Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = vadose zone water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3474 KiB  
Article
Characteristics and Mechanisms of the Impact of Heterogeneity in the Vadose Zone of Arid Regions on Natural Vegetation Ecology: A Case Study of the Shiyang River Basin
by Haohao Cui, Jinyu Shang, Xujuan Lang, Guanghui Zhang, Qian Wang and Mingjiang Yan
Sustainability 2025, 17(14), 6605; https://doi.org/10.3390/su17146605 - 19 Jul 2025
Viewed by 304
Abstract
As a critical link connecting groundwater and vegetation, the vadose zone’s lithological structural heterogeneity directly influences soil water distribution and vegetation growth. A comprehensive understanding of the ecological effects of the vadose zone can provide scientific evidence for groundwater ecological protection and natural [...] Read more.
As a critical link connecting groundwater and vegetation, the vadose zone’s lithological structural heterogeneity directly influences soil water distribution and vegetation growth. A comprehensive understanding of the ecological effects of the vadose zone can provide scientific evidence for groundwater ecological protection and natural vegetation conservation in arid regions. This study, taking the Minqin Basin in the lower reaches of China’s Shiyang River as a case, reveals the constraining effects of vadose zone lithological structures on vegetation water supply, root development, and water use strategies through integrated analysis, field investigations, and numerical simulations. The findings highlight the critical ecological role of the vadose zone. This role primarily manifests through two mechanisms: regulating capillary water rise and controlling water-holding capacity. They directly impact soil water supply efficiency, alter the spatiotemporal distribution of water deficit in the root zone, and drive vegetation to develop adaptive root growth patterns and stratified water use strategies, ultimately leading to different growth statuses of natural vegetation. During groundwater level fluctuations, fine-grained lithologies in the vadose zone exhibit stronger capillary water response rates, while multi-layered lithological structures (e.g., “fine-over-coarse” configurations) demonstrate pronounced delayed water release effects. Their effective water-holding capacities continue to exert ecological effects, significantly enhancing vegetation drought resilience. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 475
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

41 pages, 11781 KiB  
Article
A Combined Hydrogeophysical System for Soil Column Experiments Using Time Domain Reflectometry and Ground-Penetrating Radar
by Alexandros Papadopoulos, George Apostolopoulos, Petros Kofakis, Ioannis Argyrokastritis, Margarita Tsaniklidou and Andreas Kallioras
Water 2025, 17(13), 2003; https://doi.org/10.3390/w17132003 - 3 Jul 2025
Viewed by 237
Abstract
To further comprehend kinetic processes in the unsaturated zone, a series of soil column experiments was conducted to simulate downward and upward water movement under variable saturation conditions. High-accuracy spatial and temporal measurements were carried out using the time domain reflectometry—TDR—and Ground-Penetrating Radar—GPR—geophysical [...] Read more.
To further comprehend kinetic processes in the unsaturated zone, a series of soil column experiments was conducted to simulate downward and upward water movement under variable saturation conditions. High-accuracy spatial and temporal measurements were carried out using the time domain reflectometry—TDR—and Ground-Penetrating Radar—GPR—geophysical methods. Several custom spatial TDR sensors were constructed and used alongside point-measuring TDR sensors, which served as reference points for the calibration of the custom spatial waveguides. The experimental results validated the ability of the custom-made spatial sensors, and the TDR technique in general, to capture water movement and soil moisture changes with high precision during varying wetting processes and demonstrated the complementarity, the limitations, and the potential of the GPR method under the same conditions. The study proved that the combination of the aforementioned measuring technologies provides a better understanding of the kinetic processes that occur in variably saturated conditions. Full article
Show Figures

Figure 1

26 pages, 10157 KiB  
Article
Improving Soil Moisture Estimation by Integrating Remote Sensing Data into HYDRUS-1D Using an Ensemble Kalman Filter Approach
by Yule Sun, Quanming Liu, Chunjuan Wang, Qi Liu and Zhongyi Qu
Agriculture 2025, 15(12), 1320; https://doi.org/10.3390/agriculture15121320 - 19 Jun 2025
Viewed by 365
Abstract
Reliable soil moisture projections are critical for optimizing crop productivity and water savings in irrigation in arid and semi-arid regions. However, capturing their spatial and temporal variability is difficult when using individual observations, modeling, or satellite-based methods. Here, we present an integrated framework [...] Read more.
Reliable soil moisture projections are critical for optimizing crop productivity and water savings in irrigation in arid and semi-arid regions. However, capturing their spatial and temporal variability is difficult when using individual observations, modeling, or satellite-based methods. Here, we present an integrated framework that combines satellite-derived soil moisture estimates, ground-based observations, the HYDRUS-1D vadose zone model, and the ensemble Kalman filter (EnKF) data assimilation method to improve soil moisture simulations over saline-affected farmland in the Hetao irrigation district. Vegetation effects were first removed using the water cloud model; after correction, a cubic regression using the vertical transmit/vertical receive (VV) signal retrieved surface moisture with an R2 value of 0.7964 and a root mean square error (RMSE) of 0.021 cm3·cm−3. HYDRUS-1D, calibrated against multi-depth field data (0–80 cm), reproduced soil moisture profiles at 17 sites with RMSEs of 0.017–0.056 cm3·cm−3. The EnKF assimilation of satellite and ground observations further reduced the errors to 0.008–0.017 cm3·cm−3, with the greatest improvement in the 0–20 cm layer; the accuracy declined slightly with depth but remained superior to either data source alone. Our study improves soil moisture simulation accuracy and closes the knowledge gaps in multi-source data integration. This framework supports sustainable land management and irrigation policy in vulnerable farming regions. Full article
(This article belongs to the Special Issue Model-Based Evaluation of Crop Agronomic Traits)
Show Figures

Figure 1

25 pages, 5025 KiB  
Article
Valorization of Historical Urban Spaces for Managed Aquifer Recharge as a Tool to Support Sustainable Urban Development in Warsaw, Poland
by Joanna Trzeciak and Sebastian Zabłocki
Urban Sci. 2025, 9(6), 224; https://doi.org/10.3390/urbansci9060224 - 13 Jun 2025
Viewed by 453
Abstract
In the context of progressing climate change and the increasing frequency of extreme weather events, there is a growing need for effective strategies to mitigate their impacts. One such strategy involves the implementation of tools aimed at sustainable rainfall management at the site [...] Read more.
In the context of progressing climate change and the increasing frequency of extreme weather events, there is a growing need for effective strategies to mitigate their impacts. One such strategy involves the implementation of tools aimed at sustainable rainfall management at the site of precipitation. This study focuses on assessing the state of the water environment as a prerequisite for introducing sustainable Managed Aquifer Recharge (MAR) practices in urban areas. The research was conducted in the historic district of Warsaw, Poland. A comprehensive methodological approach was employed, including field and laboratory measurements of soil moisture and electrical conductivity (EC), vadose zone hydraulic conductivity, spring discharge rates, and analytical calculations based on climatic data. These were supplemented by groundwater flow modeling to estimate infiltration rates. The study showed that the infiltration rate in the aquifer is low—only 4.4% of the average annual precipitation. This is primarily due to limited green space coverage and high surface runoff, as well as high potential evaporation rates and low soil permeability in the vadose zone. A positive water balance and infiltration were observed only in December and January, as indicated by increased soil moisture and decreased EC values. A multi-criteria spatial analysis identified priority zones for the installation of retention infrastructure aimed at enhancing effective infiltration and improving the urban water balance. These findings underscore the need for targeted interventions in urban water management to support climate resilience and sustainable development goals. Full article
Show Figures

Figure 1

14 pages, 1726 KiB  
Article
An Ammonite Preserved in the Upper Pliocene Lower Tejo River Deposits of Quinta Do Conde (Southwest Portugal)
by Carlos Neto de Carvalho, Miguel Barroso and Sofia Soares
Foss. Stud. 2025, 3(2), 8; https://doi.org/10.3390/fossils3020008 - 3 Jun 2025
Viewed by 1572
Abstract
A cast is an object that results from a fossilization process that is considerably rare in nature. For a cast to be produced, secondary diagenetic processes during and after fossilization are normally involved. Natural casts are formed when minerals are deposited within the [...] Read more.
A cast is an object that results from a fossilization process that is considerably rare in nature. For a cast to be produced, secondary diagenetic processes during and after fossilization are normally involved. Natural casts are formed when minerals are deposited within the fossil mold. Here we describe an exceptional example of the natural cast by gypsum of an ammonite presumably preserved as a limestone-made “half” mold that had previously been transported as an extraclast, deposited and dissolved within Upper Pliocene quartz sandstones of the ancestral Tejo river. Portable X-ray fluorescence was used to analyze and compare the geochemical composition of the ammonite fossil with that of the nodules found within the same bed, reflecting different diagenetic timings. The composition of the ammonite cast reflects the in situ dissolution of limestone and the precipitation of calcium sulfate. High δ34S‰ and Sr values obtained from the ammonite show that the cast was produced by percolating acidic waters in the vadose zone, under marine influence, during the Late Pliocene or already in the Pleistocene. The waters being rich in sulfur resulted more likely from a marine water-influenced water table. Alternatively, it may have resulted from the weathering concentration of sulfur from the Marco Furado ferricretes overlying Santa Marta sandstone. This is, so far, the only testimony of the enormous temporal discontinuity that occurred during the taphonomic history of an ammonite, with a final preservation in the form of a cast made of gypsum, the most didactic example of this type of fossilization ever found in Portugal. Full article
(This article belongs to the Special Issue Continuities and Discontinuities of the Fossil Record)
Show Figures

Figure 1

30 pages, 19867 KiB  
Article
Geomorphological Analysis and Heritage Value of Dobreștilor–Brusturet Cave: A Significant Geomorphosite in the Bran–Dragoslavele Corridor, Romania
by Septimius Trif, Ștefan Bilașco, Roșca Sanda, Fodorean Ioan, Iuliu Vescan, András-István Barta and Raboșapca Irina
Heritage 2025, 8(5), 183; https://doi.org/10.3390/heritage8050183 - 21 May 2025
Viewed by 690
Abstract
This study examines the morphology and development of Dobreștilor–Brusturet Cave, located in the Brusturet gorge at the western edge of the Bran–Dragoslavele Corridor, an important tourist route in the Romanian Carpathians. The research aims to analyze the geomorphological characteristics and establish the heritage [...] Read more.
This study examines the morphology and development of Dobreștilor–Brusturet Cave, located in the Brusturet gorge at the western edge of the Bran–Dragoslavele Corridor, an important tourist route in the Romanian Carpathians. The research aims to analyze the geomorphological characteristics and establish the heritage value of the Dobreştilor Cave geomorphosite, supporting protection efforts for invertebrate species that led to the cave’s designation as a natural monument. The inventory of physical features prompted the Piatra Craiului National Park Scientific Council to consider including this speleological site in a thematic geotourism circuit called “The Road of Gorges and Caves in the Upper Basin of the Dâmbovițean”, integrated within protected areas. This represents the first geomorphological study of the cave. Given its ecological significance within the national park’s strict protection zone, recreational tourism is prohibited. The cave should only be used as a geotourism resource for scientific research and education. Morphogenetic analysis reveals that the cave has evolved in a vadose hydrological regime since the Pleistocene, with cavity expansion influenced by free-flowing water alternating with that under pressure during torrential episodes, concomitant with the precipitation of calcium carbonate that formed various speleothems. This research supports documentation for promotional materials and could assist local authorities in the Dâmbovicioara commune with geotourism development decisions, potentially integrating the site into a proposed “Moieciu–Fundata–Dâmbovicioara–Rucăr Geological and Geomorphological Complex”. Full article
Show Figures

Figure 1

24 pages, 8465 KiB  
Article
Harris Hawks Optimization for Soil Water Content Estimation in Ground-Penetrating Radar Waveform Inversion
by Hanqing Qiao, Minghe Zhang and Maksim Bano
Remote Sens. 2025, 17(8), 1436; https://doi.org/10.3390/rs17081436 - 17 Apr 2025
Viewed by 552
Abstract
Ground-penetrating radar (GPR) has emerged as a promising technology for estimating the soil water content (SWC) in the vadose zone. However, most current studies focus on partial GPR data, such as travel-time or amplitude, to achieve SWC estimation. Full waveform inversion (FWI) can [...] Read more.
Ground-penetrating radar (GPR) has emerged as a promising technology for estimating the soil water content (SWC) in the vadose zone. However, most current studies focus on partial GPR data, such as travel-time or amplitude, to achieve SWC estimation. Full waveform inversion (FWI) can produce more accurate results than inversion based solely on travel-time. However, it is subject to local minima when using a local optimization algorithm. In this paper, we propose a novel and powerful GPR waveform inversion scheme based on Harris hawks optimization (HHO) algorithm. The proposed strategy is tested on synthetic data, as well as on field experimental data. To further validate our approach, the results of the HHO algorithm are also compared with those of partial swarm optimization (PSO) and grey wolf optimizer (GWO). The inversion results from both synthetic and real experimental data demonstrate that the proposed inversion scheme can efficiently invert both SWC and layer thicknesses, thus achieving very fast convergence. These findings further confirm that the HHO algorithm can be effectively applied for the quantitative interpretation of GPR data. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

18 pages, 1560 KiB  
Article
Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils
by Rakhi Nandi, Aniruddha Sarker, Md Masud Rana and Ahmed Khairul Hasan
Environments 2025, 12(4), 123; https://doi.org/10.3390/environments12040123 - 16 Apr 2025
Viewed by 672
Abstract
The dissipation pattern and mobility of applied pesticides in the soil represent a crucial process for pesticide safety and subsequent groundwater contamination. In this study, two distinct experiments were conducted to explore the environmental fate, dissipation, and mobility of two pesticides, phorate and [...] Read more.
The dissipation pattern and mobility of applied pesticides in the soil represent a crucial process for pesticide safety and subsequent groundwater contamination. In this study, two distinct experiments were conducted to explore the environmental fate, dissipation, and mobility of two pesticides, phorate and boscalid, in greenhouse conditions and laboratory soil column studies, respectively. The role of organic matter and growing conditions was evaluated during dissipation and mobility studies. In the first study, commercial formulations of phorate (10 G) and boscalid (20% SC) were sprayed in the designated greenhouse for Korean cabbage following the recommended dosage. A sequential collection of plant samples (e.g., 0, 7, 14, 21 days) was performed. On the other hand, three sets of packing columns were prepared (control, biochar-amended, and H2O2 treated). The effect of organic matter addition or removal during the leaching of pesticides was explored. A 14-day interval after the last spray was suggested for safe spraying. After 30 days of leachate collection, no pesticide residue was detected in the leaching water, indicating the immobility of the studied pesticides. However, the metabolic transformation of phorate was evident during this column study, with slight mobility within soil columns. In particular, phorate sulfoxide and sulfone were mostly detected in the top soil layer (vadose zone) of the soil column. In summary, phorate and boscalid were considered immobile pesticides with moderate persistence in the soils. The safe pre-harvest interval should be maintained to reduce the health risk of pesticides. Full article
Show Figures

Figure 1

15 pages, 2747 KiB  
Article
Accumulation Patterns and Numerical Simulation of Nitrate-N in Layered Soils of the Vadose Zone in Cotton Fields
by Feng Li, Shihong Yang, Xiyun Jiao and Zewei Jiang
Water 2025, 17(8), 1117; https://doi.org/10.3390/w17081117 - 9 Apr 2025
Viewed by 428
Abstract
Excessive nitrogen fertilizer in cotton cultivation boosts yields but causes groundwater pollution via nitrate-N (NO3-N) accumulation. This study combined field experiments and HYDRUS-1D modeling to analyze water and NO3-N dynamics in the vadose zone of cotton fields [...] Read more.
Excessive nitrogen fertilizer in cotton cultivation boosts yields but causes groundwater pollution via nitrate-N (NO3-N) accumulation. This study combined field experiments and HYDRUS-1D modeling to analyze water and NO3-N dynamics in the vadose zone of cotton fields in Nanpi, Hebei Province, North China, under deep groundwater conditions. Monitoring during a 184-day growth period revealed that NO3-N accumulation increased from 11.4 to 21.2 g m−3 under conventional flood irrigation and pre-sowing fertilization. Soil texture critically influenced peak NO3-N accumulation depth, while rainfall, moisture, and crop uptake affected migration patterns. The HYDRUS-1D model was employed to numerically simulate the accumulation and migration of water and N in the cotton vadose zone. The HYDRUS-1D simulations closely matched the observed data, demonstrating effectiveness at modeling water–nitrogen transport patterns in the cotton vadose zone under deep groundwater conditions. Various factors, including rainfall, soil texture, soil moisture content, and crops, influenced the accumulation in the soil vadose zone. Notably, the location of the nitrate-N accumulation peak in the soil vadose zone was influenced by soil texture. This study highlights the environmental risks of current practices and provides insights for optimizing fertilizer management in arid agricultural zones. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

38 pages, 3832 KiB  
Review
An Integrated Approach for Earth Infrastructure Monitoring Using UAV and ERI: A Systematic Review
by Udochukwu ThankGod Ikechukwu Igwenagu, Rahul Debnath, Ahmed Abdelmoamen Ahmed and Md Jobair Bin Alam
Drones 2025, 9(3), 225; https://doi.org/10.3390/drones9030225 - 20 Mar 2025
Cited by 3 | Viewed by 3229
Abstract
The integrity of earth infrastructure, encompassing slopes, dams, pavements, and embankments, is fundamental to the functioning of transportation networks, energy systems, and urban development. However, these infrastructures are increasingly threatened by a range of natural and anthropogenic factors. Conventional monitoring techniques, including inclinometers [...] Read more.
The integrity of earth infrastructure, encompassing slopes, dams, pavements, and embankments, is fundamental to the functioning of transportation networks, energy systems, and urban development. However, these infrastructures are increasingly threatened by a range of natural and anthropogenic factors. Conventional monitoring techniques, including inclinometers and handheld instruments, often exhibit limitations in spatial coverage and operational efficiency, rendering them insufficient for comprehensive evaluation. In response, Uncrewed Aerial Vehicles (UAVs) and Electrical Resistivity Imaging (ERI) have emerged as pivotal technological advancements, offering high-resolution surface characterization and critical subsurface diagnostics, respectively. UAVs facilitate the detection of deformations and geomorphological dynamics, while ERI is instrumental in identifying zones of water saturation and geological structures, detecting groundwater, characterizing vadose zone hydrology, and assessing subsurface soil and rock properties and potential slip surfaces, among others. The integration of these technologies enables multidimensional monitoring capabilities, enhancing the ability to predict and mitigate infrastructure instabilities. This article focuses on recent advancements in the integration of UAVs and ERI through data fusion frameworks, which synthesize surface and subsurface data to support proactive monitoring and predictive analytics. Drawing on a synthesis of contemporary research, this study underscores the potential of these integrative approaches to advance early-warning systems and risk mitigation strategies for critical infrastructure. Furthermore, it identifies existing research gaps and proposes future directions for the development of robust, integrated monitoring methodologies. Full article
Show Figures

Figure 1

23 pages, 4943 KiB  
Article
Assessment and Validation of Shallow Groundwater Vulnerability to Contamination Based on Fuzzy Logic and DRASTIC Method for Sustainable Groundwater Management in Southeast Hungary
by Abdelouahed Fannakh, Barta Károly, Mhamed Fannakh and Andrea Farsang
Water 2025, 17(5), 739; https://doi.org/10.3390/w17050739 - 3 Mar 2025
Cited by 2 | Viewed by 1152
Abstract
A hierarchical fuzzy inference system (FIS) integrated with the DRASTIC model is applied in this study to enhance the assessment of shallow groundwater vulnerability in southeast Hungary, a region characterized by extensive agriculture and industrial growth. Traditional groundwater vulnerability models often struggle with [...] Read more.
A hierarchical fuzzy inference system (FIS) integrated with the DRASTIC model is applied in this study to enhance the assessment of shallow groundwater vulnerability in southeast Hungary, a region characterized by extensive agriculture and industrial growth. Traditional groundwater vulnerability models often struggle with parameter imprecision and uncertainty, affecting their reliability. To address these limitations, fuzzy logic was incorporated to refine the classification of vulnerability zones. The hierarchical FIS incorporates the seven DRASTIC parameters: depth to the water table, net recharge, aquifer media, soil media, topography, vadose zone impact, and hydraulic conductivity, assigning flexible ratings through fuzzy membership functions. The model classifies the fuzzy groundwater vulnerability index (FGWVI) into low, moderate, and high categories, revealing that 63.9% of the study area is highly susceptible to contamination, particularly in regions with shallow water tables and sandy soils. Validation was conducted using nitrate (NO3) concentrations and electrical conductivity (EC) measurements from 46 agricultural wells to assess the correlation between predicted vulnerability zones and actual groundwater quality indicators. The correlation analysis revealed a moderately strong positive relationship between FGWVI and both NO3 (R2 = 0.4785) and EC (R2 = 0.528), supporting the model’s ability to identify high-risk contamination zones. This study highlights the effectiveness of the fuzzy-enhanced DRASTIC model in evaluating aquifer vulnerability and provides crucial insights to assist policymakers in identifying pollution sources and developing strategies to mitigate groundwater contamination, thereby alleviating the stress on this critical resource. Full article
Show Figures

Figure 1

12 pages, 2718 KiB  
Article
Impact of Deep-Rooted Vegetation on Deep Soil Water Recharge in the Gully Region of the Loess Plateau
by Jingjing Jin, Xiaoyun Ding, Fengshi Li, Zichen Jia, Haoyan Wei, Junchao Li and Min Li
Water 2025, 17(2), 208; https://doi.org/10.3390/w17020208 - 14 Jan 2025
Viewed by 822
Abstract
To investigate the impacts of vegetation change on deep soil water recharge, it is essential to identify the sources of deep soil water and deep drainage. The combination of stable and radioactive water isotopes is an effective method for studying deep vadose zones, [...] Read more.
To investigate the impacts of vegetation change on deep soil water recharge, it is essential to identify the sources of deep soil water and deep drainage. The combination of stable and radioactive water isotopes is an effective method for studying deep vadose zones, though it has been rarely applied in complex gully areas. In this study, we measured δ2H, δ18O, and 3H in soil water under long-term natural grassland and C. korshinskii on the same slope. Both natural grassland and C. korshinskii plots received deep soil water from rainfall during the rainy season; however, the replenishment thresholds for soil water at depths of 2–10.4 m differed between the two vegetation types, corresponding to rainfall intensities of ≥20 mm and ≥50 mm, respectively. Following the conversion of natural grassland to C. korshinskii vegetation, the rate of soil water storage deficit increased by 46.4 mm yr−1, and deep drainage shifted from 39.6 mm yr−1 to 0 mm yr−1. Deep-rooted vegetation significantly depletes soil water to meet transpiration demands, thus hindering rainfall recharge. These findings have important implications for water and land resource management, especially in areas undergoing significant vegetation changes. Full article
Show Figures

Figure 1

26 pages, 8360 KiB  
Article
Hydrogeological, Hydrochemical, and Geophysical Analysis of a Brine-Contaminated Aquifer Addressing Non-Unique Interpretations of Vertical Electrical Sounding Curves
by Barry J. Hibbs
Water 2024, 16(24), 3557; https://doi.org/10.3390/w16243557 - 10 Dec 2024
Cited by 1 | Viewed by 1189
Abstract
A comprehensive hydrogeological, geophysical, and hydrochemical investigation was conducted in southeastern Hitchcock County, Nebraska, within the Driftwood Creek alluvial aquifer. This study assessed groundwater contamination stemming from the surface disposal of saline wastes from oilfield activities. A contaminated area, initially identified through regional [...] Read more.
A comprehensive hydrogeological, geophysical, and hydrochemical investigation was conducted in southeastern Hitchcock County, Nebraska, within the Driftwood Creek alluvial aquifer. This study assessed groundwater contamination stemming from the surface disposal of saline wastes from oilfield activities. A contaminated area, initially identified through regional groundwater sampling, was examined in detail. Monitoring wells were installed, and groundwater and soil samples were collected for chemical analysis. Surface electrical resistivity surveys were also performed to delineate contamination patterns. The findings revealed that the groundwater contamination originated from the leaching of residual evaporative salts through the vadose zone, beneath an abandoned emergency-evaporation brine storage pit. Data from down-hole specific conductance logs, water quality analyses, and computer-generated interpretations of surface electrical resistivity indicated that contaminant migration was primarily influenced by gravity, bedrock topography, and the local hydraulic gradient. An initial surface electrical resistivity profile survey was conducted to optimize the placement of monitoring wells and soil sampling sites within the vadose zone. Following well installation, a contaminant source with complex brine contamination patterns was detected within the shallow aquifer. Vertical electrical soundings were then carried out as the final investigative step. The data from these soundings, combined with test hole records, water level measurements, brine contaminant distribution, and soil analyses, were refined through a computer program employing the method of steepest descent. By incorporating known layer thicknesses and resistivities as constraints, this approach minimized the common issue of non-unique electrical sounding interpretations, providing information on the distribution of brine contaminants within the alluvial aquifer. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology—Second Edition)
Show Figures

Figure 1

15 pages, 4643 KiB  
Article
Comparing Recovery Volumes of Steady and Unsteady Injections into an Aquifer Storage and Recovery Well
by Saeid Masoudiashtiani and Richard C. Peralta
Earth 2024, 5(4), 990-1004; https://doi.org/10.3390/earth5040051 - 9 Dec 2024
Viewed by 1237
Abstract
Aquifer Storage and Recovery (ASR) can involve injecting available surface water into an unconfined aquifer and then extracting it to provide secondary water for irrigation. This study demonstrates a method for evaluating the appropriateness of steady injection versus unsteady injection for an assumed [...] Read more.
Aquifer Storage and Recovery (ASR) can involve injecting available surface water into an unconfined aquifer and then extracting it to provide secondary water for irrigation. This study demonstrates a method for evaluating the appropriateness of steady injection versus unsteady injection for an assumed situation. In design, it can be important to affect the transient: the proportion of the injected water that would be subsequently extracted (versus that remaining in the aquifer) and the proportion within the extracted water that would be an injectate (versus ambient groundwater). These proportions can be predicted from the predicted value of an ASR well’s Recovery Effectiveness (REN)—the time-varying proportion of injectate that is extracted subsequently from the same fully penetrating well. Applying the demonstrated procedure with appropriately detailed data and simulation models can predict the REN values resulting from steady versus unsteady injection, followed by steady extraction. For convenience in displaying and computing REN, the injectate was assumed to have a 100 ppm conservative solute concentration. For this demonstration, a homogenous isotropic unconfined one-layer aquifer was assumed. The scenarios involved steady or unsteady injection for 61 days via a fully penetrating ASR well. Then, 91 days of steady pumping led to the extraction of a total volume equal to that injected. For the assumed hydrogeologic data—31 years of Salt Lake City, Utah, rainfall data and estimated captured runoff—the results show that steady injection is more likely to cause a predictable REN but might not cause a higher REN than daily varying injection of the same total volume. Assuming different runoff or hydrogeologic flows would lead to different REN values. Steady injection causes a predictable groundwater mound and can assure a sufficient vadose zone thickness for overlying plants. Augmentation and storage of captured rainwater can help to provide a steady injection rate. For a situation that requires REN management, appropriate simulations can help water managers design ASR systems that will achieve REN goals and increase sustainable groundwater availability. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Back to TopTop