Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = vagal afferent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 611 KiB  
Article
Cutaneous Allodynia of the Withers in Cattle: An Experimental In Vivo Neuroanatomical Preliminary Investigation of the Dichotomizing Sensory Neurons Projecting into the Reticulum and Skin of the Withers—A Case Study on Two Calves
by Roberto Chiocchetti, Luciano Pisoni, Monika Joechler, Adele Cancellieri, Fiorella Giancola, Giorgia Galiazzo, Giulia Salamanca, Rodrigo Zamith Cunha and Arcangelo Gentile
Animals 2025, 15(12), 1689; https://doi.org/10.3390/ani15121689 - 6 Jun 2025
Viewed by 585
Abstract
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information [...] Read more.
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information coming from two different anatomical areas before reaching the secondary sensory neurons within the spinal cord. This anatomical feature could be the underlying basis for the cutaneous allodynia observed in traumatic reticuloperitonitis, also known as the “Kalchschmidt pain test”. The aim of the study was to identify the DRG primary sensory neurons innervating the reticulum and the withers by using two different retrograde fluorescent tracers, Fast Blue (FB, affinity for cytoplasm) and Diamidino Yellow (DY, affinity for nucleus). In two anesthetized calves, FB and DY were injected into the reticulum and skin of the withers, respectively. At the end of the experimental period, the calves were deeply anesthetized and then euthanatized. The thoracic (T1–T8) DRG were collected and processed to obtain cryosections which were examined on a fluorescent microscope. A large number of neurons localized, especially in the T7 DRG, presented nuclei labeled with DY. On the contrary, only a few neurons localized exclusively in T6 and T7 DRG presented the cytoplasm labeled with FB. No neurons displayed FB and DY simultaneously within the cytoplasm and nucleus, respectively. The absence of double-labeled DRG neurons suggests that the convergence of visceral and somatic sensory inputs underlying the Kalchschmidt pain response likely does not occur at the level of individual DRG neurons. Rather, it may involve higher-order integrative centers, possibly including vagal pathways and brainstem nuclei which integrate the afferent information to coordinate respiratory movements of the diaphragm, intercostal muscles, and larynx. Although limited by the sample size, this case study provides a neuroanatomical basis for further investigation into central mechanisms of referred visceral pain in cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

23 pages, 3856 KiB  
Article
Neurons Co-Expressing GLP-1, CCK, and PYY Receptors Particularly in Right Nodose Ganglion and Innervating Entire GI Tract in Mice
by Elizabeth Laura Lansbury, Vasiliki Vana, Mari Lilith Lund, Mette Q. Ludwig, Esmira Mamedova, Laurent Gautron, Myrtha Arnold, Kristoffer Lihme Egerod, Rune Ehrenreich Kuhre, Jens Juul Holst, Jens Rekling, Thue W. Schwartz, Stanislava Pankratova and Oksana Dmytriyeva
Int. J. Mol. Sci. 2025, 26(5), 2053; https://doi.org/10.3390/ijms26052053 - 26 Feb 2025
Cited by 3 | Viewed by 1635
Abstract
Afferent vagal neurons convey gut–brain signals related to the mechanical and chemical sensing of nutrients, with the latter also mediated by gut hormones secreted from enteroendocrine cells. Cell bodies of these neurons are located in the nodose ganglia (NG), with the right NG [...] Read more.
Afferent vagal neurons convey gut–brain signals related to the mechanical and chemical sensing of nutrients, with the latter also mediated by gut hormones secreted from enteroendocrine cells. Cell bodies of these neurons are located in the nodose ganglia (NG), with the right NG playing a key role in metabolic regulation. Notably, glucagon-like peptide-1 receptor (GLP1R) neurons primarily innervate the muscle layer of the stomach, distant from glucagon-like peptide-1 (GLP-1)-secreting gut cells. However, the co-expression of gut hormone receptors in these NG neurons remains unclear. Using RNAscope combined with immunohistochemistry, we confirmed GLP1R expression in a large population of NG neurons, with Glp1r, cholecystokinin A receptor (Cckar), and Neuropeptide Y Y2 Receptor (Npy2r) being more highly expressed in the right NG, while neurotensin receptor 1 (Ntsr), G protein-coupled receptor (Gpr65), and 5-hydroxytryptamine receptor 3A (5ht3a) showed equal expressions in the left and right NG. Co-expression analysis demonstrated the following: (i) most Glp1r, Cckar, and Npy2r neurons co-expressed all three receptors; (ii) nearly all Ntsr1- and Gpr65-positive neurons co-expressed both receptors; and (iii) 5ht3a was expressed in subpopulations of all peptide-hormone-receptor-positive neurons. Retrograde labeling demonstrated that the anterior part of the stomach was preferentially innervated by the left NG, while the right NG innervated the posterior part. The entire gastrointestinal (GI) tract, including the distal colon, was strongly innervated by NG neurons. Most importantly, dual retrograde labeling with two distinct tracers identified a population of neurons co-expressing Glp1r, Cckar, and Npy2r that innervated both the stomach and the colon. Thus, neurons co-expressing GLP-1, cholecystokinin (CCK), and peptide YY (PYY) receptors, predominantly found in the right NG, sample chemical, nutrient-induced signals along the entire GI tract and likely integrate these with mechanical signals from the stomach. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 3529 KiB  
Article
Activation of Adenosine Triphosphate-Gated Purinergic 2 Receptor Channels by Transient Receptor Potential Vanilloid Subtype 4 in Cough Hypersensitivity
by Wanzhen Li, Shengyuan Wang, Tongyangzi Zhang, Yiqing Zhu, Li Yu and Xianghuai Xu
Biomolecules 2025, 15(2), 285; https://doi.org/10.3390/biom15020285 - 14 Feb 2025
Viewed by 1236
Abstract
Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play [...] Read more.
Background: Transient receptor potential vanilloid subtype 4 (TRPV4) is a Ca2+-permeable non-selective cation channel that is involved in the development of cough hypersensitivity. Purinergic 2 receptors (P2X) belong to a class of adenosine triphosphate (ATP)-gated non-selective cation channels that also play an important role in cough hypersensitivity. Nevertheless, little is known about the interaction between them for cough hypersensitivity. The present study was designed to clarify the roles of TRPV4 and ATP-P2X receptors in cough hypersensitivity, and to explore the possible involvement of ATP-P2X receptors in the development of cough hypersensitivity mediated by TRPV4. Design and Method: This study aims to establish a guinea pig model of citric acid-induced enhanced cough to confirm the effects of the TRPV4-mediated purinergic signaling pathway on cough sensitivity by testing the number of coughs, the release of ATP, and the expressions of P2X and TRPV4 receptors in the tracheal carina and vagal ganglion; recording the activity of cellular currents with the whole-cell patch clamp technique; and detecting changes in intracellular calcium flow in the vagus nerve cells. Results: The number of coughs in the TRPV4 agonist GSK1016790A-treated control group was elevated compared with that in the control group, whereas the number of coughs in the TRPV4 antagonist HC067047-treated model group was significantly reduced compared with that in the chronic cough group. When the individuals in the chronic cough group were treated with A317491, PSB12062, and A804598 (P2X3,4,7 antagonists), the number of coughs was significantly decreased. This suggests that TRPV4 and P2X3, P2X4, and P2X7 receptors have an effect on cough hyper-responsiveness in guinea pigs with chronic cough. Enzyme-linked immunosorbent assay results suggested that TRPV4 antagonist and P2X3,4,7 antagonist could differentially reduce the levels of inflammatory factor SP and CGRP in alveolar lavage fluid, and TRPV4 antagonist could reduce the ATP content in the alveolar lavage fluid of guinea pigs in the model. Western blot and immunohistochemistry results showed that, in the tracheal carina and vagal ganglion, the TRPV4 and P2X3,4,7 expression was elevated in the chronic cough group compared with the control group, and could be significantly inhibited by TRPV4 antagonist. Vagus ganglion neurons were isolated, cultured, identified, and subjected to whole-cell membrane clamp assay. When ATP was given extracellularly, a significant inward current was recorded in the examined cells of individuals in the chronic cough and control groups, and the inward current induced by ATP was higher in the chronic cough group relative to the control group. This inward current (IATP) was differentially blocked by P2X3, P2X4, and P2X7 antagonists. Further studies revealed that TRPV4 agonists potentiated ATP-activated currents, and the potentiated currents could still be inhibited by P2X3, P2X4, and P2X7 receptor antagonists, whereas TRPV4 inhibitors partially blocked ATP-activated currents. It is suggested that TRPV4 affects P2X3, P2X4, and P2X7 receptor-mediated ATP-activated currents. Calcium imaging also showed that TRPV4 agonists induced different degrees of calcium inward currents in the vagal neurons of the chronic cough and the control group, and the calcium inward currents were more significant in the model group. Conclusions: The TRPV4-mediated purinergic signaling pathway was identified to be involved in the development of cough hypersensitivity in guinea pigs with chronic cough; i.e., TRPV4 can lead to the release of airway epithelial ATP, which can stimulate P2X receptors on the cough receptor, and further activate the sensory afferent nerves in the peripheral airway, leading to increased cough sensitivity. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
Show Figures

Figure 1

15 pages, 8090 KiB  
Review
Interaction of the Vagus Nerve and Serotonin in the Gut–Brain Axis
by Young Keun Hwang and Jae Sang Oh
Int. J. Mol. Sci. 2025, 26(3), 1160; https://doi.org/10.3390/ijms26031160 - 29 Jan 2025
Cited by 10 | Viewed by 10104
Abstract
The gut–brain axis represents an important bidirectional communication network, with the vagus nerve acting as a central conduit for peripheral signals from the various gut organs to the central nervous system. Among the molecular mediators involved, serotonin (5-HT), synthesized predominantly by enterochromaffin cells [...] Read more.
The gut–brain axis represents an important bidirectional communication network, with the vagus nerve acting as a central conduit for peripheral signals from the various gut organs to the central nervous system. Among the molecular mediators involved, serotonin (5-HT), synthesized predominantly by enterochromaffin cells in the gut, plays a pivotal role. Gut-derived serotonin activates vagal afferent fibers, transmitting signals to the nucleus tractus solitarius (NTS) and modulating serotonergic neurons in the dorsal raphe nucleus (DRN) as well as the norepinephrinergic neurons in the locus coeruleus (LC). This interaction influences emotional regulation, stress responses, and immune modulation. Emerging evidence also highlights the role of microbial metabolites, particularly short-chain fatty acids (SCFAs), in enhancing serotonin synthesis and vagal activity, thereby shaping gut–brain communication. This review synthesizes the current knowledge on serotonin signaling, vagal nerve pathways, and central autonomic regulation, with an emphasis on their implications for neuropsychiatric and gastrointestinal disorders. By elucidating these pathways, novel therapeutic strategies targeting the gut–brain axis may be developed to improve mental and physical health outcomes. Full article
Show Figures

Figure 1

16 pages, 1014 KiB  
Article
Sex Differences in the Association Between Cardiac Vagal Control and the Effects of Baroreflex Afferents on Behavior
by Xiao Yang, Jacob Chaney, Aaron S. David and Fang Fang
Hearts 2024, 5(4), 612-627; https://doi.org/10.3390/hearts5040047 - 12 Dec 2024
Cited by 2 | Viewed by 2031
Abstract
Background: Cardiovascular disease (CVD) is the leading cause of mortality and disability worldwide. While sex differences in CVD have been well documented, the physiological mechanisms of those sex differences remain unclear. As important components of the cardiovascular system, cardiac vagal control and baroreflex [...] Read more.
Background: Cardiovascular disease (CVD) is the leading cause of mortality and disability worldwide. While sex differences in CVD have been well documented, the physiological mechanisms of those sex differences remain unclear. As important components of the cardiovascular system, cardiac vagal control and baroreflex serve as mechanisms of sex differences in CVD and are modifiable factors for gender-specific CVD preventions. Methods: Ninety-four healthy adults (18–44 years of age; Mage = 21.09 years; 46 female) were recruited to complete the assessments of heart rate variability (HRV) at a resting baseline and the cardiac timing effect on an R-wave-locked reaction time (RT) task, which were used as the indicator of cardiac vagal control and a novel behavioral measure of baroreflex activity, respectively. HRV metrics (including the root mean square of successive R-R interval differences, high frequency and low frequency heart rate variability, and low frequency-to-high frequency ratio), the cardiac timing effect (the inhibition of RT response at the phase of cardiac systole compared to diastole), and their associations were compared between female and male participants. Results: Female participants showed higher levels of vagally mediated HRV after adjusting for basal resting heart rate. Importantly, the cardiac timing effect on RT responses was positively correlated with vagally mediated HRV among males but not among females. Conclusions: Females and males exhibited different physiological processes to regulate cardiovascular functions and behavioral outcomes. The present findings will help to reduce gender disparities in the preventive care of CVD and improve cardiovascular health for both women and men. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Review
The Role of Short-Chain Fatty Acids in Microbiota–Gut–Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review
by Anca Moțățăianu, Georgiana Șerban and Sebastian Andone
Int. J. Mol. Sci. 2023, 24(20), 15094; https://doi.org/10.3390/ijms242015094 - 11 Oct 2023
Cited by 36 | Viewed by 7929
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by the gradual loss of motor neurons in the brain and spinal cord, leading to progressive motor function decline. Unfortunately, there is no effective treatment, and its increasing prevalence is linked to an aging [...] Read more.
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by the gradual loss of motor neurons in the brain and spinal cord, leading to progressive motor function decline. Unfortunately, there is no effective treatment, and its increasing prevalence is linked to an aging population, improved diagnostics, heightened awareness, and changing lifestyles. In the gastrointestinal system, the gut microbiota plays a vital role in producing metabolites, neurotransmitters, and immune molecules. Short-chain fatty acids, of interest for their potential health benefits, are influenced by a fiber- and plant-based diet, promoting a diverse and balanced gut microbiome. These fatty acids impact the body by binding to receptors on enteroendocrine cells, influencing hormones like glucagon-like peptide-1 and peptide YY, which regulate appetite and insulin sensitivity. Furthermore, these fatty acids impact the blood–brain barrier, neurotransmitter levels, and neurotrophic factors, and directly stimulate vagal afferent nerves, affecting gut–brain communication. The vagus nerve is a crucial link between the gut and the brain, transmitting signals related to appetite, inflammation, and various processes. Dysregulation of this pathway can contribute to conditions like obesity and irritable bowel syndrome. Emerging evidence suggests the complex interplay among these fatty acids, the gut microbiota, and environmental factors influences neurodegenerative processes via interconnected pathways, including immune function, anti-inflammation, gut barrier, and energy metabolism. Embracing a balanced, fiber-rich diet may foster a diverse gut microbiome, potentially impacting neurodegenerative disease risk. Comprehensive understanding requires further research into interventions targeting the gut microbiome and fatty acid production and their potential therapeutic role in neurodegeneration. Full article
(This article belongs to the Special Issue Molecular Research of Amyotrophic Lateral Sclerosis)
Show Figures

Figure 1

13 pages, 13477 KiB  
Article
Alteration of Excitation/Inhibition Imbalance in the Hippocampus and Amygdala of Drug-Resistant Epilepsy Patients Treated with Acute Vagus Nerve Stimulation
by Qian Yi Ooi, Xiaoya Qin, Yuan Yuan, Xiaobin Zhang, Yi Yao, Hongwei Hao and Luming Li
Brain Sci. 2023, 13(7), 976; https://doi.org/10.3390/brainsci13070976 - 21 Jun 2023
Cited by 9 | Viewed by 3676
Abstract
An imbalance between excitation (E) and inhibition (I) in the brain has been identified as a key pathophysiology of epilepsy over the years. The hippocampus and amygdala in the limbic system play a crucial role in the initiation and conduction of epileptic seizures [...] Read more.
An imbalance between excitation (E) and inhibition (I) in the brain has been identified as a key pathophysiology of epilepsy over the years. The hippocampus and amygdala in the limbic system play a crucial role in the initiation and conduction of epileptic seizures and are often referred to as the transfer station and amplifier of seizure activities. Existing animal and imaging studies reveal that the hippocampus and amygdala, which are significant parts of the vagal afferent network, can be modulated in order to generate an antiepileptic effect. Using stereo-electroencephalography (SEEG) data, we examined the E/I imbalance in the hippocampus and amygdala of ten drug-resistant epilepsy children treated with acute vagus nerve stimulation (VNS) by estimating the 1/f power slope of hippocampal and amygdala signals in the range of 1–80 Hz. While the change in the 1/f power slope from VNS-BASE varied between different stimulation amplitudes and brain regions, it was more prominent in the hippocampal region. In the hippocampal region, we found a flatter 1/f power slope during VNS-ON in patients with good responsiveness to VNS under the optimal stimulation amplitude, indicating that the E/I imbalance in the region was improved. There was no obvious change in 1/f power slope for VNS poor responders. For VNS non-responders, the 1/f power slope slightly increased when the stimulation was applied. Overall, this study implies that the regulation of E/I imbalance in the epileptic brain, especially in the hippocampal region, may be an acute intracranial effect of VNS. Full article
(This article belongs to the Special Issue Neurological Changes after Brain Stimulation)
Show Figures

Figure 1

15 pages, 2766 KiB  
Article
Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules
by Gregory Girardi, Danielle Zumpano, Noah Goshi, Helen Raybould and Erkin Seker
Biosensors 2023, 13(6), 601; https://doi.org/10.3390/bios13060601 - 31 May 2023
Cited by 5 | Viewed by 3832
Abstract
The gut–brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms [...] Read more.
The gut–brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints. Full article
(This article belongs to the Special Issue Biosensors and Neuroscience)
Show Figures

Figure 1

16 pages, 624 KiB  
Review
Social Touch: Its Mirror-like Responses and Implications in Neurological and Psychiatric Diseases
by Laura Clara Grandi and Stefania Bruni
NeuroSci 2023, 4(2), 118-133; https://doi.org/10.3390/neurosci4020012 - 26 May 2023
Cited by 4 | Viewed by 6491
Abstract
What is the significance of a touch encoded by slow-conducted unmyelinated C-tactile (CT) fibers? It is the so-called affiliative touch, which has a fundamental social impact. In humans, it has been demonstrated that the affiliative valence of this kind of touch is encoded [...] Read more.
What is the significance of a touch encoded by slow-conducted unmyelinated C-tactile (CT) fibers? It is the so-called affiliative touch, which has a fundamental social impact. In humans, it has been demonstrated that the affiliative valence of this kind of touch is encoded by a dedicated central network, not involved in the encoding of discriminative touch, namely, the “social brain”. Moreover, CT-related touch has significant consequences on the human autonomic system, not present in the case of discriminative touch, which does not involve CT fibers as the modulation of vagal tone. In addition, CT-related touch provokes central effects as well. An interesting finding is that CT-related touch can elicit “mirror-like responses” since there is evidence that we would have the same perception of a caress regardless of whether it would be felt or seen and that the same brain areas would be activated. Information from CT afferents in the posterior insular cortex likely provides a basis for encoding observed caresses. We also explored the application of this kind of touch in unphysiological conditions and in premature newborns. In the present literature review, we aim to (1) examine the effects of CT-related touch at autonomic and central levels and (2) highlight CT-related touch and mirror networks, seeking to draw a line of connection between them. Finally, the review aims to give an overview of the involvement of the CT system in some neurologic and psychiatric diseases. Full article
Show Figures

Figure 1

8 pages, 489 KiB  
Opinion
LF Power of HRV Could Be the Piezo2 Activity Level in Baroreceptors with Some Piezo1 Residual Activity Contribution
by Balázs Sonkodi
Int. J. Mol. Sci. 2023, 24(8), 7038; https://doi.org/10.3390/ijms24087038 - 11 Apr 2023
Cited by 6 | Viewed by 2436
Abstract
Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of [...] Read more.
Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of things. The scientific debate about one of the measures of heart rate variability, i.e., what low-frequency power is reflecting, has been ongoing for decades. Some schools reason that it represents the sympathetic loading, while an even more compelling reasoning is that it measures how the baroreflex modulates the cardiac autonomic outflow. However, the current opinion manuscript proposes that the discovery of the more precise molecular characteristics of baroreceptors, i.e., that the Piezo2 ion channel containing vagal afferents could invoke the baroreflex, may possibly resolve this debate. It is long known that medium- to high-intensity exercise diminishes low-frequency power to almost undetectable values. Moreover, it is also demonstrated that the stretch- and force-gated Piezo2 ion channels are inactivated in a prolonged hyperexcited state in order to prevent pathological hyperexcitation. Accordingly, the current author suggests that the almost undetectable value of low-frequency power at medium- to high-intensity exercise reflects the inactivation of Piezo2 from vagal afferents in the baroreceptors with some Piezo1 residual activity contribution. Consequently, this opinion paper highlights how low-frequency power of the heart rate variability could represent the activity level of Piezo2 in baroreceptors. Full article
(This article belongs to the Special Issue Study on Cardiac Ion Channels)
Show Figures

Figure 1

20 pages, 1955 KiB  
Article
Taipan Natriuretic Peptides Are Potent and Selective Agonists for the Natriuretic Peptide Receptor A
by Simone Vink, Kalyana Bharati Akondi, Jean Jin, Kim Poth, Allan M. Torres, Philip W. Kuchel, Sandra L. Burke, Geoffrey A. Head and Paul F. Alewood
Molecules 2023, 28(7), 3063; https://doi.org/10.3390/molecules28073063 - 29 Mar 2023
Cited by 2 | Viewed by 2385
Abstract
Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. [...] Read more.
Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold–Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool. Full article
(This article belongs to the Special Issue Biodiscovery Downunder: New Discoveries in Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 5401 KiB  
Article
Oxaliplatin-Induced Damage to the Gastric Innervation: Role in Nausea and Vomiting
by Ahmed A. Rahman, Philenkosini Masango, Rhian Stavely, Paul Bertrand, Amanda Page and Kulmira Nurgali
Biomolecules 2023, 13(2), 276; https://doi.org/10.3390/biom13020276 - 1 Feb 2023
Cited by 9 | Viewed by 2950
Abstract
Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of [...] Read more.
Nausea and vomiting are common gastrointestinal side effects of oxaliplatin chemotherapy used for the treatment of colorectal cancer. However, the mechanism underlying oxaliplatin-induced nausea and vomiting is unknown. The stomach is involved in the emetic reflex but no study investigated the effects of oxaliplatin treatment on the stomach. In this study, the in vivo effects of oxaliplatin treatment on eating behaviour, stomach content, intrinsic gastric neuronal population, extrinsic innervation to the stomach, levels of mucosal serotonin (5-hydroxytryptamine, 5-HT), and parasympathetic vagal efferent nerve activity were analysed. Chronic systemic oxaliplatin treatment in mice resulted in pica, indicated by increased kaolin consumption and a reduction in body weight. Oxaliplatin treatment significantly increased the stomach weight and content. The total number of myenteric and nitric oxide synthase-immunoreactive neurons as well as the density of sympathetic, parasympathetic, and sensory fibres in the stomach were decreased significantly with oxaliplatin treatment. Oxaliplatin treatment significantly increased the levels in mucosal 5-HT and the number of enterochromaffin-like cells. Chronic oxaliplatin treatment also caused a significant increase in the vagal efferent nerve activity. The findings of this study indicate that oxaliplatin exposure has adverse effects on multiple components of gastric innervation, which could be responsible for pica and gastric dysmotility. Full article
(This article belongs to the Special Issue Enteric Nervous System: Normal Functions and Enteric Neuropathies)
Show Figures

Figure 1

16 pages, 1260 KiB  
Article
Effects of Spinal Cord Injury Site on Cardiac Autonomic Regulation: Insight from Analysis of Cardiovascular Beat by Beat Variability during Sleep and Orthostatic Challenge
by Pietro Guaraldi, Mara Malacarne, Giorgio Barletta, Giuseppe De Scisciolo, Massimo Pagani, Pietro Cortelli and Daniela Lucini
J. Funct. Morphol. Kinesiol. 2022, 7(4), 112; https://doi.org/10.3390/jfmk7040112 - 9 Dec 2022
Cited by 3 | Viewed by 2191
Abstract
Purpose: The goal of this study on Spinal Cord Injury (SCI) patients with cervical or thoracic lesion was to assess whether disturbances of ANS control, according to location, might differently affect vagal and sympatho-vagal markers during sleep and orthostatic challenge. We analyzed with [...] Read more.
Purpose: The goal of this study on Spinal Cord Injury (SCI) patients with cervical or thoracic lesion was to assess whether disturbances of ANS control, according to location, might differently affect vagal and sympatho-vagal markers during sleep and orthostatic challenge. We analyzed with linear and nonlinear techniques beat-by-beat RR and arterial pressure (and respiration) variability signals, extracted from a polysomnographic study and a rest–tilt test. We considered spontaneous or induced sympathetic excitation, as obtained shifting from non-REM to REM sleep or from rest to passive tilt. We obtained evidence of ANS cardiac (dys)regulation, of greater importance for gradually proximal location (i.e., cervical) SCI, compatible with a progressive loss of modulatory role of sympathetic afferents to the spinal cord. Furthermore, in accordance with the dual, vagal and sympathetic bidirectional innervation, the results suggest that vagally mediated negative feedback baroreflexes were substantially maintained in all cases. Conversely, the LF and HF balance (expressed specifically by normalized units) appeared to be negatively affected by SCI, particularly in the case of cervical lesion (group p = 0.006, interaction p = 0.011). Multivariate analysis of cardiovascular variability may be a convenient technique to assess autonomic responsiveness and alteration of functionality in patients with SCI addressing selectively vagal or sympathetic alterations and injury location. This contention requires confirmatory studies with a larger population. Full article
(This article belongs to the Special Issue Role of Exercises in Musculoskeletal Disorders—5th Edition)
Show Figures

Figure 1

11 pages, 1599 KiB  
Article
Ginger Constituent 6-Shogaol Attenuates Vincristine-Induced Activation of Mouse Gastroesophageal Vagal Afferent C-Fibers
by Mayur J. Patil, Yongming Huang, Mingwei Yu, Xinzhong Dong, Bradley J. Undem and Shaoyong Yu
Molecules 2022, 27(21), 7465; https://doi.org/10.3390/molecules27217465 - 2 Nov 2022
Cited by 10 | Viewed by 2324
Abstract
Chemotherapeutic agent-induced nausea and vomiting are the severe adverse effects that are induced by their stimulations on the peripheral and/or central emetic nerve pathways. Even though ginger has been widely used as an herbal medicine to treat emesis, mechanisms underlying its neuronal actions [...] Read more.
Chemotherapeutic agent-induced nausea and vomiting are the severe adverse effects that are induced by their stimulations on the peripheral and/or central emetic nerve pathways. Even though ginger has been widely used as an herbal medicine to treat emesis, mechanisms underlying its neuronal actions are still less clear. The present study aimed to determine the chemotherapeutic agent vincristine-induced effect on gastroesophageal vagal afferent nerve endings and the potential inhibitory role of ginger constituent 6-shogaol on such response. Two-photon neuron imaging studies were performed in ex vivo gastroesophageal-vagal preparations from Pirt-GCaMP6 transgenic mice. Vincristine was applied to the gastroesophageal vagal afferent nerve endings, and the evoked calcium influxes in their intact nodose ganglion neuron somas were recorded. The responsive nodose neuron population was first characterized, and the inhibitory effects of 5-HT3 antagonist palonosetron, TRPA1 antagonist HC-030031, and ginger constituent 6-shogaol were then determined. Vincristine application at gastroesophageal vagal afferent nerve endings elicited intensive calcium influxes in a sub-population of vagal ganglion neurons. These neurons were characterized by their positive responses to P2X2/3 receptor agonist α,β-methylene ATP and TRPA1 agonist cinnamaldehyde, suggesting their nociceptive placodal nodose C-fiber neuron lineages. Pretreatment with TRPA1 selective blocker HC-030031 inhibited vincristine-induced calcium influxes in gastroesophageal nodose C-fiber neurons, indicating that TRPA1 played a functional role in mediating vincristine-induced activation response. Such inhibitory effect was comparable to that from 5-HT3 receptor antagonist palonosetron. Alternatively, pretreatment with ginger constituent 6-shogaol significantly attenuated vincristine-induced activation response. The present study provides new evidence that chemotherapeutic agent vincristine directly activates vagal nodose nociceptive C-fiber neurons at their peripheral nerve endings in the upper gastrointestinal tract. This activation response requires both TRPA1 and 5-HT3 receptors and can be attenuated by ginger constituent 6-shogaol. Full article
Show Figures

Figure 1

9 pages, 993 KiB  
Article
Effect of Adropin on Pancreas Exocrine Function in a Rat Model: A Preliminary Study
by Małgorzata Kapica, Iwona Puzio, Beata Abramowicz, Barbara Badzian, Siemowit Muszyński and Ewa Tomaszewska
Animals 2022, 12(19), 2547; https://doi.org/10.3390/ani12192547 - 23 Sep 2022
Cited by 1 | Viewed by 2035
Abstract
The aim was to investigate the potential effect of adropin (ADR) on pancreatic–biliary juice (PBJ) secretion (volume, protein content, trypsin activity) in a rat model. The animals were divided into control and five experimental groups: adropin, CCK-8 (CCK-8 stimulation), capsaicin (capsaicin deactivation of [...] Read more.
The aim was to investigate the potential effect of adropin (ADR) on pancreatic–biliary juice (PBJ) secretion (volume, protein content, trypsin activity) in a rat model. The animals were divided into control and five experimental groups: adropin, CCK-8 (CCK-8 stimulation), capsaicin (capsaicin deactivation of afferents), vagotomy (vagotomy procedure), and vagal stimulation (vagal nerve stimulation). The experiment consisted of four phases, during which vehicle (0.9% NaCl) and three ADR boluses (5, 10, and 20 µg/kg BW) were administered i.v. every 30 min. PBJ samples were collected from each rat at 15 min intervals after boluses. Exogenous ADR failed to affect the pancreatic responses after vagotomy and the capsaicin pretreatment and reduced the PBJ volume, protein outputs, and trypsin activity in the adropin, CCK-8, and vagal stimulation groups in a dose-dependent manner. In all these groups, volume of PBJ was reduced only by the highest dose of ADR (p < 0.001 for adropin group and p < 0.01 for CCK-8 and vagal stimulation groups), and the protein outputs were reduced by the administration of ADR 10 µg/kg BW (adropin and CCK-8 groups, p < 0.01 in both cases) and 20 µg/kg BW (p < 0.001 for adropin and CCK-8 groups, p < 0.01 for vagal stimulation group). The 10 µg/kg BW dose of ADR reduced the trypsin output in the CCK-8 group (p < 0.01), and the highest ADR dose reduced the trypsin output in the CCK-8 (p < 0.001) and vagal stimulation (p < 0.01) groups. In conclusion, adropin in the analyzed doses exhibits the negative feedback pathway. This mechanism seems to participate in the regulation of pancreatic juice secretion via an indirect vagal mechanism. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

Back to TopTop