Exploring the Role of Urban Green Spaces in Regulating Thermal Environments: Comparative Insights from Seoul and Busan, South Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Models
2.3.1. Multiple Linear Regression (MLR)
2.3.2. Random Forest Regression Model (RF)
2.3.3. Light Gradient Boosting Machine (LightGBM)
2.3.4. XGBoost Regression Model
2.3.5. SHAP Value Interpretation
2.4. Model Evaluation Metrics
2.5. Research Framework
3. Results
3.1. Model Performance Evaluation
3.2. SHAP Model Interpretation and Feature Importance Analysis
3.3. Nonlinear Analysis of Main Effects of Variables
3.4. Analysis of Interactions Among Variable
4. Discussion
4.1. Differences in the Driving Factors of Urban Thermal Environments Between Seoul and Busan
4.2. Urban Planning and Policy Recommendations
4.3. Limitations and Future Directions
5. Conclusions
- (1)
- The XGBoost model demonstrated significant superiority over traditional models such as multiple linear regression (MLR), random forest (RF), and LightGBM in both predictive accuracy and the characterization of complex nonlinear relationships.
- (2)
- In terms of feature importance, SHAP analysis revealed notable differences in the dominant factors of urban thermal environments between the two cities. In Seoul, LST is mainly driven by built environment and socio-economic factors, such as building density (BD), population density (PD), and GDP, highlighting the significant role of built environment and economic activity in elevating urban temperatures. In contrast, in Busan, topographic factors (DEM) and GDP are the primary determinants, with topographical variation and economic activity jointly shaping the local thermal environment pattern.
- (3)
- Nonlinear main effect analysis further uncovered the threshold characteristics of key variables: when GDP and PD reach high levels, their warming effects on LST are significantly enhanced. Meanwhile, the cooling effect of NDVI is particularly evident in the medium–high value range (approximately 0.6–0.8).
- (4)
- Multi-factor interaction analysis indicated clear synergistic and amplifying mechanisms among different driving factors. In low-elevation areas, DEM strengthens the warming influence of built environment factors such as high BD. The combined effect of NDVI and NDWI enhances the mitigation of urban heat by ecological factors, while the superimposition of high population density and high GDP markedly increases urban heat load.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Che, Y.; Li, X.; Liu, X.; Wang, Y.; Liao, W.; Zheng, X.; Zhang, X.; Xu, X.; Shi, Q.; Zhu, J. Building height of Asia in 3D-GloBFP. Zenodo 2024, 11397015. [Google Scholar] [CrossRef]
- Ren, Y.; Lafortezza, R.; Giannico, V.; Sanesi, G.; Zhang, X.; Xu, C. The unrelenting global expansion of the urban heat island over the last century. Sci. Total Environ. 2023, 880, 163276. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 2019, 14, 114037. [Google Scholar] [CrossRef]
- Moghbel, M.; Shamsipour, A. Spatiotemporal characteristics of urban land surface temperature and UHI formation: A case study of Tehran, Iran. Theor. Appl. Climatol. 2019, 137, 2463–2476. [Google Scholar] [CrossRef]
- Lu, T.S.; Olsen, J.; Kinney, P.L. Climate change and temperature-related mortality: Implications for health-related climate policy. Biomed. Environ. Sci. 2021, 34, 379–386. [Google Scholar]
- Santamouris, M.; Osmond, P. Increasing green infrastructure in cities: Impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings 2020, 10, 233. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The impacts of urbanisation and climate change on the urban thermal environment in Africa. Climate 2022, 10, 164. [Google Scholar] [CrossRef]
- Zeng, P.; Zong, C.; Wei, X. Quantitative analysis and spatial pattern research of built-up environments and surface urban heat island effect in Beijing’s main urban area. J. Urban Plan. Dev. 2024, 150, 04024006. [Google Scholar] [CrossRef]
- Hanif, A.; Jabbar, M.; Mohd Yusoff, M. Exploring key indicators for quality of life in urban parks of Lahore, Pakistan: Toward the enhancement of sustainable urban planning. Int. J. Sustain. Dev. World Ecol. 2024, 31, 959–976. [Google Scholar] [CrossRef]
- Lin, M.; Ali, A.; Andargie, M.S.; Azar, E. Multidomain drivers of occupant comfort, productivity, and well-being in buildings: Insights from an exploratory and explanatory analysis. J. Manag. Eng. 2021, 37, 04021020. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, W.; Wang, J. Beyond intensity of urban heat island effect: A continental scale analysis on land surface temperature in major Chinese cities. Sci. Total Environ. 2021, 791, 148334. [Google Scholar] [CrossRef]
- Mokarram, M.; Taripanah, F.; Pham, T.M. Investigating the effect of surface urban heat island on the trend of temperature changes. Adv. Space Res. 2023, 72, 3150–3169. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Nazarian, N.; Krayenhoff, E.; Bechtel, B.; Hondula, D.; Paolini, R.; Vanos, J.; Cheung, T.; Chow, W.; de Dear, R.; Jay, O. Integrated assessment of urban overheating impacts on human life. Earth’s Future 2022, 10, e2022EF002682. [Google Scholar] [CrossRef]
- Piracha, A.; Chaudhary, M.T. Urban air pollution, urban heat island and human health: A review of the literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Feng, J.; Gao, K.; Khan, H.; Ulpiani, G.; Vasilakopoulou, K.; Young Yun, G.; Santamouris, M. Overheating of cities: Magnitude, characteristics, impact, mitigation and adaptation, and future challenges. Annu. Rev. Environ. Resour. 2023, 48, 651–679. [Google Scholar] [CrossRef]
- Zhou, H.; Tao, G.; Yan, X.; Sun, J. Influences of greening and structures on urban thermal environments: A case study in Xuzhou City, China. Urban For. Urban Green. 2021, 66, 127386. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of urban morphological characteristics on thermal environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, S.; Cheng, H.; Li, F. Spatio-temporal evolution of urban thermal environment and its driving factors: Case study of Nanjing, China. PLoS ONE 2021, 16, e0246011. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.; Wei, P.; Zhao, H.; Zhang, X.; Pang, C. Explore the mitigation mechanism of urban thermal environment by integrating geographic detector and standard deviation ellipse (SDE). Remote Sens. 2022, 14, 3411. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, J.; Cui, D.; Ma, Y.; Ye, Y.; He, X.; Yang, Z.; Cheng, M.; Zhang, Y. Multi-scale study of the synergy between human activities and climate change on urban heat islands in China. Sustain. Cities Soc. 2025, 125, 106341. [Google Scholar] [CrossRef]
- Sharifi, A. Trade-offs and conflicts between urban climate change mitigation and adaptation measures: A literature review. J. Clean. Prod. 2020, 276, 122813. [Google Scholar] [CrossRef]
- Siqi, J.; Yuhong, W.; Ling, C.; Xiaowen, B. A novel approach to estimating urban land surface temperature by the combination of geographically weighted regression and deep neural network models. Urban Clim. 2023, 47, 101390. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Li, R. Driving forces analysis of urban ground deformation using satellite monitoring and multiscale geographically weighted regression. Measurement 2023, 214, 112778. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. A geographically weighted random forest approach to predict corn yield in the US corn belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Gu, X.; Wu, Z.; Liu, X.; Qiao, R.; Jiang, Q. Exploring the nonlinear interplay between urban morphology and nighttime thermal environment. Sustain. Cities Soc. 2024, 101, 105176. [Google Scholar] [CrossRef]
- Wu, Z.; Qiao, R.; Zhao, S.; Liu, X.; Gao, S.; Liu, Z.; Ao, X.; Zhou, S.; Wang, Z.; Jiang, Q. Nonlinear forces in urban thermal environment using Bayesian optimization-based ensemble learning. Sci. Total Environ. 2022, 838, 156348. [Google Scholar] [CrossRef]
- Ma, X.; Yang, J.; Zhang, R.; Yu, W.; Ren, J.; Xiao, X.; Xia, J. XGBoost-based analysis of the relationship between urban 2-D/3-D morphology and seasonal gradient land surface temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4109–4124. [Google Scholar] [CrossRef]
- Zhu, X.; Chu, J.; Wang, K.; Wu, S.; Yan, W.; Chiam, K. Prediction of rockhead using a hybrid N-XGBoost machine learning framework. J. Rock Mech. Geotech. Eng. 2021, 13, 1231–1245. [Google Scholar] [CrossRef]
- Trindade Neves, F.; Aparicio, M.; de Castro Neto, M. The impacts of open data and eXplainable AI on real estate price predictions in smart cities. Appl. Sci. 2024, 14, 2209. [Google Scholar] [CrossRef]
- Kostopoulos, G.; Davrazos, G.; Kotsiantis, S. Explainable artificial intelligence-based decision support systems: A recent review. Electronics 2024, 13, 2842. [Google Scholar] [CrossRef]
- Nagahisarchoghaei, M.; Nur, N.; Cummins, L.; Nur, N.; Karimi, M.M.; Nandanwar, S.; Bhattacharyya, S.; Rahimi, S. An empirical survey on explainable ai technologies: Recent trends, use-cases, and categories from technical and application perspectives. Electronics 2023, 12, 1092. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, G.; Ma, S.; Pan, Y. Spatial Heterogeneity of Driving Factors in Multi-Vegetation Indices RSEI Based on the XGBoost-SHAP Model: A Case Study of the Jinsha River Basin, Yunnan. Land 2025, 14, 925. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef]
- Yin, C.; Meng, F.; Yu, Q. Calculation of land surface emissivity and retrieval of land surface temperature based on a spectral mixing model. Infrared Phys. Technol. 2020, 108, 103333. [Google Scholar] [CrossRef]
- Sujon, K.M.; Hassan, R.B.; Towshi, Z.T.; Othman, M.A.; Samad, M.A.; Choi, K. When to use standardization and normalization: Empirical evidence from machine learning models and XAI. IEEE Access 2024, 12, 135300–135314. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, Q.; Guo, L. Water quality prediction of Pohe River reservoir based on SA-CNN-BiLSTM model: Tian et al. Environ. Dev. Sustain. 2025, 1–32. [Google Scholar] [CrossRef]
- Etemadi, S.; Khashei, M. Etemadi multiple linear regression. Measurement 2021, 186, 110080. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. Ensemble methods: Bagging and random forests. Nat. Methods 2017, 14, 933–935. [Google Scholar] [CrossRef]
- Truong, V.-H.; Tangaramvong, S.; Papazafeiropoulos, G. An efficient LightGBM-based differential evolution method for nonlinear inelastic truss optimization. Expert Syst. Appl. 2024, 237, 121530. [Google Scholar] [CrossRef]
- Bhati, B.S.; Chugh, G.; Al-Turjman, F.; Bhati, N.S. An improved ensemble based intrusion detection technique using XGBoost. Trans. Emerg. Telecommun. Technol. 2021, 32, e4076. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, J.; Parilina, E. ShapG: New feature importance method based on the Shapley value. Eng. Appl. Artif. Intell. 2025, 148, 110409. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Plonsky, L.; Ghanbar, H. Multiple regression in L2 research: A methodological synthesis and guide to interpreting R2 values. Mod. Lang. J. 2018, 102, 713–731. [Google Scholar] [CrossRef]
- Pathak, L. A QGIS-based approach of developing gridded population data for the Kathmandu Valley using OpenStreetMap building data. DYSONA-Appl. Sci. 2026, 7, 50–60. [Google Scholar]
- Shahani, N.M.; Zheng, X.; Liu, C.; Hassan, F.U.; Li, P. Developing an XGBoost regression model for predicting young’s modulus of intact sedimentary rocks for the stability of surface and subsurface structures. Front. Earth Sci. 2021, 9, 761990. [Google Scholar] [CrossRef]
- Almahdi, A.; Al Mamlook, R.E.; Bandara, N.; Almuflih, A.S.; Nasayreh, A.; Gharaibeh, H.; Alasim, F.; Aljohani, A.; Jamal, A. Boosting ensemble learning for freeway crash classification under varying traffic conditions: A hyperparameter optimization approach. Sustainability 2023, 15, 15896. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Jia, L.; Liu, B.; Jiang, Y. The Impact of Spatiotemporal Effect and Relevant Factors on the Urban Thermal Environment Through the XGBoost-SHAP Model. Land 2025, 14, 394. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhang, X.; Wang, J.; Liu, N. Understanding the role of urban block morphology in innovation vitality through explainable machine learning. Sci. Rep. 2025, 15, 21337. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Bonanomi, G.; Stinca, A.; Chirico, G.B.; Ciaschetti, G.; Saracino, A.; Incerti, G. Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient. Funct. Ecol. 2016, 30, 1216–1226. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, C.; Li, J.; Li, W.; Ma, R. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socio-economic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 2018, 40, 284–295. [Google Scholar] [CrossRef]
- Lim, H.; Seo, J.; Song, D.; Yoon, S.; Kim, J. Interaction analysis of countermeasures for the stack effect in a high-rise office building. Build. Environ. 2020, 168, 106530. [Google Scholar] [CrossRef]
- Yin, C.; Yan, J.; Yuan, M.; Tian, G.; Wen, Q.; Wang, L.; Li, L. How does built environment affect the urban heat Island effect? A systematic framework integrating land use, building form, and road network. Environ. Dev. Sustain. 2025, 1–27. [Google Scholar] [CrossRef]
- Huang, K.; Stone Jr, B.; Guan, C.; Liang, J. Declining urban density attenuates rising population exposure to surface heat extremes. Sci. Rep. 2025, 15, 13860. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Yu, K.; Wang, D. Evaluating the impact of the building density and height on the block surface temperature. Build. Environ. 2020, 168, 106493. [Google Scholar] [CrossRef]
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [Google Scholar] [CrossRef]
- Liu, C.; Lu, S.; Tian, J.; Yin, L.; Wang, L.; Zheng, W. Research overview on urban heat islands driven by computational intelligence. Land 2024, 13, 2176. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, H.; Wu, L.; Deng, Y.; Chen, J.; Zhang, J. Spatiotemporal Evolution in the Thermal Environment and Impact Analysis of Drivers in the Beijing–Tianjin–Hebei Urban Agglomeration of China from 2000 to 2020. Remote Sens. 2024, 16, 2601. [Google Scholar] [CrossRef]
- Hong, J.-W.; Hong, J.; Kwon, E.E.; Yoon, D. Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef]
- Charabi, Y.; Bakhit, A. Assessment of the canopy urban heat island of a coastal arid tropical city: The case of Muscat, Oman. Atmos. Res. 2011, 101, 215–227. [Google Scholar] [CrossRef]
- Dong, J.; Lin, M.; Zuo, J.; Lin, T.; Liu, J.; Sun, C.; Luo, J. Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China. J. Clean. Prod. 2020, 255, 120152. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Q.; Yi, J.; Wang, Q.; Ren, Q.; Li, Y.; Gao, Z.; Li, Y.; Wu, H. An Ecological Risk Assessment of the Dianchi Basin Based on Multi-Scenario Land Use Change Under the Constraint of an Ecological Defense Zone. Land 2025, 14, 868. [Google Scholar] [CrossRef]
- He, G.; Yuan, G.; Liu, Y.; Jiang, Y.; Liu, Y.; Shu, Z.; Ma, X.; Li, Y.; Huo, Z. The effects of topography and urban agglomeration on the sea breeze evolution over the Pearl River Delta region. Atmosphere 2021, 13, 39. [Google Scholar] [CrossRef]
- Schloss, C.A.; Cameron, D.R.; McRae, B.H.; Theobald, D.M.; Jones, A. “No-regrets” pathways for navigating climate change: Planning for connectivity with land use, topography, and climate. Ecol. Appl. 2022, 32, e02468. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Men, H.; Ke, X. Optimizing urban green space patterns to improve spatial equity using location-allocation model: A case study in Wuhan. Urban For. Urban Green. 2023, 84, 127922. [Google Scholar] [CrossRef]
- Lin, P.; Lau, S.S.Y.; Qin, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, J.; Chen, M.; Tang, M. Optimizing an urban green space ecological network by coupling structural and functional connectivity: A case for biodiversity conservation planning. Sustainability 2023, 15, 15818. [Google Scholar] [CrossRef]
- Mei, S.-J.; Hu, J.-T.; Liu, D.; Zhao, F.-Y.; Li, Y.; Wang, Y.; Wang, H.-Q. Wind driven natural ventilation in the idealized building block arrays with multiple urban morphologies and unique package building density. Energy Build. 2017, 155, 324–338. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.-W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable mitigation strategies for urban heat island effects in urban areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Ling, T.-Y.; Chiang, Y.-C. Well-being, health and urban coherence-advancing vertical greening approach toward resilience: A design practice consideration. J. Clean. Prod. 2018, 182, 187–197. [Google Scholar] [CrossRef]
- Elliott, H.; Eon, C.; Breadsell, J.K. Improving City vitality through urban heat reduction with green infrastructure and design solutions: A systematic literature review. Buildings 2020, 10, 219. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.T.; Holland, T.; Kayhanian, M. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ. Res. Lett. 2013, 8, 015023. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, J.; Ge, J.; Fan, Y.; Wang, H.; Gu, M.; Xue, Y.; Zhao, Y.; Lv, G.; Lin, H. Influences of permeable pavements with different hydraulic properties on evaporative cooling and outdoor thermal environment: Field experiments. Build. Environ. 2025, 270, 112525. [Google Scholar] [CrossRef]
- Fu, Q.; Zheng, Z.; Sarker, M.N.I.; Lv, Y. Combating urban heat: Systematic review of urban resilience and adaptation strategies. Heliyon 2024, 10, e37001. [Google Scholar] [CrossRef]
Variable | Definition | Calculation Method | Data Source |
---|---|---|---|
BD | Building density | Building height of Asia in 3D-GloBFP | |
BH | Average building height | Building height of Asia in 3D-GloBFP | |
RD | Road density per unit area | OpenStreetMap | |
NDVI | Normalized difference vegetation index | Landsat 8 OLI | |
NDWI | Normalized difference water index | Landsat 8 OLI | |
DEM | Terrain relief index | SRTM (30 m) | |
PD | Population density per unit area | SGIS Statistical Geographic Information Service (https://sgis.kostat.go.kr/ (accessed on15 December 2024)) | |
GDP | GDP per unit area | Korean Statistical Information Service (KOSIS) (https://kosis.kr/ (accessed on 15 December 2024)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Yan, Y.; Dou, Z.; Han, D.; Zhang, Y. Exploring the Role of Urban Green Spaces in Regulating Thermal Environments: Comparative Insights from Seoul and Busan, South Korea. Forests 2025, 16, 1515. https://doi.org/10.3390/f16101515
Xia J, Yan Y, Dou Z, Han D, Zhang Y. Exploring the Role of Urban Green Spaces in Regulating Thermal Environments: Comparative Insights from Seoul and Busan, South Korea. Forests. 2025; 16(10):1515. https://doi.org/10.3390/f16101515
Chicago/Turabian StyleXia, Jun, Yue Yan, Ziyuan Dou, Dongge Han, and Ying Zhang. 2025. "Exploring the Role of Urban Green Spaces in Regulating Thermal Environments: Comparative Insights from Seoul and Busan, South Korea" Forests 16, no. 10: 1515. https://doi.org/10.3390/f16101515
APA StyleXia, J., Yan, Y., Dou, Z., Han, D., & Zhang, Y. (2025). Exploring the Role of Urban Green Spaces in Regulating Thermal Environments: Comparative Insights from Seoul and Busan, South Korea. Forests, 16(10), 1515. https://doi.org/10.3390/f16101515