and water absorption, and were combined using desirability functions. The RSM optimization was found at 18.97% fiber content with a desirability index of 0.673, predicting 25.89 MPa tensile strength, 14.23 MPam fracture toughness, 0.08 W/m·K thermal conductivity, 20.49 dB acoustic attenuation, and 5.11% water absorption. Overlaying Weibull cumulative distribution functions with RSM desirability surfaces linked probabilistic reliability zones (90–95% survival) to the deterministic optimization peak. This integration establishes a unified framework for designing natural fiber composites by embedding reliability into multi-property optimization. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Figure 1

17 pages, 2912 KB  
Article
Environmental Influences on Growth and Secondary Metabolite Accumulation in Eleutherococcus sessiliflorus Across Korean Cultivation Sites
by Yonghwan Son, Dong Hwan Lee, Jun Hyuk Jang, Hyun-Jun Kim and Ji Ah Kim
Plants 2025, 14(20), 3175; https://doi.org/10.3390/plants14203175 - 16 Oct 2025
Viewed by 114
Abstract
Eleutherococcus sessiliflorus is a medicinal shrub widely used in East Asian traditional medicine, yet field-based studies on environmental influences remain limited. In this study, branches from 26 cultivation sites across South Korea were analyzed for relationships among growth traits, soil and climatic conditions, [...] Read more.
Eleutherococcus sessiliflorus is a medicinal shrub widely used in East Asian traditional medicine, yet field-based studies on environmental influences remain limited. In this study, branches from 26 cultivation sites across South Korea were analyzed for relationships among growth traits, soil and climatic conditions, and two major compounds, chlorogenic acid (CGA) and eleutheroside E (EleuE). Growth traits varied widely, with plant height ranging from 1.06 to 4.20 m. CGA content was relatively stable across sites (0.292–0.708 mg/g), while EleuE showed greater variability (0.038–0.264 mg/g). The combined content of CGA and EleuE showed a weak positive correlation with thorn density (r = 0.236, p = 0.037). Plant height and basal diameter were positively correlated with temperature indices (annual average temperature r = 0.410, p < 0.001; annual maximum temperature r = 0.341, p = 0.002), whereas thorn density decreased with soil electrical conductivity, potassium, and magnesium but increased with sand and precipitation. Principal component analysis and correlation networks highlighted distinct clusters separating growth traits from EleuE–environment associations. These findings demonstrate that growth performance in E. sessiliflorus is strongly influenced by thermal regimes, while EleuE accumulation responds to soil texture and light availability, providing an empirical foundation for site-specific cultivation strategies and standardized quality management. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

25 pages, 3673 KB  
Article
Research on Dynamic Simulation and Optimization of Building Energy Consumption of Substations in Cold Regions Based on DeST: A Case Study of an Indoor Substation in Shijiazhuang
by Jizhi Su, Jun Zhang, Gang Li, Wuchen Zhang, Haifeng Yu, Ligai Kang, Lingzhe Zhang, Xu Zhang and Jiaming Wang
Buildings 2025, 15(20), 3706; https://doi.org/10.3390/buildings15203706 - 15 Oct 2025
Viewed by 240
Abstract
Against the backdrop of the global energy crisis and the “dual carbon” goals (carbon peaking and carbon neutrality), the passive energy-saving design of substation buildings in cold regions faces severe challenges. This study systematically conducts a decomposed analysis of the shape coefficient, thermal [...] Read more.
Against the backdrop of the global energy crisis and the “dual carbon” goals (carbon peaking and carbon neutrality), the passive energy-saving design of substation buildings in cold regions faces severe challenges. This study systematically conducts a decomposed analysis of the shape coefficient, thermal performance of the building envelope (including external walls, internal walls, roofs, and external windows), and window-to-wall ratio of substation buildings in cold regions, quantifies the degree of influence of each factor, and proposes corresponding energy-saving design strategies. This study took a 110 kV substation in Yuhua District, Shijiazhuang City, Hebei Province, as the research object. A building energy consumption model was established based on DeST (2023) software, and the influence of the building shape coefficient, U-values of the envelope structure (external walls, internal walls, roofs, external windows), and window-to-wall ratio on the building’s cooling and heating loads was analyzed using the numerical simulation and control variable methods. Leveraging a rigorously validated, high-resolution simulation framework, we quantitatively dissect the marginal energy penalties and payoffs of every passive design variable governing fully indoor substations in cold-climate zones. The resultant multidimensional response surfaces are distilled into a deterministic, climate-specific passive energy-saving protocol that secures heating-energy savings of up to 43% without compromising electrical safety or operational accessibility. (1) Reducing the shape coefficient can significantly lower the heat load, and it is recommended to control it at 0.35–0.40; (2) The thermal performance of the envelope structure has a differential effect: the energy-saving effect is optimal when the U-value of external walls is 0.20–0.30 W/(m2·K) and the U-value of roofs is ≤0.25 W/(m2·K). A U-value of 2.4 W/(m2·K) is recommended for external windows, while the internal wall exerts a weak influence; (3) The window-to-wall ratio should be controlled by orientation: east-facing/north-facing ≤ 0.20, south-facing ≤ 0.35, and west-facing ≤ 0.30. Based on the above results, a comprehensive energy-saving strategy of “compact form–high-efficiency envelope–limited window-to-wall ratio” is proposed, which provides theoretical support and technical pathways for the energy-saving design of substation buildings in cold areas. Compared with existing substation buildings, the recommended parameters yield a significant reduction in total life-cycle carbon emissions and hold important practical significance for realizing the “dual carbon” goals (carbon peaking and carbon neutrality) of the power system. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 814 KB  
Article
The Influence of Rehabilitation Programs on the Mental State and Quality of Life in Patients with Fibromyalgia: A Comparative Cohort Study from Romania
by Theodora Florica Borze (Ursu), Annamaria Pallag, Doriana Ioana Ciobanu, Klara Kalman, Anca Paula Ciurba, Ramona Nicoleta Suciu, Mariana Mureșan and Carmen Delia Nistor-Cseppento
Int. J. Environ. Res. Public Health 2025, 22(10), 1553; https://doi.org/10.3390/ijerph22101553 - 12 Oct 2025
Viewed by 293
Abstract
Fibromyalgia (FM) affects millions of people around the world, causing widespread physical pain, exhaustion, and psychological disorders. Through this study, we aim to observe the effectiveness of two different rehabilitation programs in reducing the impact of FM on daily functioning and psychological factors. [...] Read more.
Fibromyalgia (FM) affects millions of people around the world, causing widespread physical pain, exhaustion, and psychological disorders. Through this study, we aim to observe the effectiveness of two different rehabilitation programs in reducing the impact of FM on daily functioning and psychological factors. Specifically, we compare a complex conservative program that combines physical therapy and hydrokinetotherapy in a hospital setting with a therapy focused on intrinsic relaxation. Methods: This comparative study involved 63 patients aged between 19 and 69 years diagnosed with FM, divided into two groups: the study group (SG, 32 participants) and the control group (CG, 31 participants). Over 90% of participants are female, 30 in the study group and 28 in the control group. SG followed a conservative physiotherapy combined with thermal water therapy, and CG followed a recovery program through intrinsic relaxation. Participants were evaluated on the first and last day of the rehabilitation program using the Revised Fibromyalgia Impact Questionnaire (FIQR) and the Hamilton Anxiety Rating Scale (Ham—A). The rehabilitation program consisted of 10 sessions conducted over a period of two weeks. Results: After the two-week recovery period, the results showed a significant improvement in both FIQR and Ham—A scores in the study group (p < 0.001). In the control group, there were no significant changes in FIQR variables (p > 0.05), while a significant improvement was observed on the anxiety scale (p < 0.001). Conclusions: The combination of hydrokineto-therapy and physical therapy is more effective in improving the overall condition of patients with FM compared to relaxation. Full article
(This article belongs to the Special Issue The Impact of Physical Activity on Mental Health and Well-Being)
Show Figures

Figure 1

17 pages, 6529 KB  
Article
Temperature Field Analysis and Experimental Verification of Mining High-Power Explosion-Proof Integrated Variable-Frequency Permanent Magnet Motor
by Xiaojun Wang, Gaowei Tian, Qingqing Lü, Kun Zhao, Xuandong Wu, Liquan Yang and Guangxi Li
Energies 2025, 18(20), 5369; https://doi.org/10.3390/en18205369 - 12 Oct 2025
Viewed by 219
Abstract
An efficient cooling configuration is critical for ensuring the safe operation of electrical machines and is key for optimizing the iterative design of motors. To improve the heat dissipation performance of high-power, explosion-proof, integrated variable-frequency permanent magnet motors used in mining and reduce [...] Read more.
An efficient cooling configuration is critical for ensuring the safe operation of electrical machines and is key for optimizing the iterative design of motors. To improve the heat dissipation performance of high-power, explosion-proof, integrated variable-frequency permanent magnet motors used in mining and reduce the risk of permanent magnet demagnetization, this study considers a 1600 kW mining explosion-proof variable-frequency permanent magnet motor as its research object. Based on the zigzag-type water channel structure of the frame, a novel rotor-cooling scheme integrating axial–radial ventilation structures and axial flow fans was proposed. The temperature field of the motor was simulated and analyzed using a fluid–thermal coupling method. Under rated operating conditions, the flow characteristics of the frame water channel and the temperature distribution law inside the motor were compared when the water supply flow rates were 5.4, 4.8, 4.2, 3.6, 3, 2.4, and 1.8 m3/h, respectively, and the relationship between the motor temperature rise and the variation in water flow rate was revealed. A production prototype was developed, and temperature rise tests were conducted for verification. The test results were in good agreement with the simulation calculation results, thereby confirming the accuracy of the simulation calculation method. The results provide an important reference for enterprises in the design optimization and upgrading of high-power explosion-proof integrated variable-frequency permanent-magnet motors. Full article
(This article belongs to the Special Issue Advanced Technology in Permanent Magnet Motors)
Show Figures

Figure 1

31 pages, 16725 KB  
Article
Climatic Adaptation-Based Evaluation of Vernacular Anatolian Houses: A Comparative Analysis of Stone and Adobe Materials in Terms of Energy, Environment, and Thermal Comfort
by Elif Gizem Yetkin and Gonca Özer Yaman
Buildings 2025, 15(20), 3660; https://doi.org/10.3390/buildings15203660 - 11 Oct 2025
Viewed by 289
Abstract
In terms of ensuring the sustainability of vernacular building culture, the evaluation of buildings should consider not only visual and cultural values but also energy efficiency, environmental impact, and indoor thermal comfort. This study comparatively examines the performance of stone and adobe wall [...] Read more.
In terms of ensuring the sustainability of vernacular building culture, the evaluation of buildings should consider not only visual and cultural values but also energy efficiency, environmental impact, and indoor thermal comfort. This study comparatively examines the performance of stone and adobe wall materials, widely used in Anatolia, under different climatic conditions. In the simulations conducted using DesignBuilder software, building geometry and indoor use scenarios were kept constant, while only exterior wall material and climate data were treated as variables. Annual data for the year 2023 were analyzed. The findings indicate that adobe-walled structures stand out in hot and transitional climates with lower heating and cooling energy demands, reduced electricity consumption, lower carbon emissions, and better thermal comfort conditions. In Kars, representing a cold continental climate, both materials remained outside comfort thresholds; however, adobe structures performed better in terms of energy use, environmental impact, and thermal comfort. This comprehensive evaluation highlights the potential of climate-responsive use of local materials and offers valuable contributions to design strategies focused on sustainability and cultural heritage. The results present not only context-specific insights for Anatolia but also universally applicable, generalizable recommendations for other regions with similar climatic conditions and vernacular building cultures. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 3211 KB  
Article
Internal Wave Responses to Interannual Climate Variability Across Aquatic Layers
by Jinichi Koue
Water 2025, 17(19), 2905; https://doi.org/10.3390/w17192905 - 8 Oct 2025
Viewed by 274
Abstract
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 [...] Read more.
Internal waves play a critical role in material transport, vertical mixing, and energy dissipation within stratified aquatic systems. Their dynamics are strongly modulated by thermal stratification and surface meteorological forcing. This study examines the influence of interannual meteorological variability from 1980 to 2010 on internal wave behavior using a series of numerical simulations in Lake Biwa in Japan. In each simulation, air temperature, wind speed, or precipitation was perturbed by ±2 standard deviations relative to the climatological mean. Power spectral analysis of simulated velocity fields was conducted for the surface, thermocline, and bottom layers, focusing on super-inertial (6–16 h), near-inertial (~16–30 h), and sub-inertial (>30 h) frequency bands. The results show that higher air temperatures intensify stratification and enhance near-inertial internal waves, particularly within the thermocline, whereas cooler conditions favor sub-inertial wave dominance. Increased wind speeds amplify internal wave energy across all layers, with the strongest effect occurring in the high-frequency band due to intensified wind stress and vertical shear, while weaker winds suppress wave activity. Precipitation variability primarily affects surface stratification, exerting more localized and weaker impacts. These findings highlight the non-linear, depth-dependent responses of internal waves to atmospheric drivers and improve understanding of the coupling between climate variability and internal wave energetics. The insights gained provide a basis for more accurate predictions and sustainable management of stratified aquatic ecosystems under future climate scenarios. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

34 pages, 13615 KB  
Article
Seamless Reconstruction of MODIS Land Surface Temperature via Multi-Source Data Fusion and Multi-Stage Optimization
by Yanjie Tang, Yanling Zhao, Yueming Sun, Shenshen Ren and Zhibin Li
Remote Sens. 2025, 17(19), 3374; https://doi.org/10.3390/rs17193374 - 7 Oct 2025
Viewed by 418
Abstract
Land Surface Temperature (LST) is a critical variable for understanding land–atmosphere interactions and is widely applied in urban heat monitoring, evapotranspiration estimation, near-surface air temperature modeling, soil moisture assessment, and climate studies. MODIS LST products, with their global coverage, long-term consistency, and radiometric [...] Read more.
Land Surface Temperature (LST) is a critical variable for understanding land–atmosphere interactions and is widely applied in urban heat monitoring, evapotranspiration estimation, near-surface air temperature modeling, soil moisture assessment, and climate studies. MODIS LST products, with their global coverage, long-term consistency, and radiometric calibration, are a major source of LST data. However, frequent data gaps caused by cloud contamination and atmospheric interference severely limit their applicability in analyses requiring high spatiotemporal continuity. This study presents a seamless MODIS LST reconstruction framework that integrates multi-source data fusion and a multi-stage optimization strategy. The method consists of three key components: (1) topography- and land cover-constrained spatial interpolation, which preliminarily fills orbit-induced gaps using elevation and land cover similarity criteria; (2) pixel-level LST reconstruction via random forest (RF) modeling with multi-source predictors (e.g., NDVI, NDWI, surface reflectance, DEM, land cover), coupled with HANTS-based temporal smoothing to enhance temporal consistency and seasonal fidelity; and (3) Poisson-based image fusion, which ensures spatial continuity and smooth transitions without compromising temperature gradients. Experiments conducted over two representative regions—Huainan and Jining—demonstrate the superior performance of the proposed method under both daytime and nighttime scenarios. The integrated approach (Step 3) achieves high accuracy, with correlation coefficients (CCs) exceeding 0.95 and root mean square errors (RMSEs) below 2K, outperforming conventional HANTS and standalone interpolation methods. Cross-validation with high-resolution Landsat LST further confirms the method’s ability to retain spatial detail and cross-scale consistency. Overall, this study offers a robust and generalizable solution for reconstructing MODIS LST with high spatial and temporal fidelity. The framework holds strong potential for broad applications in land surface process modeling, regional climate studies, and urban thermal environment analysis. Full article
Show Figures

Graphical abstract

23 pages, 11972 KB  
Article
The Variability in the Thermophysical Properties of Soils for Sustainability of the Industrial-Affected Zone of the Siberian Arctic
by Tatiana V. Ponomareva, Kirill Yu. Litvintsev, Konstantin A. Finnikov, Nikita D. Yakimov, Georgii E. Ponomarev and Evgenii I. Ponomarev
Sustainability 2025, 17(19), 8892; https://doi.org/10.3390/su17198892 - 6 Oct 2025
Viewed by 498
Abstract
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the [...] Read more.
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the seasonally thawed soil layer. The study concentrated on the variability in the soil’s thermophysical properties in Central Siberia’s permafrost zone (the northern part of Krasnoyarsk Region, Taimyr, Russia). In the industrially affected area of interest, we evaluated and contrasted the differences in the thermophysical properties of soils between two opposing types of landscapes. On the one hand, these are soils that are characteristic of the natural landscape of flat shrub tundra, with a well-developed moss–lichen cover. An alternative is the soils in the landscape, which have exhibited significant degradation in the vegetation cover due to both natural and human-induced factors. The heat-insulating properties of background areas are controlled by the layer of moss and shrubs, while its disturbance determines the excessive heating of the soil at depth. In comparison to the background soil characteristics, degradation of on-ground vegetation causes the active layer depth of the soils to double and the temperature gradient to decrease. With respect to depth, we examine the changes in soil temperature and heat flow dynamics (q, W/m2). The ranges of thermal conductivity (λ, W/(m∙K)) were assessed using field-measured temperature profiles and heat flux values in the soil layers. The background soil was discovered to have lower thermal conductivity values, which are typical of organic matter, in comparison to the soil of the transformed landscape. Thermal diffusivity coefficients for soil layers were calculated using long-term temperature monitoring data. It is shown that it is possible to use an adjusted model of the thermal conductivity coefficient to reconstruct the dynamics of moisture content from temperature dynamics data. A satisfactory agreement is shown when the estimated (Wcalc, %) and observed (Wexp, %) moisture content values in the soil layer are compared. The findings will be employed to regulate the effects on landscapes in order to implement sustainable nature management in the region, thereby preventing the significant degradation of ecosystems and the concomitant risks to human well-being. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

23 pages, 3697 KB  
Article
From Waste to Resource: Phosphorus Adsorption on Posidonia oceanica Ash and Its Application as a Soil Fertilizer
by Juan A. González, Jesús Mengual and Antonio Eduardo Palomares
AgriEngineering 2025, 7(10), 333; https://doi.org/10.3390/agriengineering7100333 - 3 Oct 2025
Viewed by 380
Abstract
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along [...] Read more.
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along Mediterranean coasts. After energy recovery from this waste (12.3 MJ kg−1), the resulting ash was assessed as an effective adsorbent for aqueous phosphorus removal. Batch experiments were conducted to evaluate adsorption kinetics and equilibrium, considering the influence of key operational variables, such as temperature, pH, and adsorbent dosage. Under optimal conditions, the material achieved a maximum retention of approximately 55–60 mgP g−1. The Freundlich model successfully describes the equilibrium isotherm data, indicating a heterogeneous adsorbent and an overall endothermic process. Phosphorus removal was favored at basic pH values (9.5–10.5), where the monohydrogen phosphate predominates. Leaching tests further revealed that saturated material releases phosphorus and other minerals in a manner clearly dependent on the final pH, with higher phosphorus release under more acidic conditions. These results suggest that Posidonia ash could serve as a low-cost adsorbent while also acting as a potential phosphorus source in soils. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

14 pages, 2643 KB  
Article
Modeling the Rate- and Temperature-Dependent Behavior of Sintered Nano-Silver Paste Using a Variable-Order Fractional Model
by Qinglong Tian, Changyu Liu and Wei Cai
Materials 2025, 18(19), 4595; https://doi.org/10.3390/ma18194595 - 3 Oct 2025
Viewed by 345
Abstract
Sintered nano-silver paste is widely used in electronic packaging due to its excellent thermal and electrical conductivity. A phenomenological variable-order fractional constitutive model has been developed to characterize the evolution of its mechanical properties, incorporating dependencies on both temperature and strain rate. Based [...] Read more.
Sintered nano-silver paste is widely used in electronic packaging due to its excellent thermal and electrical conductivity. A phenomenological variable-order fractional constitutive model has been developed to characterize the evolution of its mechanical properties, incorporating dependencies on both temperature and strain rate. Based on the Weissenberg number and classical Arrhenius equation, a formulation for relaxation time with temperature and strain rate dependence has been proposed. A temperature- and rate-sensitive fractional order is introduced to capture the coupled influences of thermal and strain rate effects. Furthermore, the effects of temperature and the strain rate on the elastic modulus and relaxation time are quantitatively described through established coupling criteria. Simulation results demonstrate that the proposed model offers high accuracy and strong predictive capability. Comparisons with the classical Anand model highlight the effectiveness of the variable-order fractional model, particularly at lower temperatures. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Micro-/Nanoscale Materials)
Show Figures

Figure 1

20 pages, 4247 KB  
Article
Numerical Analysis of Thermal–Structural Coupling for Subsea Dual-Channel Connector
by Feihong Yun, Yuming Du, Dong Liu, Xiaofei Wu, Minggang Tang, Qiuying Yan, Peng Gao, Yu Chen, Xu Zhai, Hanyu Sun, Songlin Zhang, Shuqi Lin and Haiyang Xu
J. Mar. Sci. Eng. 2025, 13(10), 1867; https://doi.org/10.3390/jmse13101867 - 26 Sep 2025
Viewed by 198
Abstract
In deep-sea oil and gas development scenarios, deep-sea dual-channel connectors often face the risk of seal failure due to internal and external temperature difference loads. To address this issue, this paper systematically establishes equivalent heat transfer models for the key parts of the [...] Read more.
In deep-sea oil and gas development scenarios, deep-sea dual-channel connectors often face the risk of seal failure due to internal and external temperature difference loads. To address this issue, this paper systematically establishes equivalent heat transfer models for the key parts of the connector based on the third-type boundary condition. On this basis, the quantitative correlation between the equivalent thermal conductivity, composite heat transfer coefficient and temperature of each part is explored. Using the finite element numerical simulation method, the transient temperature field of the connector under three working conditions (heating, cooling and temperature shock) is simulated and analyzed, revealing the temperature distribution characteristics and temperature change trends of the maximum temperature difference of each key component of the connector; combined with thermal–structural coupling simulation, the temperature field is converted into static load, to determine the behavior of the contact stress on the sealing surface under different temperature–pressure coupling working conditions; in addition, by placing the test prototype in a high-low temperature cycle chamber, the seal performance tests under pressurized and non-pressurized working conditions are carried out to verify the reliable sealing performance of the connector under variable temperature conditions. The results of this paper provide comprehensive theoretical support and an experimental basis for the thermodynamic optimization design of deep-sea connectors and the improvement of the reliability of the sealing system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5708 KB  
Article
Exploring the Role of Urban Green Spaces in Regulating Thermal Environments: Comparative Insights from Seoul and Busan, South Korea
by Jun Xia, Yue Yan, Ziyuan Dou, Dongge Han and Ying Zhang
Forests 2025, 16(10), 1515; https://doi.org/10.3390/f16101515 - 25 Sep 2025
Viewed by 474
Abstract
Urban heat islands are intensifying under the dual pressures of global climate change and rapid urbanization, posing serious challenges to ecological sustainability and human well-being. Among the factors influencing urban thermal environments, vegetation and green spaces play a critical role in mitigating heat [...] Read more.
Urban heat islands are intensifying under the dual pressures of global climate change and rapid urbanization, posing serious challenges to ecological sustainability and human well-being. Among the factors influencing urban thermal environments, vegetation and green spaces play a critical role in mitigating heat accumulation through canopy cover, evapotranspiration, and ecological connectivity. In this study, a comparative analysis of Seoul and Busan—two representative metropolitan areas in South Korea—was conducted using land surface temperature (LST) data derived from Landsat 8 and a set of multi-source spatial indicators. The nonlinear effects and interactions among built environment, socio-economic, and ecological variables were quantified using the Extreme Gradient Boosting (XGBoost) model in conjunction with Shapley Additive Explanations (SHAP). Results demonstrate that vegetation, as indicated by the Normalized Difference Vegetation Index (NDVI), consistently exerts significant cooling effects, with a pronounced threshold effect observed when NDVI values exceed 0.6. Furthermore, synergistic interactions between NDVI and surface water availability, measured by the Normalized Difference Water Index (NDWI), substantially enhance ecological cooling capacity. In contrast, areas with high building and population densities, particularly those at lower elevations, are associated with increased LST. These findings underscore the essential role of green infrastructure in regulating urban thermal environments and provide empirical support for ecological conservation, urban greening strategies, and climate-resilient urban planning. Strengthening vegetation cover, enhancing ecological corridors, and integrating greening policies across spatial scales are vital for mitigating urban heat and improving climate resilience in rapidly urbanizing regions. Full article
(This article belongs to the Special Issue Microclimate Development in Urban Spaces)
Show Figures

Figure 1

Back to TopTop