Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = vacuum plasma treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8914 KiB  
Article
Assessment of Low-Dose rhBMP-2 and Vacuum Plasma Treatments on Titanium Implants for Osseointegration and Bone Regeneration
by Won-Tak Cho, Soon Chul Heo, Hyung Joon Kim, Seong Soo Kang, Se Eun Kim, Jong-Ho Lee, Gang-Ho Bae and Jung-Bo Huh
Materials 2025, 18(15), 3582; https://doi.org/10.3390/ma18153582 - 30 Jul 2025
Viewed by 301
Abstract
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated [...] Read more.
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated that plasma treatment increased surface energy, promoting cell adhesion and proliferation. Additionally, it facilitated sustained rhBMP-2 release by enhancing protein binding to the implant surface. In vivo experiments using the four-beagle mandibular defect model were conducted with the following four groups: un-treated implants, rhBMP-2–coated implants, plasma-treated implants, and implants treated with both rhBMP-2 and plasma. Micro-computed tomography (micro-CT) and medical CT analyses revealed a significantly greater volume of newly formed bone in the combined treatment group (p < 0.05). Histological evaluation further confirmed superior outcomes in the combined group, showing significantly higher bone-to-implant contact (BIC), new bone area (NBA), and inter-thread bone density (ITBD) compared to the other groups (p < 0.05). These findings indicate that vacuum plasma treatment enhances the biological efficacy of low-dose rhBMP-2, representing a promising strategy to improve implant integration in compromised conditions. Further studies are warranted to determine the optimal clinical dosage. Full article
Show Figures

Graphical abstract

21 pages, 1030 KiB  
Review
Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow
by Marco Dalla Rosa, Santina Romani, Pietro Rocculi, Urszula Tylewicz and Silvia Tappi
Foods 2025, 14(13), 2332; https://doi.org/10.3390/foods14132332 - 30 Jun 2025
Viewed by 284
Abstract
Following the debate on food processing, resulting in a negative definition of ultra-processed products, the improvement of the food system could be pursued through the co-creation of new food solutions aimed at enhancing human health and increasing safety and sustainability, in particular by [...] Read more.
Following the debate on food processing, resulting in a negative definition of ultra-processed products, the improvement of the food system could be pursued through the co-creation of new food solutions aimed at enhancing human health and increasing safety and sustainability, in particular by using neglected foodstuff, crops or by-products, and applying mild processing technologies. The proper management of mild/non-thermal processing technologies, such as dynamic and hydrostatic high-pressure, vacuum impregnation, ultrasound, pulsed electric field and cold plasma applications, can result in a less negative effect with respect to the traditional thermal treatments, and, in some cases, the overall functionality can be improved. In many cases, these treatments can induce structural changes that improve the bioaccessibility and/or the bioavailability of bioactive compounds such as probiotic microorganisms. Moreover, non-thermal pretreatments, also combined with mild thermal drying technology, could lead to a significant reduction in the total request of energy, even when considering the energy input for their application. A selected review of results published in the last few years on those strategies is presented, considering studies carried out within the frame of different national and EU projects. Full article
(This article belongs to the Special Issue Optimization of Non-thermal Technology in Food Processing)
Show Figures

Figure 1

23 pages, 10093 KiB  
Article
Phase Evolution and Synthesis of Be12 Nb Intermetallic Compound in the 800–1300 °C Temperature Range
by Sergey Udartsev, Inesh E. Kenzhina, Timur Kulsartov, Kuanysh Samarkhanov, Zhanna Zaurbekova, Yuriy Ponkratov, Alexandr Yelishenkov, Meiram Begentayev, Saulet Askerbekov, Aktolkyn Tolenova, Manarbek Kylyshkanov, Mikhail Podoinikov, Ainur Kaynazarova and Oleg Obgolts
Materials 2025, 18(12), 2915; https://doi.org/10.3390/ma18122915 - 19 Jun 2025
Viewed by 443
Abstract
Beryllium-based intermetallic compounds, such as Be12Nb, are attracting growing interest for their high thermal stability and potential to replace pure beryllium as neutron reflectors and multipliers in both fission and future fusion reactors, with additional applications in metallurgy, aerospace, and hydrogen [...] Read more.
Beryllium-based intermetallic compounds, such as Be12Nb, are attracting growing interest for their high thermal stability and potential to replace pure beryllium as neutron reflectors and multipliers in both fission and future fusion reactors, with additional applications in metallurgy, aerospace, and hydrogen technology. The paper presents the results of an investigation of the thermal treatment and phase formation of the intermetallic compound Be12Nb from a mixture of niobium and beryllium powders in the temperature range of 800–1300 °C. The phase evolution was assessed as a function of sintering temperature and time. A nearly single-phase Be12Nb composition was achieved at 1100 °C, while decomposition into lower-order beryllides such as Be17Nb2 occurred at temperatures ≥1200 °C, indicating thermal instability of Be12Nb under vacuum. Careful handling of sintering in low vacuum minimized oxidation, though signs of possible BeO formation were noted. The findings complement and extend earlier reports on Be12Nb synthesis via plasma sintering, mechanical alloying, and other powder metallurgy routes, providing broader insight into phase formation and synthesis. These results provide a foundation for optimizing the manufacturing parameters required to produce homogeneous Be12Nb-based components and billets at an industrial scale. Additionally, they help define the operational temperature limits necessary to preserve the material’s phase integrity during application. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

12 pages, 2779 KiB  
Article
Enhancing Tissue Integration and Reducing Inflammation in Silicone and Human Acellular Dermal Matrix Implants via Vacuum Plasma Treatment
by Kyung Bae Chung, Young In Lee, Jihee Kim, Ngoc Ha Nguyen, Yoo Jin Kim, Inhee Jung, Jeonghoon Lee, Hyun-Jeong Jeon, Youbong Lim, Sung Jun Lee and Ju Hee Lee
Int. J. Mol. Sci. 2025, 26(12), 5854; https://doi.org/10.3390/ijms26125854 - 18 Jun 2025
Viewed by 475
Abstract
Plasma, an ionized gas composed of charged particles, has shown therapeutic potential in enhancing biological processes such as wound healing and tissue integration. Implants, such as silicone and human acellular dermal matrix (hADM), are commonly used in reconstructive surgery, but improving their biocompatibility [...] Read more.
Plasma, an ionized gas composed of charged particles, has shown therapeutic potential in enhancing biological processes such as wound healing and tissue integration. Implants, such as silicone and human acellular dermal matrix (hADM), are commonly used in reconstructive surgery, but improving their biocompatibility and integration remains a challenge. This study investigated the effects of vacuum plasma treatment on silicone and hADM implants using an in vivo rat model. Plasma-treated and untreated implants were inserted subcutaneously, and tissue samples were collected at 1, 4, and 8 weeks post-implantation. Histological and immunohistochemical analyses were performed to assess inflammation, cellular infiltration, collagen formation (neocollagenesis), and angiogenesis. Results showed that plasma-treated silicone and hADM implants had significantly reduced capsule thickness at weeks 4 and 8 compared to untreated controls, indicating a lower chronic inflammatory response. Plasma treatment also promoted greater fibroblast infiltration and enhanced neocollagenesis within the hADM implants. Furthermore, immunohistochemical staining revealed a notable increase in blood vessel formation around and within the plasma-treated hADM implants, suggesting improved vascularization. In conclusion, vacuum plasma treatment enhances the biocompatibility and tissue integration of implants by reducing inflammation and promoting cellular and vascular responses, offering promising potential for improving outcomes in reconstructive surgery. Full article
Show Figures

Figure 1

14 pages, 4648 KiB  
Article
The Use of Vacuum Plasma Surface Treatment to Improve Bone Healing and Regeneration in Socket Preservation and GBR: A Case Series with Histological Analysis
by Marco Tallarico, Michele Troia, Milena Pisano, Silvio Mario Meloni, Dario Melodia, Claudia Della Via, Dolaji Henin, Francesco Mattia Ceruso, Carlotta Cacciò and Aurea Immacolata Lumbau
Appl. Sci. 2025, 15(11), 6344; https://doi.org/10.3390/app15116344 - 5 Jun 2025
Viewed by 368
Abstract
Purpose: To evaluate the clinical and histological outcomes of patients that receive implant-supported crowns after vacuum plasma surface treatment (VPST) of biomaterials used in socket preservation (SP) and guided bone regeneration (GBR). Materials and methods: This study was designed as a case series. [...] Read more.
Purpose: To evaluate the clinical and histological outcomes of patients that receive implant-supported crowns after vacuum plasma surface treatment (VPST) of biomaterials used in socket preservation (SP) and guided bone regeneration (GBR). Materials and methods: This study was designed as a case series. Patients in need of tooth extraction and socket preservation or guided bone regeneration were enrolled. The socket preservation technique was performed after tooth extraction using a heterologous collagen bone graft and a collagen xenomatrix, both activated with vacuum plasma. Meanwhile, a two-stage horizontal ridge augmentation was performed using a customized titanium mesh and a mix of autologous (untreated) and heterologous (treated) bone grafts, along with a treated collagen membrane. ACTILINK Reborn with Universal Vortex Holder (Plasmapp Co., Ltd., Daejeon, Republic of Korea) was used to treat all biomaterials. The outcome measures were implant and prosthesis failures, complications, and histological examination. Soft and hard tissue samples were collected at the time of implant placement only in patients treated with SP. Results: A total of six patients were treated—three with socket preservation and delayed implant placement, and three with staged GBR. No implant or prosthesis failed. One customized titanium mesh broke after plasma treatment, requiring replacement with a pericardium membrane. No other complications occurred. Histological analysis at three months post-surgery revealed well-vascularized newly formed bone at different stages of maturation with integrated bone graft particles, while the soft tissue appeared to be physiologically structured. Conclusion: VPST may enhance the hydrophilicity of biomaterials, supporting favorable healing outcomes in SP and GBR. Further randomized controlled trials with appropriate sample size calculations are needed to confirm these preliminary results. Full article
(This article belongs to the Special Issue Current Advances in Dental Materials)
Show Figures

Figure 1

15 pages, 2121 KiB  
Article
Driveline Relocation and Vacuum-Assisted Closure for Ventricular Assist Device Driveline Infections
by Mehmet Cahit Saricaoglu, Melisa Kandemir, Elif M. Saricaoglu, Ali Fuat Karacuha, Ezel Kadiroglu, Mustafa Farah Abdullahi, Mustafa Bahadir Inan, Alpay Azap and Ahmet Ruchan Akar
J. Cardiovasc. Dev. Dis. 2025, 12(6), 211; https://doi.org/10.3390/jcdd12060211 - 3 Jun 2025
Viewed by 1291
Abstract
Background: Durable mechanical circulatory support (DMCS) infections remain a serious challenge. Ventricular assist device (VAD)-specific driveline infections (DLIs) are the most common type; however, no consensus exists on their surgical management. We aimed to define the incidence, risk factors, and microbiology of DLIs [...] Read more.
Background: Durable mechanical circulatory support (DMCS) infections remain a serious challenge. Ventricular assist device (VAD)-specific driveline infections (DLIs) are the most common type; however, no consensus exists on their surgical management. We aimed to define the incidence, risk factors, and microbiology of DLIs and discuss the surgical treatment modalities. Methods: We retrospectively reviewed 90 patients who underwent a left or biventricular ventricular assist device (LVAD or BiVAD) implantation with either a HeartMate 2 (Abbott), HeartWare HVAD (Medtronic), or HeartMate 3 (Abbott) in a single center between 1 March 2011 and 30 May 2023. Results: DLIs were detected in 20 (21.5%) patients during the follow-up. The mean duration of VAD support was 561.1 ± 833.2 days (1–4124 days), while it was 1277.9 ± 621.6 days in the DLI group. An extended duration of VAD support was associated with higher incidence rates of late-onset DLIs (p < 0.05). A younger age and lower plasma albumin levels were independent predictive factors for the risk of a DLI, with a hazard ratio of 9.77 (95%CI: 1.3–74.5) and 10.55 (95%CI: 1.40–79.35), respectively. The removal of the biofilm with velour and DL relocation through the rectus muscle combined with vacuum-assisted strategies (VAC) were performed in nine patients. One patient developed a recurrent infection, and another patient with a deep DLI subsequently received a heart transplant. No patient underwent a device exchange for an intractable DLI. Conclusions: Our results suggest that DLIs are common infectious complications after VAD implantation, which endanger patient autonomy, and impair their quality of life and overall survival. A DL relocation through the rectus muscles and VAC strategies have a role in controlling DLIs. Full article
(This article belongs to the Collection Current Challenges in Heart Failure and Cardiac Transplantation)
Show Figures

Graphical abstract

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 697
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

25 pages, 4967 KiB  
Article
Synergistic Effects of Selected Nonthermal Technologies Combined with Soursop Leaf Extract on the Quality and Shelf Life of Refrigerated Pacific White Shrimp
by Abubakar Saleh Ahmad, Thanasak Sae-Leaw, Yadong Zhao, Lukai Ma, Bin Zhang, Hui Hong and Soottawat Benjakul
Foods 2025, 14(8), 1388; https://doi.org/10.3390/foods14081388 - 17 Apr 2025
Viewed by 636
Abstract
The effectiveness of multi-targeted treatments including pulsed electric field (PEF), soursop leaf extract (SLE), vacuum impregnation (VI), and modified atmosphere packaging (MAP), with and without cold plasma (CP) treatment, on the quality and shelf life of Pacific white shrimp (Penaeus vannamei) [...] Read more.
The effectiveness of multi-targeted treatments including pulsed electric field (PEF), soursop leaf extract (SLE), vacuum impregnation (VI), and modified atmosphere packaging (MAP), with and without cold plasma (CP) treatment, on the quality and shelf life of Pacific white shrimp (Penaeus vannamei) during refrigerated storage for 21 days was investigated. PEF inhibited melanosis and reduced the initial bacterial load, as evidenced by lower melanosis scores and total bacterial counts in the treated samples. Integrating 1% SLE through VI effectively lowered color alteration, retarded melanosis, and preserved textural integrity in the SLE-treated samples (p < 0.05). SLE1 (1%) significantly reduced lipid oxidation, as witnessed by lower thiobarbituric acid reactive substances (p < 0.05) and minimal fatty acid profile changes. MAP3, comprising CO2/N2/Ar (60%/30%/10%), combined with CP treatment, ensured microbiological quality and maintained total viable count within the acceptable limit (6 Log CFU/g) throughout the storage time of 21 days. Notably, the PEF-SLE1-VI-MAP3-CP sample exhibited superior quality preservation, as shown by a lower pH and total volatile base content than the others. Sensory evaluation confirmed that the PEF-SLE1-VI-MAP3-CP sample remained sensorially acceptable during storage. Thus, this multi-hurdle approach demonstrated the synergistic potential of integrating nonthermal processing technologies with plant extracts, contributing to the extended shelf life and safety of the refrigerated shrimp for up to 21 days. Full article
Show Figures

Figure 1

17 pages, 1411 KiB  
Review
A Narrative Review of Independent Treatment Methods for ED: Assessment of the Effectiveness of Diet, Supplements, Pharmacotherapy, and Physiotherapy
by Marta Bonarska, Damian Adasik, Simone Szymczyk, Gabriela Łocik, Elżbieta Bumbul-Mazurek, Piotr Marianowski and Artur Ludwin
J. Clin. Med. 2025, 14(7), 2386; https://doi.org/10.3390/jcm14072386 - 31 Mar 2025
Viewed by 1591
Abstract
The prevalence of erectile dysfunction (ED) among the male population worldwide has significant ramifications for their quality of life and psychological well-being. This narrative review explores both conventional treatments, such as pharmacotherapy and surgery, and emerging approaches, including regenerative therapies, dietary interventions, physiotherapy, [...] Read more.
The prevalence of erectile dysfunction (ED) among the male population worldwide has significant ramifications for their quality of life and psychological well-being. This narrative review explores both conventional treatments, such as pharmacotherapy and surgery, and emerging approaches, including regenerative therapies, dietary interventions, physiotherapy, and vacuum erection devices (VEDs). Unlike prior reviews, this study emphasises unconventional therapies and their role in comprehensive ED management. A systematic literature review was conducted using PubMed, Embase, and Medline, including studies published up to 2024. Keywords such as “ED”, “pharmacotherapy”, “shock wave therapy”, “regenerative medicine”, and “dietary interventions” were used to identify relevant studies. Eligible studies examined treatment efficacy, mechanisms, and patient outcomes. Phosphodiesterase type 5 (PDE5i) inhibitors remain the primary treatment, demonstrating effectiveness across diverse populations. Regenerative therapies, including stem cells and platelet-rich plasma (PRP), show promise, but require further validation. Surgical interventions, particularly penile prostheses, provide high patient and partner satisfaction. Non-invasive methods, including physiotherapy and dietary changes like adoption of the Mediterranean diet, improve vascular health and erectile function. The efficacy of VEDs as standalone or adjunct treatments has been demonstrated, enhancing outcomes in prosthetic surgery. A multimodal, personalised approach is essential for optimising ED treatment. Despite promising advancements, gaps remain in terms of long-term data, standardised protocols, and partner-centred outcomes. Future research should focus on large-scale, multi-centre trials and synergistic treatment approaches to improve therapeutic outcomes and patient satisfaction. Full article
(This article belongs to the Section Reproductive Medicine & Andrology)
Show Figures

Figure 1

10 pages, 1886 KiB  
Article
The Use of Vacuum Plasma Surface Treatment to Improve the Hydrophilicity and Wettability of Bone Graft Substitutes and Resorbable Membranes: An In Vitro Study
by Marco Tallarico, Silvio Mario Meloni, Michele Troia, Carlotta Cacciò, Aurea Immacolata Lumbau, Ieva Gendviliene, Francesco Mattia Ceruso and Milena Pisano
Dent. J. 2025, 13(4), 141; https://doi.org/10.3390/dj13040141 - 25 Mar 2025
Cited by 2 | Viewed by 602
Abstract
Background/Objectives: We wished to evaluate in vitro whether vacuum plasma surface treatment of bone graft substitutes and resorbable membranes could improve the hydrophilicity and wettability of the tested materials. Methods: A total of 28 sterilized samples were considered for this research and divided [...] Read more.
Background/Objectives: We wished to evaluate in vitro whether vacuum plasma surface treatment of bone graft substitutes and resorbable membranes could improve the hydrophilicity and wettability of the tested materials. Methods: A total of 28 sterilized samples were considered for this research and divided into three groups. Six samples were used for the SEM-EDS analysis. The other 22 samples were randomly assigned into the test (plasma-treated, n = 11) and control (no treatment, n = 11) groups. Vacuum plasma surface treatment was performed in the test group before the SEM-EDS analysis using the ACTILINK reborn with a material holder (Plasmapp Co., Ltd., Daejeon, Republic of Korea). Plasmatreat (Plasmatreat, Steinhagen, Germany) inks were used to evaluate the differences in the hydrophilicity between the test and control groups. The outcome measures were the absorption time, wettability grade, and grade of decontamination after different time cycles. Results: After the vacuum plasma surface treatment, the absorption time of the inks statistically decreased in all of the subgroups (p < 0.05), while the wettability grade increased. The SEM-EDS analyses showed an increased reduction rate of carbon impurities after up to three vacuum plasma surface treatment cycles. Furthermore, the SEM-EDS analysis did not reveal any areas of damage caused by the multiple treatments. Conclusions: Within the limitations of this in vitro study, the vacuum plasma surface treatment increased the hydrophilicity and wettability of the tested biomaterials. Particle bone graft and bone blocks should be treated using longer time programs. Further well-conducted randomized clinical trials with sample size calculations are needed to confirm these preliminary results. Full article
(This article belongs to the Special Issue Oral Implantology and Bone Regeneration)
Show Figures

Figure 1

16 pages, 2475 KiB  
Review
Plasma Treatment of Cellulose as the First Step in the Synthesis of Second-Generation Biofuel
by Gregor Primc and Miran Mozetič
Polymers 2025, 17(6), 782; https://doi.org/10.3390/polym17060782 - 14 Mar 2025
Cited by 1 | Viewed by 898
Abstract
Cellulosic ethanol has been an attractive biofuel for over a century. Despite the large scientific interest, the first step of treating cellulose before enzymatic hydrolysis is still inadequate, so the scientific community seeks innovative solutions. Among them, plasma treatment of raw cellulose represents [...] Read more.
Cellulosic ethanol has been an attractive biofuel for over a century. Despite the large scientific interest, the first step of treating cellulose before enzymatic hydrolysis is still inadequate, so the scientific community seeks innovative solutions. Among them, plasma treatment of raw cellulose represents an interesting approach. The literature on approaches to treat cellulose with gaseous plasma is surveyed, and the results reported by different authors are interpreted. Reactive gaseous particles like ions, electrons, metastables, and radicals interact chemically with the surface but do not cause significant depolymerization of bulk cellulose. Such depolymerization results from bond scission in the bulk cellulose by energetic plasma species capable of penetrating deep into the cellulose. Among them, photons in the range of vacuum ultraviolet radiation (photon energy above the threshold for bond scission) are the most suitable plasma species for the depolymerization of cellulose and the formation of water-soluble fragments, which are suitable for further treatment by enzymatic hydrolysis. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

11 pages, 9593 KiB  
Article
The Effect of Solution Treatment on the Microstructure and Properties of AlCuCrFe2NiTi0.25 High-Entropy Hardfacing Alloy
by Jingxuan Huang and Yunhai Su
Crystals 2025, 15(2), 117; https://doi.org/10.3390/cryst15020117 - 23 Jan 2025
Viewed by 654
Abstract
With the advancement of modern social science and technology, alloys composed solely of a single principal component are gradually unable to meet people’s needs. The concept of a new type of high-entropy alloy has been proposed. At present, high-entropy alloys are mostly prepared [...] Read more.
With the advancement of modern social science and technology, alloys composed solely of a single principal component are gradually unable to meet people’s needs. The concept of a new type of high-entropy alloy has been proposed. At present, high-entropy alloys are mostly prepared by vacuum arc furnace melting and casting methods. To improve this situation, this article uses plasma welding technology to prepare an AlCuCrFe2NiTi0.25 high-entropy alloy on a Q235 steel plate through multi-layer and multi-pass welding using plasma surfacing technology and adopts an appropriate solution treatment on this basis to obtain a higher-performance alloy. The conclusion drawn from different heat treatment processes is as follows: solution treatment was performed on an AlCuCrFe2Ni0.25 high-entropy alloy at a temperature of 1200 °C for 2 h, 3 h, and 4 h, respectively. After XRD phase analysis, it was found that the phase types of high-entropy alloys did not change after solution treatment. As the solution time increased, the diffraction peak intensity of the Laves phase gradually decreased. After 3 h of solid solution treatment, room temperature tensile tests were conducted to obtain the tensile strength and elongation of the AlCuCrFe2Ni0.25 high-entropy alloy at room temperature, which were 509 MPa and 23.8%, respectively, exhibiting the optimal comprehensive mechanical properties. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

23 pages, 5472 KiB  
Article
Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics
by Augustė Judickaitė, Emilija Jankaitytė, Evaldas Ramanciuškas, Laima Degutytė-Fomins, Zita Naučienė, Gediminas Kudirka, Takamasa Okumura, Kazunori Koga, Masaharu Shiratani, Vida Mildažienė and Rasa Žūkienė
Plants 2025, 14(2), 271; https://doi.org/10.3390/plants14020271 - 18 Jan 2025
Cited by 3 | Viewed by 1054
Abstract
This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Stevia rabaudiana Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments [...] Read more.
This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Stevia rabaudiana Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing. All growth parameters in aeroponics exceeded the parameters of seedlings in the corresponding groups cultivated in soil. Seed treatments stimulated SGs biosynthesis in seedlings grown in soil, except for CP7. Although there were no stimulating effects of seed treatments on SGs in aeroponics, overall SG concentrations were considerably higher compared to plants cultivated in soil: the RebA+Stev concentration was 1.8–2-fold higher in the control, V5-, and CP-treated groups, and 1.3-fold higher in the DBD5 and DBD7 groups. Thus, aeroponic cultivation has the potential to improve the growth and synthesis of SGs in stevia, while a combination of aeroponics with seed treatments only increases the content of antioxidants and antioxidant activity. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

13 pages, 5187 KiB  
Article
Combining Cocatalyst and Oxygen Vacancy to Synergistically Improve Fe2O3 Photoelectrochemical Water Oxidation Performance
by Chen Liu, Jiajuan Li, Wenyao Zhang and Changqing Zhu
Crystals 2025, 15(1), 85; https://doi.org/10.3390/cryst15010085 - 16 Jan 2025
Viewed by 903
Abstract
Considering the poor conductivity of Fe2O3 and the weak oxygen evolution reaction associated with it, surface hole accumulation leads to electron hole pair recombination, which inhibits the photoelectrochemical (PEC) performance of the Fe2O3 photoanode. Therefore, the key [...] Read more.
Considering the poor conductivity of Fe2O3 and the weak oxygen evolution reaction associated with it, surface hole accumulation leads to electron hole pair recombination, which inhibits the photoelectrochemical (PEC) performance of the Fe2O3 photoanode. Therefore, the key to improving the PEC water oxidation performance of the Fe2O3 photoanode is to take measures to improve the conductivity of Fe2O3 and accelerate the reaction kinetics of surface oxidation. In this work, the PEC performances of Fe2O3 photoanodes are synergistically improved by combining loaded an FeOOH cocatalyst and oxygen vacancy doping. Firstly, amorphous FeOOH layers are successfully prepared on Fe2O3 nanostructures through simple photoassisted electrodepositon. Then oxygen vacancies are introduced into FeOOH-Fe2O3 through plasma vacuum treatment, which reduces the content of Fe-O (OL) and Fe-OH (-OH), jointly promoting the generation of oxygen vacancies. Oxygen vacancy can increase the concentration of most carriers in Fe2O3 and form photo-induced charge traps, promoting the separation of electron holes and enhancing the conductivity of Fe2O3. The other parts of -OH act as oxygen evolution catalysts to reduce the reaction obstacle of water oxidation and promote the transfer of holes to the electrode/electrolyte interface. The performance of FeOOH-Fe2O3 after plasma vacuum treatment has been greatly improved, and the photocurrent density is about 1.9 times higher than that of the Fe2O3 photoanode. The improvement in the water oxidation performance of PEC is considered to be the synergistic effect of the cocatalyst and oxygen vacancy. All outstanding PEC response characteristics show that the modification of the cocatalyst and oxygen vacancy doping represent a favorable strategy for synergistically improving Fe2O3 photoanode performance. Full article
(This article belongs to the Special Issue Research and Application of Photoelectrocatalytic Materials)
Show Figures

Figure 1

15 pages, 2877 KiB  
Article
Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios
by Christoph Walkner, Gulnaz Mukhametzianova, Stefan Wagner, Jörg C. Korp, Andreas Graf, Johanna Irrgeher, Thomas C. Meisel and Thomas Prohaska
Metals 2025, 15(1), 67; https://doi.org/10.3390/met15010067 - 14 Jan 2025
Viewed by 982
Abstract
Non-metallic inclusions (NMIs) in steel have a detrimental effect on the processing, mechanical properties, and corrosion resistance of the finished product. This is particularly evident in the case of macroscopic inclusions (>100 µm), which are rarely observed in steel castings produced using state-of-the-art [...] Read more.
Non-metallic inclusions (NMIs) in steel have a detrimental effect on the processing, mechanical properties, and corrosion resistance of the finished product. This is particularly evident in the case of macroscopic inclusions (>100 µm), which are rarely observed in steel castings produced using state-of-the-art technologies, whereby casting parameters are optimized towards steel cleanliness, and post-treatment steps such as vacuum arc remelting (VAR) are used, but frequently result in the rejection of the affected product. To improve production processes and develop effective countermeasures, it is essential to gain a deeper understanding of the origin and formation of NMIs. In this study, the potential of elemental and isotopic fingerprinting to trace the sources of macroscopic oxide NMIs found in VAR-treated steel ingots using SEM-EDX, inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS (LA-ICP-MS), and laser ablation multicollector ICP-MS (LA-MC-ICP-MS) were exploited. Following this approach, main and trace element content and 87Sr/86Sr isotope ratios were determined in two specimens of macroscopic NMIs, as well as in samples of potential source materials. The combination of the data allowed the drawing of conclusions about the processes leading to the formation of these inclusions. For both specimens, very similar results were obtained, indicating a common mechanism of formation. The inclusions were likely exogenous in origin and were primarily composed of calcium–aluminum oxides. They appeared to have undergone chemical modification during the casting and remelting process. The results indicate that particles from the refractory lining of the casting system most likely formed the macroscopic inclusions, possibly in conjunction with a second, calcium-rich material. Full article
Show Figures

Figure 1

Back to TopTop