Ginger Constituent 6-Shogaol Attenuates Vincristine-Induced Activation of Mouse Gastroesophageal Vagal Afferent C-Fibers
Abstract
:1. Introduction
2. Results
2.1. Vincristine Directly Activated Vagal Afferent Neurons at Their Gastroesophageal Nerve Terminals
2.2. Vincristine-Responsive Neurons Were Mainly Nodose C-Fiber Neurons
2.3. 5-HT3 Receptor Antagonist Significantly Blocked Vincristine-Induced Activation Response
2.4. TRPA1 Antagonist Significantly Inhibited Vincristine-Induced Activation Response
2.5. 6-Shogaol Significantly Attenuated Vincristine-Induced Activation Response
3. Materials and Methods
3.1. Animals
3.2. Chemicals
3.3. Two-Photon Nodose Neuron Imaging Using Pirt-GCaMP6s Mouse
3.4. Data Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Navari, R.M.; Aapro, M. Antiemetic Prophylaxis for Chemotherapy-Induced Nausea and Vomiting. N. Engl. J. Med. 2016, 374, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Babic, T.; Browning, K.N. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur. J. Pharmacol. 2014, 722, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, C.C. The medical implications of gastrointestinal vagal afferent pathways in nausea and vomiting. Curr. Pharm. Des. 2014, 20, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Blackshaw, L.A. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J. Physiol. 1998, 512 Pt 3, 907–916. [Google Scholar] [CrossRef]
- Yu, S.; Undem, B.J.; Kollarik, M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol. 2005, 563, 831–842. [Google Scholar] [CrossRef]
- Bielefeldt, K.; Davis, B.M. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G130–G138. [Google Scholar] [CrossRef] [Green Version]
- Marx, W.; Ried, K.; McCarthy, A.L.; Vitetta, L.; Sali, A.; McKavanagh, D.; Isenring, L. Ginger-Mechanism of action in chemotherapy-induced nausea and vomiting: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Ernst, E.; Pittler, M.H. Efficacy of ginger for nausea and vomiting: A systematic review of randomized clinical trials. Br. J. Anaesth. 2000, 84, 367–371. [Google Scholar] [CrossRef]
- Sharma, S.S.; Kochupillai, V.; Gupta, S.K.; Seth, S.D.; Gupta, Y.K. Antiemetic efficacy of ginger (Zingiber officinale) against cisplatin-induced emesis in dogs. J. Ethnopharmacol. 1997, 57, 93–96. [Google Scholar] [CrossRef]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554–568. [Google Scholar] [CrossRef]
- Giacosa, A.; Morazzoni, P.; Bombardelli, E.; Riva, A.; Bianchi Porro, G.; Rondanelli, M. Can nausea and vomiting be treated with ginger extract? Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1291–1296. [Google Scholar] [PubMed]
- Jin, Z.; Lee, G.; Kim, S.; Park, C.S.; Park, Y.S.; Jin, Y.H. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. Korean J. Physiol. Pharmacol. 2014, 18, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Patil, M.J.; Yu, M.; Liptak, P.; Undem, B.J.; Dong, X.; Wang, G.; Yu, S. Effects of ginger constituent 6-shogaol on gastroesophageal vagal afferent C-fibers. Neurogastroenterol. Motil. 2019, 31, e13585. [Google Scholar] [CrossRef] [PubMed]
- Was, H.; Borkowska, A.; Bagues, A.; Tu, L.; Liu, J.Y.H.; Lu, Z.; Rudd, J.A.; Nurgali, K.; Abalo, R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front. Pharmacol. 2022, 13, 750507. [Google Scholar] [CrossRef]
- Lahtinen, R.; Koponen, A.; Mustonen, J.; Soppi, E.; Länsimies, E.; Nousiainen, T.; Lahtinen, R. Discordance in the development of peripheral and autonomic neuropathy during vincristine therapy. Eur. J. Haematol. 1989, 43, 357–358. [Google Scholar] [CrossRef]
- van de Velde, M.E.; Kaspers, G.L.; Abbink, F.C.H.; Wilhelm, A.J.; Ket, J.C.F.; van den Berg, M.H. Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 114, 114–130. [Google Scholar] [CrossRef]
- Yu, S.; Ru, F.; Ouyang, A.; Kollarik, M. 5-Hydroxytryptamine selectively activates the vagal nodose C-fibre subtype in the guinea-pig oesophagus. Neurogastroenterol. Motil. 2008, 20, 1042–1050. [Google Scholar] [CrossRef]
- Bandell, M.; Story, G.M.; Hwang, S.W.; Viswanath, V.; Eid, S.R.; Petrus, M.J.; Earley, T.J.; Patapoutian, A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 2004, 41, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Cavaletti, G.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Curr. Opin. Neurol. 2015, 28, 500–507. [Google Scholar] [CrossRef]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef]
- Yu, M.; Chang, C.; Undem, B.J.; Yu, S. Capsaicin-Sensitive Vagal Afferent Nerve-Mediated Interoceptive Signals in the Esophagus. Molecules 2021, 26, 3929. [Google Scholar] [CrossRef] [PubMed]
- Barzegar-Fallah, A.; Alimoradi, H.; Mehrzadi, S.; Barzegar-Fallah, N.; Zendedel, A.; Abbasi, A.; Dehpour, A.R. The neuroprotective effect of tropisetron on vincristine-induced neurotoxicity. Neurotoxicology 2014, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bellono, N.W.; Bayrer, J.R.; Leitch, D.B.; Castro, J.; Zhang, C.; O’Donnell, T.A.; Brierley, S.M.; Ingraham, H.A.; Julius, D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017, 170, 185–198.e16. [Google Scholar] [CrossRef] [Green Version]
- Amirkhanloo, F.; Karimi, G.; Yousefi-Manesh, H.; Abdollahi, A.; Roohbakhsh, A.; Dehpour, A.R. The protective effect of modafinil on vincristine-induced peripheral neuropathy in rats: A possible role for TRPA1 receptors. Basic Clin. Pharmacol. Toxicol. 2020, 127, 405–418. [Google Scholar] [CrossRef]
- Old, E.A.; Nadkarni, S.; Grist, J.; Gentry, C.; Bevan, S.; Kim, K.W.; Mogg, A.J.; Perretti, M.; Malcangio, M. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J. Clin. Investig. 2014, 124, 2023–2036. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, M.J.; Huang, Y.; Yu, M.; Dong, X.; Undem, B.J.; Yu, S. Ginger Constituent 6-Shogaol Attenuates Vincristine-Induced Activation of Mouse Gastroesophageal Vagal Afferent C-Fibers. Molecules 2022, 27, 7465. https://doi.org/10.3390/molecules27217465
Patil MJ, Huang Y, Yu M, Dong X, Undem BJ, Yu S. Ginger Constituent 6-Shogaol Attenuates Vincristine-Induced Activation of Mouse Gastroesophageal Vagal Afferent C-Fibers. Molecules. 2022; 27(21):7465. https://doi.org/10.3390/molecules27217465
Chicago/Turabian StylePatil, Mayur J., Yongming Huang, Mingwei Yu, Xinzhong Dong, Bradley J. Undem, and Shaoyong Yu. 2022. "Ginger Constituent 6-Shogaol Attenuates Vincristine-Induced Activation of Mouse Gastroesophageal Vagal Afferent C-Fibers" Molecules 27, no. 21: 7465. https://doi.org/10.3390/molecules27217465
APA StylePatil, M. J., Huang, Y., Yu, M., Dong, X., Undem, B. J., & Yu, S. (2022). Ginger Constituent 6-Shogaol Attenuates Vincristine-Induced Activation of Mouse Gastroesophageal Vagal Afferent C-Fibers. Molecules, 27(21), 7465. https://doi.org/10.3390/molecules27217465