Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture Surface Preparation
2.2. Vagal Afferent Neuron Dissection and Culture
2.3. Effector Molecules
2.4. Intracellular Calcium Flux Measurements
2.5. Immunocytochemistry and Imaging
2.6. In-House Fabricated Microelectrode Arrays
2.7. High-Density Microelectrode Arrays
2.8. Statistical Analysis
3. Results and Discussion
3.1. Influence of Culture Conditions on VAN Morphology
3.2. Live-Cell Calcium Imaging
3.3. Extracellular Recordings of VANs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Goswami, C.; Iwasaki, Y.; Yada, T. Short-Chain Fatty Acids Suppress Food Intake by Activating Vagal Afferent Neurons. J. Nutr. Biochem. 2018, 57, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yi, C.-X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; et al. Butyrate Reduces Appetite and Activates Brown Adipose Tissue via the Gut-Brain Neural Circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Knotts, T.A.; Goodson, M.L.; Barboza, M.; Wudeck, E.; England, G.; Raybould, H.E. Metabolic Responses to Butyrate Supplementation in LF- and HF-Fed Mice Are Cohort-Dependent and Associated with Changes in Composition and Function of the Gut Microbiota. Nutrients 2020, 12, 3524. [Google Scholar] [CrossRef] [PubMed]
- McDougle, M.; Quinn, D.; Diepenbroek, C.; Singh, A.; de la Serre, C.; de Lartigue, G. Intact Vagal Gut-Brain Signalling Prevents Hyperphagia and Excessive Weight Gain in Response to High-Fat High-Sugar Diet. Acta Physiol. 2021, 231, e13530. [Google Scholar] [CrossRef] [PubMed]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
- Waise, T.M.Z.; Dranse, H.J.; Lam, T.K.T. The Metabolic Role of Vagal Afferent Innervation. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 625–636. [Google Scholar] [CrossRef]
- Agus, A.; Clément, K.; Sokol, H. Gut Microbiota-Derived Metabolites as Central Regulators in Metabolic Disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef]
- Koh, A.; Vadder, F.D.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Buchanan, K.L.; Rupprecht, L.E.; Kaelberer, M.M.; Sahasrabudhe, A.; Klein, M.E.; Villalobos, J.A.; Liu, W.W.; Yang, A.; Gelman, J.; Park, S.; et al. The Preference for Sugar over Sweetener Depends on a Gut Sensor Cell. Nat. Neurosci. 2022, 25, 191–200. [Google Scholar] [CrossRef]
- Puzan, M.; Hosic, S.; Ghio, C.; Koppes, A. Enteric Nervous System Regulation of Intestinal Stem Cell Differentiation and Epithelial Monolayer Function. Sci. Rep. 2018, 8, 6313. [Google Scholar] [CrossRef] [PubMed]
- Workman, M.J.; Gleeson, J.P.; Troisi, E.J.; Estrada, H.Q.; Kerns, S.J.; Hinojosa, C.D.; Hamilton, G.A.; Targan, S.R.; Svendsen, C.N.; Barrett, R.J. Enhanced Utilization of Induced Pluripotent Stem Cell-Derived Human Intestinal Organoids Using Microengineered Chips. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 669–677.e2. [Google Scholar] [CrossRef] [PubMed]
- Newberry, K.; Wang, S.; Hoque, N.; Kiss, L.; Ahlijanian, M.K.; Herrington, J.; Graef, J.D. Development of a Spontaneously Active Dorsal Root Ganglia Assay Using Multiwell Multielectrode Arrays. J. Neurophysiol. 2016, 115, 3217–3228. [Google Scholar] [CrossRef] [PubMed]
- Bautista, D.M.; Sigal, Y.M.; Milstein, A.D.; Garrison, J.L.; Zorn, J.A.; Tsuruda, P.R.; Nicoll, R.A.; Julius, D. Pungent Agents from Szechuan Peppers Excite Sensory Neurons by Inhibiting Two-Pore Potassium Channels. Nat. Neurosci. 2008, 11, 772–779. [Google Scholar] [CrossRef]
- Ragozzino, F.J.; Arnold, R.A.; Fenwick, A.J.; Riley, T.P.; Lindberg, J.E.M.; Peterson, B.; Peters, J.H. TRPM3 Expression and Control of Glutamate Release from Primary Vagal Afferent Neurons. J. Neurophysiol. 2021, 125, 199–210. [Google Scholar] [CrossRef]
- Goshi, N.; Girardi, G.; Souza, F. da C.; Gardner, A.; Lein, P.J.; Seker, E. Influence of Microchannel Geometry on Device Performance and Electrophysiological Recording Fidelity during Long-Term Studies of Connected Neural Populations. Lab Chip 2022, 22, 3961–3975. [Google Scholar] [CrossRef]
- Raybould, H.E.; Zumpano, D.L. Microbial Metabolites and the Vagal Afferent Pathway in the Control of Food Intake. Physiol. Behav. 2021, 240, 113555. [Google Scholar] [CrossRef]
- Li, Y. Sensory Signal Transduction in the Vagal Primary Afferent Neurons. Curr. Med. Chem. 2007, 14, 2554–2563. [Google Scholar] [CrossRef]
- Egerod, K.L.; Petersen, N.; Timshel, P.N.; Rekling, J.C.; Wang, Y.; Liu, Q.; Schwartz, T.W.; Gautron, L. Profiling of G Protein-Coupled Receptors in Vagal Afferents Reveals Novel Gut-to-Brain Sensing Mechanisms. Mol. Metab. 2018, 12, 62–75. [Google Scholar] [CrossRef]
- Bai, L.; Mesgarzadeh, S.; Ramesh, K.S.; Huey, E.L.; Liu, Y.; Gray, L.A.; Aitken, T.J.; Chen, Y.; Beutler, L.R.; Ahn, J.S.; et al. Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell 2019, 179, 1129–1143.e23. [Google Scholar] [CrossRef]
- Guerville, M.; Hamilton, M.K.; Ronveaux, C.; Ellero-Simatos, S.; Raybould, H.; Boudry, G. Chronic Refined Low-Fat Diet Consumption Reduces Cholecystokinin Satiation in Rats. Eur. J. Nutr. 2019, 58, 2497–2510. [Google Scholar] [CrossRef]
- Kowalski, C.W.; Lindberg, J.E.M.; Fowler, D.K.; Simasko, S.M.; Peters, J.H. Contributing Mechanisms Underlying Desensitization of Cholecystokinin-Induced Activation of Primary Nodose Ganglia Neurons. Am. J. Physiol. Cell Physiol. 2020, 318, C787–C796. [Google Scholar] [CrossRef] [PubMed]
- Troy, A.E.; Simmonds, S.S.; Stocker, S.D.; Browning, K.N. High Fat Diet Attenuates Glucose-dependent Facilitation of 5-HT3-mediated Responses in Rat Gastric Vagal Afferents. J. Physiol. 2016, 594, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.P.; Neal-McKinney, J.M.; Buelow, D.R.; Konkel, M.E.; Simasko, S.M. Capsaicin-Sensitive Vagal Afferent Neurons Contribute to the Detection of Pathogenic Bacterial Colonization in the Gut. J. Neuroimmunol. 2013, 257, 36–45. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The Gut Microbiome in Health and in Disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Simasko, S.M.; Wiens, J.; Karpiel, A.; Covasa, M.; Ritter, R.C. Cholecystokinin Increases Cytosolic Calcium in a Subpopulation of Cultured Vagal Afferent Neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1303–R1313. [Google Scholar] [CrossRef]
- Ghogha, A.; Bruun, D.A.; Lein, P.J. Inducing Dendritic Growth in Cultured Sympathetic Neurons. JoVE J. Vis. Exp. 2012, 61, e3546. [Google Scholar] [CrossRef]
- Rienecker, K.D.A.; Poston, R.G.; Saha, R.N. Merits and Limitations of Studying Neuronal Depolarization-Dependent Processes Using Elevated External Potassium. ASN Neuro 2020, 12, 1759091420974807. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Müller, J.; Ballini, M.; Livi, P.; Chen, Y.; Radivojevic, M.; Shadmani, A.; Viswam, V.; Jones, I.L.; Fiscella, M.; Diggelmann, R.; et al. High-Resolution CMOS MEA Platform to Study Neurons at Subcellular, Cellular, and Network Levels. Lab Chip 2015, 15, 2767–2780. [Google Scholar] [CrossRef]
- Pradhananga, S.; Tashtush, A.A.; Allen-Vercoe, E.; Petrof, E.O.; Lomax, A.E. Protease-Dependent Excitation of Nodose Ganglion Neurons by Commensal Gut Bacteria. J. Physiol. 2020, 598, 2137–2151. [Google Scholar] [CrossRef] [PubMed]
- Daly, D.M.; Park, S.J.; Valinsky, W.C.; Beyak, M.J. Impaired Intestinal Afferent Nerve Satiety Signalling and Vagal Afferent Excitability in Diet Induced Obesity in the Mouse. J. Physiol. 2011, 589, 2857–2870. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.B.; Hynd, M.R.; Dowell-Mesfin, N.; Smith, K.L.; Turner, J.N.; Shain, W.; Kim, S.J. Low-Density Neuronal Networks Cultured Using Patterned Poly-l-Lysine on Microelectrode Arrays. J. Neurosci. Methods 2007, 160, 317–326. [Google Scholar] [CrossRef]
- Goshi, N.; Morgan, R.K.; Lein, P.J.; Seker, E. A Primary Neural Cell Culture Model to Study Neuron, Astrocyte, and Microglia Interactions in Neuroinflammation. J. Neuroinflamm. 2020, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Karahuseyinoglu, S.; Sekerdag, E.; Aria, M.M.; Cetin Tas, Y.; Nizamoglu, S.; Solaroglu, I.; Gürsoy-Özdemir, Y. Three-Dimensional Neuron–Astrocyte Construction on Matrigel Enhances Establishment of Functional Voltage-Gated Sodium Channels. J. Neurochem. 2021, 156, 848–866. [Google Scholar] [CrossRef]
- Cooper, E. Synapse Formation among Developing Sensory Neurones from Rat Nodose Ganglia Grown in Tissue Culture. J. Physiol. 1984, 351, 263–274. [Google Scholar] [CrossRef]
- Yakura, T.; Miki, T.; Warita, K.; Ohta, K.; Suzuki, S.; Liu, J.-Q.; Tamai, M.; Takeuchi, Y. Satellite Glial Cells in the Nodose Ganglion of the Rat Vagus Nerve: Morpho- Logical Alterations of Microglial Cells. Biomed. Res. 2013, 24, 1–6. [Google Scholar]
- Blackshaw, L.A.; Brookes, S.J.H.; Grundy, D.; Schemann, M. Sensory Transmission in the Gastrointestinal Tract. Neurogastroenterol. Motil. 2007, 19, 1–19. [Google Scholar] [CrossRef]
- Wei, Z.; Lin, B.-J.; Chen, T.-W.; Daie, K.; Svoboda, K.; Druckmann, S. A Comparison of Neuronal Population Dynamics Measured with Calcium Imaging and Electrophysiology. PLoS Comput. Biol. 2020, 16, e1008198. [Google Scholar] [CrossRef]
- Heinricher, M.M. Principles of Extracellular Single-Unit Recording. In Microelectrode Recording in Movement Disorder Surgery; Israel, Z., Burchiel, K.J., Eds.; Thieme: New York, NY, USA, 2004; Volume 8, Chapter 2. [Google Scholar]
- Atmaramani, R.; Chakraborty, B.; Rihani, R.T.; Usoro, J.; Hammack, A.; Abbott, J.; Nnoromele, P.; Black, B.J.; Pancrazio, J.J.; Cogan, S.F. Ruthenium Oxide Based Microelectrode Arrays for in Vitro and in Vivo Neural Recording and Stimulation. Acta Biomater. 2020, 101, 565–574. [Google Scholar] [CrossRef]
- Obien, M.E.J.; Deligkaris, K.; Bullmann, T.; Bakkum, D.J.; Frey, U. Revealing Neuronal Function through Microelectrode Array Recordings. Front. Neurosci. 2015, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Sasamura, T.; Kuraishi, Y. Peripheral and Central Actions of Capsaicin and VR1 Receptor. Jpn. J. Pharmacol. 1999, 80, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Hampel, D.; Lansky, P. On the Estimation of Refractory Period. J. Neurosci. Methods 2008, 171, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Wang, S.; Solberg Woods, L.C.; Seshie, O.; Chung, S.T.; Shively, C.A.; Register, T.C.; Craft, S.; McClain, D.A.; Yadav, H. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-Human Primate, and Human Feces. Front. Microbiol. 2018, 9, 2897. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girardi, G.; Zumpano, D.; Goshi, N.; Raybould, H.; Seker, E. Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. Biosensors 2023, 13, 601. https://doi.org/10.3390/bios13060601
Girardi G, Zumpano D, Goshi N, Raybould H, Seker E. Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. Biosensors. 2023; 13(6):601. https://doi.org/10.3390/bios13060601
Chicago/Turabian StyleGirardi, Gregory, Danielle Zumpano, Noah Goshi, Helen Raybould, and Erkin Seker. 2023. "Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules" Biosensors 13, no. 6: 601. https://doi.org/10.3390/bios13060601
APA StyleGirardi, G., Zumpano, D., Goshi, N., Raybould, H., & Seker, E. (2023). Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. Biosensors, 13(6), 601. https://doi.org/10.3390/bios13060601