Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = variable geometry turbine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2575 KiB  
Article
Contribution to the Topological Optimization of Reactive Flows
by Hugo Pancin, Luis Le Moyne, Julien Jouanguy and Nadjiba Sophy
Designs 2025, 9(4), 95; https://doi.org/10.3390/designs9040095 - 14 Aug 2025
Abstract
Topology optimization is increasingly employed to design fluid flow systems capable of achieving optimal performance under specific constraints. This study presents a density-based topology optimization approach specifically tailored for second-order reactive flows. The fluid-solid distribution within the domain is represented by continuous design [...] Read more.
Topology optimization is increasingly employed to design fluid flow systems capable of achieving optimal performance under specific constraints. This study presents a density-based topology optimization approach specifically tailored for second-order reactive flows. The fluid-solid distribution within the domain is represented by continuous design variables expressed as an inverse permeability field. An adjoint method is used to efficiently compute gradients of the objective function, enabling the application of gradient-based algorithms to solve the optimization problem. The methodology is validated on a benchmark bend-pipe case, reproducing known optimal geometry. Subsequently, the method is applied to optimize a system involving second-order chemical reactions, aiming to maximize a desired reaction while limiting undesirable side reactions. Results demonstrate significant performance improvements, achieving gains in reaction efficiency ranging from 90.4% to 98.7% for the porous geometries and from 94.6% to 105.2% for real geometries. The optimization strategy successfully generates flow configurations analogous to those observed in modern gas turbines, highlighting the practical relevance and potential impact of the developed methodology. Full article
(This article belongs to the Section Energy System Design)
Show Figures

Figure 1

22 pages, 15594 KiB  
Article
Seasonally Robust Offshore Wind Turbine Detection in Sentinel-2 Imagery Using Imaging Geometry-Aware Deep Learning
by Xike Song and Ziyang Li
Remote Sens. 2025, 17(14), 2482; https://doi.org/10.3390/rs17142482 - 17 Jul 2025
Viewed by 353
Abstract
Remote sensing has emerged as a promising technology for large-scale detection and updating of global wind turbine databases. High-resolution imagery (e.g., Google Earth) facilitates the identification of offshore wind turbines (OWTs) but offers limited offshore coverage due to the high cost of capturing [...] Read more.
Remote sensing has emerged as a promising technology for large-scale detection and updating of global wind turbine databases. High-resolution imagery (e.g., Google Earth) facilitates the identification of offshore wind turbines (OWTs) but offers limited offshore coverage due to the high cost of capturing vast ocean areas. In contrast, medium-resolution imagery, such as 10-m Sentinel-2, provides broad ocean coverage but depicts turbines only as small bright spots and shadows, making accurate detection challenging. To address these limitations, We propose a novel deep learning approach to capture the variability in OWT appearance and shadows caused by changes in solar illumination and satellite viewing geometry. Our method learns intrinsic, imaging geometry-invariant features of OWTs, enabling robust detection across multi-seasonal Sentinel-2 imagery. This approach is implemented using Faster R-CNN as the baseline, with three enhanced extensions: (1) direct integration of imaging parameters, where Geowise-Net incorporates solar and view angular information of satellite metadata to improve geometric awareness; (2) implicit geometry learning, where Contrast-Net employs contrastive learning on seasonal image pairs to capture variability in turbine appearance and shadows caused by changes in solar and viewing geometry; and (3) a Composite model that integrates the above two geometry-aware models to utilize their complementary strengths. All four models were evaluated using Sentinel-2 imagery from offshore regions in China. The ablation experiments showed a progressive improvement in detection performance in the following order: Faster R-CNN < Geowise-Net < Contrast-Net < Composite. Seasonal tests demonstrated that the proposed models maintained high performance on summer images against the baseline, where turbine shadows are significantly shorter than in winter scenes. The Composite model, in particular, showed only a 0.8% difference in the F1 score between the two seasons, compared to up to 3.7% for the baseline, indicating strong robustness to seasonal variation. By applying our approach to 887 Sentinel-2 scenes from China’s offshore regions (2023.1–2025.3), we built the China OWT Dataset, mapping 7369 turbines as of March 2025. Full article
Show Figures

Graphical abstract

17 pages, 4360 KiB  
Article
Turbine Performance of Variable Geometry Turbocharger Applied to Small Gasoline Engine Considering Heat Transfer Effect
by Jeong-Eui Yun, Joon-Young Shin, Cartur Harsito, Gi-Yong Kim and Hyung-Jun Kim
Energies 2025, 18(14), 3775; https://doi.org/10.3390/en18143775 - 16 Jul 2025
Viewed by 282
Abstract
The performance of the turbine in a variable geometry turbocharger (VGT) may be affected by changes in the vane operating angle and heat transfer loss during operation. However, existing studies have been conducted under the assumption of an adiabatic process. In this study, [...] Read more.
The performance of the turbine in a variable geometry turbocharger (VGT) may be affected by changes in the vane operating angle and heat transfer loss during operation. However, existing studies have been conducted under the assumption of an adiabatic process. In this study, we investigated the effect of heat transfer between all working fluids and a VGT structure when using computational fluid dynamics to evaluate turbine performance. Through this study, we confirmed that when heat transfer was considered, the turbine efficiency decreased by approximately 2–6%, depending on the vane position angle change, compared to when heat transfer was not considered. In addition, the total entropy production ratio, which represented the flow loss in the turbine during operation, increased by approximately 0.2–0.5% when heat transfer was considered. In conclusion, the findings confirmed that the heat transfer phenomenon directly affected the efficiency and flow loss during the turbine performance evaluation process. Full article
Show Figures

Figure 1

24 pages, 3541 KiB  
Article
Substructure Optimization for a Semi-Submersible Floating Wind Turbine Under Extreme Environmental Conditions
by Kevin Fletcher, Edem Tetteh, Eric Loth, Chris Qin and Rick Damiani
Designs 2025, 9(3), 68; https://doi.org/10.3390/designs9030068 - 3 Jun 2025
Viewed by 977
Abstract
A barrier to the adoption of floating offshore wind turbines is their high cost relative to conventional fixed-bottom wind turbines. The largest contributor to this cost disparity is generally the floating substructure, due to its large size and complexity. Typically, a primary driver [...] Read more.
A barrier to the adoption of floating offshore wind turbines is their high cost relative to conventional fixed-bottom wind turbines. The largest contributor to this cost disparity is generally the floating substructure, due to its large size and complexity. Typically, a primary driver of the geometry and size of a floating substructure is the extreme environmental load case of Region 4, where platform loads are the greatest due to the impact of extreme wind and waves. To address this cost issue, a new concept for a floating offshore wind turbine’s substructure, its moorings, and anchors was optimized for a reference 10-MW turbine under extreme load conditions using OpenFAST. The levelized cost of energy was minimized by fixing the above-water turbine design and minimizing the equivalent substructure mass, which is based on the mass of all substructure components (stem, legs, buoyancy cans, mooring, and anchoring system) and associated costs of their materials, manufacturing, and installation. A stepped optimization scheme was used to allow an understanding of their influence on both the system cost and system dynamic responses for the extreme parked load case. The design variables investigated include the length and tautness ratio of the mooring lines, length and draft of the cans, and lengths of the legs and the stem. The dynamic responses investigated include the platform pitch, platform roll, nacelle horizontal acceleration, and can submergence. Some constraints were imposed on the dynamic responses of interest, and the metacentric height of the floating system was used to ensure static stability. The results offer insight into the parametric influence on turbine motion and on the potential savings that can be achieved through optimization of individual substructure components. A 36% reduction in substructure costs was achieved while slightly improving the hydrodynamic stability in pitch and yielding a somewhat large surge motion and slight roll increase. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

21 pages, 3205 KiB  
Article
Optimization of Air Compression in Oscillating Water Column Systems for Enhanced Wells Turbine Performance
by Brayan Ordoñez-Saca, Mayken Espinoza-Andaluz, Julio Barzola-Monteses, Natalia Velastegui-Marcos and Nashly Yange-Camacho
Processes 2025, 13(6), 1723; https://doi.org/10.3390/pr13061723 - 31 May 2025
Cited by 1 | Viewed by 596
Abstract
Ocean wave energy has emerged as a promising source in the pursuit of sustainable energy solutions, with Oscillating Water Column (OWC) systems standing out due to their simplicity and potential. This study analyzes how the geometric and physical parameters of the OWC chamber [...] Read more.
Ocean wave energy has emerged as a promising source in the pursuit of sustainable energy solutions, with Oscillating Water Column (OWC) systems standing out due to their simplicity and potential. This study analyzes how the geometric and physical parameters of the OWC chamber influence internal airflow dynamics, a key factor in the performance of the Wells turbine. The methodology includes a mathematical approximation, the definition of chamber geometry, and the design parameters of both the chamber and the Wells turbine. Three configurations were evaluated using Computational Fluid Dynamic (CFD) simulations. The impact of key variables such as chamber inclination and cross-sectional shape on air velocity and pressure at the turbine inlet was assessed. The results indicate that, among cylindrical, inclined cylindrical, and rectangular configurations, the inclined cylindrical chamber design significantly enhances airflow stability and turbine efficiency. These findings offer valuable insights for enhancing the overall performance of OWC based energy systems. Full article
(This article belongs to the Special Issue Advances in Hydraulic Machinery and Systems)
Show Figures

Figure 1

26 pages, 9803 KiB  
Article
Research on Surrogate Model of Variable Geometry Turbine Performance Based on Backpropagation Neural Network
by Liping Deng, Hu Wu, Yuhang Liu and Qi’an Xie
Aerospace 2025, 12(5), 410; https://doi.org/10.3390/aerospace12050410 - 6 May 2025
Viewed by 424
Abstract
To meet the increasingly stringent performance indicators of gas turbines, the turbine inlet temperature has increased, and variable geometry turbine technology is widely applied. Therefore, this study developed a quasi-two-dimensional (quasi-2D) method for variable geometry turbine performance considering cooling air mixing based on [...] Read more.
To meet the increasingly stringent performance indicators of gas turbines, the turbine inlet temperature has increased, and variable geometry turbine technology is widely applied. Therefore, this study developed a quasi-two-dimensional (quasi-2D) method for variable geometry turbine performance considering cooling air mixing based on the elementary blade method and the cooling airflow mixing model. To address the high-dimensional, multi-variable data fitting problem of variable geometry turbines considering the effects of cooling air, this study adopted a BP neural network to further establish a surrogate model for variable geometry turbine performance. A sensitivity analysis of a single-stage turbine was conducted. The variable geometry cooling performance of a single-stage turbine and an E3 five-stage low-pressure air turbine were calculated, and the corresponding surrogate models were established. The relative errors between the calculated mass flow rate and efficiency of the single-stage turbine and the experimental values were no more than 0.70% and 4.44%, respectively; for the five-stage air turbine, the maximum relative errors in mass flow rate and efficiency were no more than 1.67% and 1.385%, respectively. When the throat area of the single-stage turbine nozzle changed by ±30%, the maximum relative errors between the calculated mass flow rate and efficiency and their experimental values were 3.602% and 4.228%, respectively; thus, the determination coefficients of the constructed BP neural network model for the training samples were all greater than 0.999, indicating that the surrogate model has high prediction accuracy and strong generalization ability and can quickly predict variable geometry turbine cooling performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 4222 KiB  
Article
Numerical Simulation of Aerodynamic Characteristics of Trailing Edge Flaps for FFA-W3-241 Wind Turbine Airfoil
by Jiaxin Xu, Zhongyao Ji, Yihuang Zhang, Geye Yao, Yaoru Qian and Zhengzhi Wang
Machines 2025, 13(5), 366; https://doi.org/10.3390/machines13050366 - 29 Apr 2025
Viewed by 579
Abstract
The blades of wind turbines constitute key components for converting wind energy into electrical energy, and modifications to blade airfoil geometry can effectively enhance aerodynamic performance of wind turbine. The trailing edge flap enables load control on the blades through adjustments of its [...] Read more.
The blades of wind turbines constitute key components for converting wind energy into electrical energy, and modifications to blade airfoil geometry can effectively enhance aerodynamic performance of wind turbine. The trailing edge flap enables load control on the blades through adjustments of its motion and geometric parameters, thereby overcoming limitations inherent in conventional pitch control systems. However, current research primarily emphasizes isolated parametric effects on airfoil performance, with limited exploration of interactions between multiple design variables. This study adopts a numerical simulation approach based on the FFA-W3-241 airfoil of the DTU 10 MW. Geometric deformations are achieved by manipulating flap parameters, and the influence on airfoil aerodynamic performance is analyzed using computational fluid dynamics methods. Investigations are conducted into the effects of flap lengths and deflection angles on airfoil aerodynamic characteristics. The results show the existence of an optimal flap length and deflection angle combination. Specifically, when the flap length is 0.1c and the deflection angle is 10°, the lift-to-drag ratio demonstrates significant improvement under defined operational conditions. These findings offer practical guidance for optimizing wind turbine airfoil designs. Full article
(This article belongs to the Special Issue Cutting-Edge Applications of Wind Turbine Aerodynamics)
Show Figures

Figure 1

19 pages, 5539 KiB  
Article
Matching and Control Optimisation of Variable-Geometry Turbochargers for Hydrogen Fuel Cell Systems
by Matt L. Smith, Alexander Fritot, Davide Di Blasio, Richard Burke and Tom Fletcher
Appl. Sci. 2025, 15(8), 4387; https://doi.org/10.3390/app15084387 - 16 Apr 2025
Viewed by 751
Abstract
The turbocharging of hydrogen fuel cell systems (FCSs) has recently become a prominent research area, aiming to improve FCS efficiency to help decarbonise the energy and transport sectors. This work compares the performance of an electrically assisted variable-geometry turbocharger (VGT) with a fixed-geometry [...] Read more.
The turbocharging of hydrogen fuel cell systems (FCSs) has recently become a prominent research area, aiming to improve FCS efficiency to help decarbonise the energy and transport sectors. This work compares the performance of an electrically assisted variable-geometry turbocharger (VGT) with a fixed-geometry turbocharger (FGT) by optimising both the sizing of the components and their operating points, ensuring both designs are compared at their respective peak performance. A MATLAB-Simulink reduced-order model is used first to identify the most efficient components that match the fuel cell air path requirements. Maps representing the compressor and turbines are then evaluated in a 1D flow model to optimise cathode pressure and stoichiometry operating targets for net system efficiency, using an accelerated genetic algorithm (A-GA). Good agreement was observed between the two models’ trends with a less than 10.5% difference between their normalised e-motor power across all operating points. Under optimised conditions, the VGT showed a less than 0.25% increase in fuel cell system efficiency compared to the use of an FGT. However, a sensitivity study demonstrates significantly lower sensitivity when operating at non-ideal flows and pressures for the VGT when compared to the FGT, suggesting that VGTs may provide a higher level of tolerance under variable environmental conditions such as ambient temperature, humidity, and transient loading. Overall, it is concluded that the efficiency benefits of VGT are marginal, and therefore not necessarily significant enough to justify the additional cost and complexity that they introduce. Full article
(This article belongs to the Special Issue Advances in Fuel Cell Renewable Hybrid Power Systems)
Show Figures

Figure 1

17 pages, 17162 KiB  
Article
Numerical Investigation of Multi-Stage Radial Turbine Performance Under Variable Waste Heat Conditions for ORC Systems
by Łukasz Witanowski
Appl. Sci. 2024, 14(24), 11600; https://doi.org/10.3390/app142411600 - 12 Dec 2024
Cited by 2 | Viewed by 967
Abstract
This study investigates the performance of a centrifugal radial turbine within an Organic Rankine Cycle (ORC) system, focusing on operation beyond the design point due to variable waste heat sources. With the goal of integrating the turbine into optimal ORC operating conditions, its [...] Read more.
This study investigates the performance of a centrifugal radial turbine within an Organic Rankine Cycle (ORC) system, focusing on operation beyond the design point due to variable waste heat sources. With the goal of integrating the turbine into optimal ORC operating conditions, its performance was analyzed using R245fa as the working fluid over three stages with varying numbers of blades. A detailed computational analysis was performed using Ansys CFX software (Version 2020 R2) with the k-ω SST turbulence model using thermodynamic data from the NIST Refprop database. The results showed significant discrepancies when operating beyond the design point. At an inlet pressure of 780 kPa, the turbine internal power was calculated to be 120 kW—double the manufacturer’s maximum of 60 kW—and the mass flow rate exceeded 6 kg/s compared to the design value of 2.72 kg/s. These results highlight the challenges of adapting the turbine to fluctuating waste heat conditions, as factors such as tip clearance, blade geometry, and high outlet pressure have a significant impact on efficiency and system performance. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

33 pages, 44902 KiB  
Article
Additive Manufacturing of Tungsten Carbide (WC)-Based Cemented Carbides and Niobium Carbide (NbC)-Based Cermets with High Binder Content via Laser Powder Bed Fusion
by Fabio Miranda, Marcelo Otavio dos Santos, Rodrigo Condotta, Nathalia Marina Gonçalves Pereira, Daniel Rodrigues, Suzilene Real Janasi, Fernando dos Santos Ortega, Marcello Vertamatti Mergulhão, Rodrigo Santiago Coelho, René Ramos de Oliveira, Luis Gallego Martinez and Gilmar Ferreira Batalha
Metals 2024, 14(12), 1333; https://doi.org/10.3390/met14121333 - 25 Nov 2024
Cited by 2 | Viewed by 2504
Abstract
The additive manufacturing technique performed via laser powder bed fusion has matured as a technology for manufacturing cemented carbide parts. The parts are built by additive consolidation of thin layers of a WC and Co mixture using a laser, depending on the power [...] Read more.
The additive manufacturing technique performed via laser powder bed fusion has matured as a technology for manufacturing cemented carbide parts. The parts are built by additive consolidation of thin layers of a WC and Co mixture using a laser, depending on the power and scanning speed, making it possible to create small, complex parts with different geometries. NbC-based cermets, as the main phase, can replace WC-based cemented carbides for some applications. Issues related to the high costs and dependence on imports have made WC and Co powders emerge as critical raw materials. Furthermore, avoiding manufacturing workers’ health problems and occupational diseases is a positive advantage of replacing WC with NbC and alternative binder phases. This work used WC and NbC as the main carbides and three binders: 100% Ni, 100% Co, and 50Ni/50Co wt.%. For the flowability and spreadability of the powders of WC- and NbC-based alloy mixtures in the powder bed with high cohesiveness, it was necessary to build a vibrating container with a pneumatic turbine ranging from 460 to 520 Hz. Concurrently, compaction was promoted by a compacting system. The thin deposition layers of the mixtures were applied uniformly and were well distributed in the powder bed to minimize the defects and cracks during the direct sintering of the samples. The parameters of the L-PBF process varied, with laser scanning speeds from 25 to 125 mm.s─1 and laser power from 50 to 125 W. Microstructural aspects and the properties obtained are presented and discussed, seeking to establish the relationships between the L-PBF process variables and compare them with the liquid phase sintering technique. Full article
(This article belongs to the Special Issue Development of Metallic Material Laser Additive Manufacturing)
Show Figures

Figure 1

13 pages, 12510 KiB  
Article
Optimization of Ansys CFX Input Parameters for Numerical Modeling of Pump Performance in Turbine Operation
by Jan Černý and Martin Polák
Processes 2024, 12(9), 2034; https://doi.org/10.3390/pr12092034 - 21 Sep 2024
Cited by 1 | Viewed by 1771
Abstract
The paper deals with the issue of determining the optimal setting of input variables in Ansys CFX for modeling pump flow in turbine operation (PAT). The pump model was created in Autodesk Inventor. The mesh for numerical simulations was created using Ansys Fluent [...] Read more.
The paper deals with the issue of determining the optimal setting of input variables in Ansys CFX for modeling pump flow in turbine operation (PAT). The pump model was created in Autodesk Inventor. The mesh for numerical simulations was created using Ansys Fluent Meshing, considering the mesh quality parameters’ skewness and aspect ratio. The Ansys CFX computational model was experimentally verified on an actual pump by measuring the performance parameters on a test circuit and using the PIV (particle image velocimetry) method. The research indicated that the most suitable setting for the model input variables was the inlet pressure and PAT flow rate combination. Another option was to adjust the pressure at the pump inlet and outlet. However, the calculation time in this case was up to 30% longer. The comparison of the model results with the experiment showed that the deviations in the numerical model performance values did not exceed 10% of the values measured on the test circuit. Only the calculated torque was 1.2 ± 0.13 Nm higher on average than the torque measured on the test circuit. This difference is most likely due to the simplification of the geometry of the computational mesh in order to reduce the computation time. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 21135 KiB  
Article
Parametric Investigation on the Influence of Turbocharger Performance Decay on the Performance and Emission Characteristics of a Marine Large Two-Stroke Dual Fuel Engine
by Haosheng Shen, Fumiao Yang, Dingyu Jiang, Daoyi Lu, Baozhu Jia, Qingjiang Liu and Xiaochi Zhang
J. Mar. Sci. Eng. 2024, 12(8), 1298; https://doi.org/10.3390/jmse12081298 - 1 Aug 2024
Cited by 5 | Viewed by 1820
Abstract
Identifying and analyzing the engine performance and emission characteristics under the condition of performance decay is of significant reference value for fault diagnosis, condition-based maintenance, and health status monitoring. However, there is a lack of relevant research on the currently popular marine large [...] Read more.
Identifying and analyzing the engine performance and emission characteristics under the condition of performance decay is of significant reference value for fault diagnosis, condition-based maintenance, and health status monitoring. However, there is a lack of relevant research on the currently popular marine large two-stroke dual fuel (DF) engines. To fill the research gap, a detailed zero-/one-dimensional (0D/1D) model of a marine two-stroke DF engine employing the low-pressure gas concept is first established in GT-Power (Version 2020) and validated by comparing the simulation and measured results. Then, three typical types of turbocharger performance decays are defined including turbine efficiency decay, turbine nozzle ring area decay, and turbocharger shaft mechanical efficiency decay. Finally, the three types of decays are introduced to the engine simulation model and parametric runs are performed in both diesel and gas modes to identify and analyze their impacts on the performance and emission characteristics of the investigated marine DF engine. The results reveal that turbocharger performance decay has a significant impact on engine performance parameters, such as brake efficiency, engine speed, boost pressure, etc., as well as CO2 and NOx emissions, and the specified limit value on certain engine operational parameters will be exceeded when turbocharger performance decays to a certain extent. The changing trend of engine performance and emission parameters as turbocharger performance deteriorates are generally consistent in both operating modes but with significant differences in the extent and magnitude, mainly due to the distinct combustion process (Diesel cycle versus Otto cycle). Furthermore, considering the relative decline in brake efficiency, engine speed drop, and relative increase in CO2 emission, the investigated engine is less sensitive to the turbocharger performance decay in gas mode. The simulation results also imply that employing a variable geometry turbine (VGT) is capable of improving the brake efficiency of the investigated marine DF engine. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

22 pages, 2722 KiB  
Review
Signatures of Compressor and Turbine Faults in Gas Turbine Performance Diagnostics: A Review
by Konstantinos Mathioudakis, Alexios Alexiou, Nikolaos Aretakis and Christoforos Romesis
Energies 2024, 17(14), 3409; https://doi.org/10.3390/en17143409 - 11 Jul 2024
Cited by 2 | Viewed by 2239
Abstract
A review of existing research on signatures of gas turbine faults is presented. Faults that influence the aerothermodynamic performance of compressors and turbines, such as fouling, tip clearance increase, erosion, variable geometry system malfunction, and object impact damage, are covered. The signatures of [...] Read more.
A review of existing research on signatures of gas turbine faults is presented. Faults that influence the aerothermodynamic performance of compressors and turbines, such as fouling, tip clearance increase, erosion, variable geometry system malfunction, and object impact damage, are covered. The signatures of such faults, which are necessary for establishing efficient gas path diagnostic methods, are studied. They are expressed through mass flow capacity and efficiency deviations. The key characteristics of the ratio of such deviations are investigated in terms of knowledge existing in published research. Research based on experimental studies, field data, and results of detailed fluid dynamic computations that exist today is found to provide such information. It is shown that although such signatures may be believed to have a unique correspondence to the type of component fault, this is only true when a particular engine and fault type are considered. The choice of diagnostic methods by developers should, thus, be guided by such considerations instead of using values taken from the literature without considering the features of the problem at hand. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

29 pages, 10799 KiB  
Article
Example of Using Particle Swarm Optimization Algorithm with Nelder–Mead Method for Flow Improvement in Axial Last Stage of Gas–Steam Turbine
by Paweł Ziółkowski, Łukasz Witanowski, Stanisław Głuch, Piotr Klonowicz, Michel Feidt and Aimad Koulali
Energies 2024, 17(12), 2816; https://doi.org/10.3390/en17122816 - 7 Jun 2024
Cited by 2 | Viewed by 1605
Abstract
This article focuses principally on the comparison baseline and the optimized flow efficiency of the final stage of an axial turbine operating on a gas–steam mixture by applying a hybrid Nelder–Mead and the particle swarm optimization method. Optimization algorithms are combined with CFD [...] Read more.
This article focuses principally on the comparison baseline and the optimized flow efficiency of the final stage of an axial turbine operating on a gas–steam mixture by applying a hybrid Nelder–Mead and the particle swarm optimization method. Optimization algorithms are combined with CFD calculations to determine the flowpaths and thermodynamic parameters. The working fluid in this study is a mixture of steam and gas produced in a wet combustion chamber, therefore the new turbine type is currently undergoing theoretical research. The purpose of this work is to redesign and examine the last stage of the gas–steam turbine’s flow characteristics. Among the optimized variables, there are parameters characterizing the shape of the endwall contours within the rotor domain. The values of the maximized objective function, which is the isentropic efficiency of the turbine stage, are found from the 3D RANS computation of the flowpath geometry changing during the improvement scheme. The optimization process allows the stage efficiency to be increased by almost 4 percentage points. To achieve high-quality results, a mesh of over 20 million elements is used, where the percentage error in efficiency between the previous and current mesh sizes drops below 0.05%. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

32 pages, 10043 KiB  
Article
Applicability of Variable-Geometry Turbocharger for Diesel Generators under High Exhaust Back Pressure
by Chien-Cheng Chen, Yuan-Liang Jeng and Shun-Chang Yen
J. Mar. Sci. Eng. 2024, 12(6), 938; https://doi.org/10.3390/jmse12060938 - 3 Jun 2024
Cited by 1 | Viewed by 1565
Abstract
The exhaust back pressure of diesel engines is becoming increasingly higher nowadays. In order to keep discharging exhaust unhindered and operating smoothly under high exhaust back pressure, a large reduction in engine maximum brake output is often observed, as well as increased fuel [...] Read more.
The exhaust back pressure of diesel engines is becoming increasingly higher nowadays. In order to keep discharging exhaust unhindered and operating smoothly under high exhaust back pressure, a large reduction in engine maximum brake output is often observed, as well as increased fuel consumption and lower combustion efficiency with heavy exhaust smokes. In our previous study, “Applicability of Reducing Valve Timing Overlap for Diesel Engines under High Exhaust Back Pressure”, a reduced valve timing overlap of 12 °CA partially improves the brake output and BSFC for a fixed-geometry turbocharged diesel engine under high exhaust back pressures. A potential solution for restoring the brake output under high exhaust back pressures could be the use of variable-geometry turbochargers. In this study, a variable-geometry turbocharger is applied to a diesel engine to study the engine performance characteristics and applicability, especially the further improvement of brake output and the brake-specific fuel consumption of the engine. Continuing with the results of our previous research, a basic setting of 12 °CA for the valve timing overlap is set up for the subsequent engine performance simulations in this study (using GT-Power SW). Via simulation, exhaust back pressures of 25 kPa, 45 kPa, and 65 kPa gauge are studied for a turbocharged diesel engine. The results for the engine parameters, including brake output, brake-specific fuel consumption, compressor outlet temperature, turbine inlet temperature, intake air mass flow rate, and exhaust mass flow rate are analyzed. The results of the variable-geometry turbocharger, including turbocharger speed, pressure ratios and efficiencies of compressor and turbine are also analyzed. The results indicate that the brake output and brake-specific fuel consumption are effectively improved under full-load operation with an adequate variable-geometry turbocharger rack position. Operable ranges of rack position are also set up for different back pressures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop