Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = vacuum chambers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3462 KB  
Article
Multiphysics Simulation for Efficient and Reliable Systems for Low-Temperature Plasma Treatment of Metals
by Nina Yankova Penkova, Boncho Edward Varhoshkov, Valery Todorov, Hristo Antchev, Kalin Krumov and Vesselin Iliev
Materials 2026, 19(2), 382; https://doi.org/10.3390/ma19020382 (registering DOI) - 17 Jan 2026
Abstract
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the [...] Read more.
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the coupled electromagnetic, fluid flow, and thermal processes in vacuum chambers for the low-temperature plasma treatment of metal parts have been developed. They were solved numerically via ANSYS/CFX software for a discretized solid and gas space of a plasma nitriding chamber. The specific electrical conductivity of the gas mixture, containing plasma, has been calibrated on the basis of an electrical model of the chamber and in situ measurements. The three-dimensional fields of pressure, temperature, velocity, turbulent characteristics, electric current density, and voltage in the chamber have been simulated and analysed. Methods for further development and application of the models and for technological and constructive enhancement of the plasma treatment technologies are discussed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

23 pages, 1504 KB  
Article
Evaluation of Two Practical Field Methods for Estimating Operational Overmilking Duration Using Standard Milking-System Sensors
by Alice Uí Chearbhaill, Pablo Silva Boloña, Eoin G. Ryan, Catherine I. McAloon, Martin Browne and John Upton
Animals 2026, 16(2), 244; https://doi.org/10.3390/ani16020244 - 13 Jan 2026
Viewed by 113
Abstract
The objective of this study was to quantify the method-to-method variation between two widely used field indicators of the end-of-milking vacuum-exposure period (i.e., operational overmilking duration), and to identify cow- and milking-level factors associated with this variation. Operational overmilking was defined using two [...] Read more.
The objective of this study was to quantify the method-to-method variation between two widely used field indicators of the end-of-milking vacuum-exposure period (i.e., operational overmilking duration), and to identify cow- and milking-level factors associated with this variation. Operational overmilking was defined using two approaches: (i) MPC vacuum fluctuation patterns collected via VaDia™ recording devices, and (ii) milk flow curves generated from milking system data, with simulated ACR take-off thresholds ranging from 0.2 to 0.8 kg/min. Seven quarter combinations were analyzed to determine their effect on method-to-method variation. Multivariable modelling was used to investigate the factors which influenced the absolute difference in operational overmilking duration (ADOD) between methods, with larger ADOD indicating greater method-to-method variation. All quarter combinations showed large method-to-method variations. VaDiaTM-derived estimates indicated longer overmilking durations and higher milk flow at the onset of overmilking compared with the milk flow curve approach. Our findings showed that a combination of the rear quarters was significantly associated with the lowest ADOD, and that a combination of the front quarters was significantly associated with the highest ADOD. All other combinations did not differ from each other, indicating that combinations including one front and one rear quarter performed similarly, and that recording all four quarters did not improve agreement between methods within this dataset. Milk flow factors associated with increased ADOD included longer low flow times, longer high flow times, longer machine-on times, and increased yield. Vacuum values associated with increased ADOD included high short milk tube vacuum during the full milking, and high mouthpiece chamber vacuum levels during both the full milking and overmilking periods. High short milk tube vacuum during overmilking was associated with decreased ADOD. Wider teat diameters, longer teat lengths, and increased parity were associated with increased ADOD. These findings indicated that vacuum-based and flow-based indicators of operational overmilking capture different aspects of the end-milking process and should be clearly specified when measuring or reporting overmilking in research or commercial milking systems. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

23 pages, 3022 KB  
Article
Single-Point Search for eV-Scale Axion-like Particles with Variable-Angle Three-Beam-Stimulated Resonant Photon Collider
by Takumi Hasada, Kensuke Homma, Airi Kodama, Haruhiko Nishizaki, Yuri Kirita, Shin-ichiro Masuno, Shigeki Tokita, Masaki Hashida and ᵗSAPPHIRES Collaboration
Universe 2026, 12(1), 17; https://doi.org/10.3390/universe12010017 - 5 Jan 2026
Viewed by 185
Abstract
We report a laboratory search for axion-like particles (ALPs) in the eV mass range using a variable-angle three-beam-stimulated resonant photon collider. The scheme independently focuses and collides three laser beams, providing a cosmology- and astrophysics-independent test. By varying the angles of incidence, the [...] Read more.
We report a laboratory search for axion-like particles (ALPs) in the eV mass range using a variable-angle three-beam-stimulated resonant photon collider. The scheme independently focuses and collides three laser beams, providing a cosmology- and astrophysics-independent test. By varying the angles of incidence, the center-of-mass energy can be scanned continuously across the eV range. In this work, we operated the collider in a vacuum chamber at a large-angle configuration, verified the spacetime overlap of the three short pulses, and performed a first search centered at ma2.27eV. No excess was observed. Thus, we set a 95% C.L. upper limit on the pseudoscalar two-photon coupling, with a minimum sensitivity of g/M4.2×1010GeV1 at ma=2.27eV. This provides the first model-independent upper limit on the coupling that reaches the KSVZ benchmark in the eV regime and demonstrates the feasibility of eV-scale mass scans in the near future. Full article
Show Figures

Figure 1

18 pages, 1947 KB  
Review
Effect of Sintering Atmosphere Control on the Surface Engineering of Catamold Steels Produced by MIM: A Review
by Jorge Luis Braz Medeiros, Carlos Otávio Damas Martins and Luciano Volcanoglo Biehl
Surfaces 2026, 9(1), 7; https://doi.org/10.3390/surfaces9010007 - 29 Dec 2025
Viewed by 278
Abstract
Metal Injection Molding (MIM) is an established, high-precision manufacturing route for small, geometrically complex metallic components, integrating polymer injection molding with powder metallurgy. State-of-the-art feedstock systems, such as Catamold (polyacetal-based), enable catalytic debinding performed in furnaces operating under ultra-high-purity nitric acid atmospheres (>99.999%). [...] Read more.
Metal Injection Molding (MIM) is an established, high-precision manufacturing route for small, geometrically complex metallic components, integrating polymer injection molding with powder metallurgy. State-of-the-art feedstock systems, such as Catamold (polyacetal-based), enable catalytic debinding performed in furnaces operating under ultra-high-purity nitric acid atmospheres (>99.999%). The subsequent thermal stages pre-sintering and sintering are carried out in continuous controlled-atmosphere furnaces or vacuum systems, typically employing inert (N2) or reducing (H2) atmospheres to meet the specific thermodynamic requirements of each alloy. However, incomplete decomposition or secondary volatilization of binder residues can lead to progressive hydrocarbon accumulation within the sinering chamber. These contaminants promote undesirable carburizing atmospheres, which, under austenitizing or intercritical conditions, increase carbon diffusion and generate uncontrolled surface carbon gradients. Such effects alter the microstructural evolution, hardness, wear behavior, and mechanical integrity of MIM steels. Conversely, inadequate dew point control may shift the atmosphere toward oxidizing regimes, resulting in surface decarburization and oxide formation effects that are particularly detrimental in stainless steels, tool steels, and martensitic alloys, where surface chemistry is critical for performance. This review synthesizes current knowledge on atmosphere-induced surface deviations in MIM steels, examining the underlying thermodynamic and kinetic mechanisms governing carbon transport, oxidation, and phase evolution. Strategies for atmosphere monitoring, contamination mitigation, and corrective thermal or thermochemical treatments are evaluated. Recommendations are provided to optimize surface substrate interactions and maximize the functional performance and reliability of MIM-processed steel components in demanding engineering applications. Full article
Show Figures

Figure 1

25 pages, 4446 KB  
Article
Experimental Analysis of Pressure Sensor Membranes Intended for Vacuum Arc-Extinguishing Chambers in Medium-Voltage Switching Devices
by Paweł Węgierek, Damian Kostyła, Paweł Okal and Czesław Kozak
Materials 2025, 18(24), 5682; https://doi.org/10.3390/ma18245682 - 18 Dec 2025
Viewed by 337
Abstract
This article presents a comparison of empirical and simulation studies and the parameters declared by the membrane manufacturer. The analysis concludes that these values differ at each stage. Therefore, a numerical and simulation analysis of an optimal flat membrane was undertaken, which will [...] Read more.
This article presents a comparison of empirical and simulation studies and the parameters declared by the membrane manufacturer. The analysis concludes that these values differ at each stage. Therefore, a numerical and simulation analysis of an optimal flat membrane was undertaken, which will successfully perform measurement functions across the full pressure range without causing inelastic deformations based on a membrane made of 316 L stainless steel with the following mechanical parameters: Young’s modulus E=2×1011 Pa, Poisson’s ratio ν=0.28, density ρ=7980 kg/m3, and yield strength 2.8 × 108 Pa. A diaphragm with an outer diameter of 25.4 mm, an inner diameter of 2.22×104 m, and a thickness of t = 5.08×105 m was designed for a pressure sensor in vacuum extinguishing chambers of medium-voltage devices, with a pressure difference Δp from 7 × 10−4 Pa to 1.013 × 105 Pa. Finite element method (FEM) simulations in the COMSOL Multiphysics environment showed maximum von Mises reduced stresses 1.96 × 108 Pa below the yield strength, confirming operation in the linear-elastic range. The central deflection, described analytically by the equation y=3(1ν2)Pr416Et3, increased fivefold with an increase in diameter to 3.81×102 m (active area A = 1.14 × 10−3 m2 compared to 5.07 × 10−4 m2), achieving a metrological sensitivity of 9.1 × 10−10 m/Pa. Experimental studies integrated with Bragg FBG and epoxy adhesive (E = 5 × 109 Pa, tensile strength 4.2×107 Pa) revealed a significant deviation from the manufacturer’s catalog data (e.g., deflection of 2.0×105 m at 6.89×102 Pa), resulting from uneven bonding and a lack of coaxiality. Corrugated membranes with t = 2.0×105 m exceeded plasticity, while the optimized configuration of a smooth membrane with rounded adhesive edges (R=1×104 m) enabled precise pressure monitoring below 101 Pa, despite technological restrictions on assembly and miniaturization. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

18 pages, 12047 KB  
Article
Modeling Ice Detachment Events on Cryopumps During Space Propulsion Ground Testing
by Andreas Neumann
Aerospace 2025, 12(12), 1114; https://doi.org/10.3390/aerospace12121114 - 17 Dec 2025
Viewed by 184
Abstract
At DLR’s electric space propulsion vacuum test facility in Goettingen, spontaneous pressure rise events were observed, which led to interruptions of thruster testing. This study investigates the causes of four such events and presents a model that is able to simulate pressure rise [...] Read more.
At DLR’s electric space propulsion vacuum test facility in Goettingen, spontaneous pressure rise events were observed, which led to interruptions of thruster testing. This study investigates the causes of four such events and presents a model that is able to simulate pressure rise events due to xenon ice sheet detachment from operating cryogenic pumps. The model results show good agreement with the observed pressure curves and can reproduce the pressure rise slope, event duration, down slope, and maximum pressure during these events. The masses of the detached xenon ice sheets are in the range from 2 g to 0.4 kg, which is reasonable with respect to the amount of ice on cryopump cold plates. This first modeling step is based on a phenomenological approach, but the good results show that it is worth expanding and refining the model, e.g., by introducing more ice shape options, adding ice bonding layer properties, and adding other gases and physical condensate properties. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 1520 KB  
Review
Polyester Sheet Plastination: Technical Foundations, Methodological Advances, Anatomical Applications, and AQUA-Based Quality Analysis
by Nicolás E. Ottone, Carlos Torres-Villar, Ricardo Gómez-Barril, Josefa Baeza-Fernández, Víctor Hugo Rodríguez-Torrez and Carlos Veuthey
Polymers 2025, 17(23), 3177; https://doi.org/10.3390/polym17233177 - 29 Nov 2025
Viewed by 526
Abstract
Background/Objectives: Plastination with polyester resin is a consolidated technique for anatomical preservation, particularly valuable in neuroanatomy education and radiological correlation. This review synthesizes the principles, technical evolution, methodological variations, applications, and limitations of polyester-based sheet plastination methods (P35, P40, P45). Methods: Key documents [...] Read more.
Background/Objectives: Plastination with polyester resin is a consolidated technique for anatomical preservation, particularly valuable in neuroanatomy education and radiological correlation. This review synthesizes the principles, technical evolution, methodological variations, applications, and limitations of polyester-based sheet plastination methods (P35, P40, P45). Methods: Key documents were analyzed to trace the transition from P35, recognized for excellent gray-white matter contrast but technical complexity, to P40, offering greater transparency, lower viscosity, improved strength, and simplified UV-curing. P45 was also reviewed, especially for large body sections using water-bath curing. Innovations included vertical curing chambers, active-passive vacuum cycles, resin reformulations, and strategies to reduce tissue shrinkage. Methodological quality was assessed with the AQUA tool, which evaluates five domains: Objectives, Study Design, Methodology, Descriptive Anatomy, and Results Reporting. Results: Plastination proved applicable in medical and veterinary education, as well as morphometric and imaging-based research, improving anatomical understanding and CT/MRI correlation. AQUA analysis revealed low risk of bias in Objectives and Descriptive Anatomy, but frequent unclear or high-risk assessments in Study Design, Methodology, and Results Reporting, mainly due to limited details on sample selection, resin handling, curing, and reproducibility. Publications after 2010 showed improved methodological rigor, reflecting growing standardization and better reporting. Conclusions: Polyester sheet plastination remains a versatile, high-impact tool, though it requires specialized infrastructure, trained personnel, and strict environmental control. Future development should focus on protocol standardization, international dissemination, integration with digital technologies (3D models, virtual reality), and sustainable alternatives. Progress depends on inter-institutional collaboration, technical training, and open access to updated resources. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 5486 KB  
Article
Firing Test Campaign for a Hydrogen Peroxide Propulsion System for CubeSats in Vacuum Conditions
by Angelo Pasini, Elia Puccinelli, Stefano Calatafimi, Carlos Muñoz Moya, Juliusz Saryczew and Thomas Searle
Aerospace 2025, 12(11), 1022; https://doi.org/10.3390/aerospace12111022 - 18 Nov 2025
Viewed by 493
Abstract
This work reports the results of an on-ground experimental test campaign performed in the relevant environment (i.e., inside a vacuum chamber) of a blowdown H2O2 monopropellant propulsion system designed for CubeSat applications for the assessment of its propulsive performance and [...] Read more.
This work reports the results of an on-ground experimental test campaign performed in the relevant environment (i.e., inside a vacuum chamber) of a blowdown H2O2 monopropellant propulsion system designed for CubeSat applications for the assessment of its propulsive performance and its thermomechanical behavior, both in continuous and pulse modes. The complete experimental characterization of the most important propulsive parameters of the engineering model of the propulsion system has been carried out with a suitably designed diagnostic equipment, consisting of a thrust balance capable of hosting an entire 3U CubeSat and all the relevant sensors. The propulsion system proved to match most of the requirements, both in pulse and continuous mode operations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 4568 KB  
Article
Development of Vacuum-Chamber-Type Capacitive Micro-Pressure Sensors
by Lung-Jieh Yang, De-Yu Jiang, Wei-Chen Wang, Chandrashekhar Tasupalli, Horng-Yuan Shih and Yi-Jen Wang
Micromachines 2025, 16(11), 1290; https://doi.org/10.3390/mi16111290 - 18 Nov 2025
Viewed by 2191
Abstract
This study presents the development of a capacitive pressure sensor tailored for measuring the dynamic pressure of flow fields. The sensor is fabricated using the UMC 0.18 μm CMOS-MEMS process, incorporated with additional post-processing steps such as metal wet etching, supercritical CO2 [...] Read more.
This study presents the development of a capacitive pressure sensor tailored for measuring the dynamic pressure of flow fields. The sensor is fabricated using the UMC 0.18 μm CMOS-MEMS process, incorporated with additional post-processing steps such as metal wet etching, supercritical CO2 drying, and parylene encapsulation. The sensing architecture employs AD7746 as a capacitance-to-voltage converter (CVC), enabling the conversion of capacitance signals into voltage outputs for enhanced measurement fidelity. Structurally, the capacitive pressure sensor features a vacuum-sealed diaphragm capsule design with dual movable circular membranes functioning as sensing electrodes. A contact-mode capacitive configuration with a trapezoidal or Gong-like vacuum-chamber diaphragm is adopted to improve linearity and sensitivity. The output sensitivity was determined to be feasible for measuring dynamic pressure at 1–2 Pa resolution. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

16 pages, 14330 KB  
Article
Photographic Method for Determining the Burning Time of an Electric Arc
by Michał Lech, Paweł Węgierek and Patrycja Tymińska-Wójcik
Energies 2025, 18(21), 5769; https://doi.org/10.3390/en18215769 - 31 Oct 2025
Viewed by 397
Abstract
The paper presents a comparison of two methods for determining the burning time of an electric arc in a vacuum chamber: the classic oscilloscope method and the author’s own photographic analysis using an ultra-high-speed camera. A specially designed laboratory station enabled precise recording [...] Read more.
The paper presents a comparison of two methods for determining the burning time of an electric arc in a vacuum chamber: the classic oscilloscope method and the author’s own photographic analysis using an ultra-high-speed camera. A specially designed laboratory station enabled precise recording of electrical and optical parameters during switching operations conducted at different pressures in the discharge chamber. The photographic method consisted of a time-lapse analysis of the ignition and extinction of the arc using dedicated software to precisely determine its duration based on the recorded images. In total, five repeated measurements were performed for each pressure value. All the results were subjected to a detailed statistical analysis, including the determination of standard deviations and confidence intervals. The reported mean relative error for the new photographic method did not exceed 1.12%. The developed photographic method proved to be a reliable tool for assessing the duration of the arc, while also enabling a detailed analysis of the dynamics of arc channel development. Possible applications include laboratory testing and diagnostics of switching devices, especially where traditional measurement methods are difficult to apply. Full article
Show Figures

Figure 1

11 pages, 498 KB  
Article
Ion-Based Characterization of Laser Beam Profiles for Quantum Information Processing
by Ilyoung Jung, Frank G. Schroer and Philip Richerme
Entropy 2025, 27(11), 1115; https://doi.org/10.3390/e27111115 - 30 Oct 2025
Viewed by 693
Abstract
Laser-driven operations are a common approach for engineering one- and two-qubit gates in trapped-ion arrays. Measuring key parameters of these lasers, such as beam sizes, intensities, and polarizations, is central to predicting and optimizing gate speeds and stability. Unfortunately, it is challenging to [...] Read more.
Laser-driven operations are a common approach for engineering one- and two-qubit gates in trapped-ion arrays. Measuring key parameters of these lasers, such as beam sizes, intensities, and polarizations, is central to predicting and optimizing gate speeds and stability. Unfortunately, it is challenging to accurately measure these properties at the ion location within an ultra-high vacuum chamber. Here, we demonstrate how the ions themselves may be used as sensors to directly characterize the laser beams needed for quantum gate operations. Making use of the four-photon Stark Shift effect in 171Yb+ ions, we measure the profiles, alignments, and polarizations of the lasers driving counter-propagating Raman transitions. We then show that optimizing the parameters of each laser individually leads to higher-speed Raman-driven gates with smaller susceptibility to errors. Our approach demonstrates the capability of trapped ions to probe their local environments and to provide useful feedback for improving system performance. Full article
(This article belongs to the Special Issue Quantum Computing with Trapped Ions)
Show Figures

Figure 1

15 pages, 2466 KB  
Article
Study on Decarburization and Mechanical Properties of Ultra-Low Carbon Steel by Enlarged Vacuum Chamber Volume
by Kihang Shin, Jimin Yun, Kiwoo Nam and Kwonhoo Kim
Materials 2025, 18(21), 4891; https://doi.org/10.3390/ma18214891 - 25 Oct 2025
Viewed by 669
Abstract
The increasing demand for ultra-low carbon steel (Interstitial free steel of Ti-Nb composite stabilized type) has underscored the importance of the RH degassing process, which is critical to achieving stringent quality standards and high productivity. This study aimed to boost decarburization efficiency by [...] Read more.
The increasing demand for ultra-low carbon steel (Interstitial free steel of Ti-Nb composite stabilized type) has underscored the importance of the RH degassing process, which is critical to achieving stringent quality standards and high productivity. This study aimed to boost decarburization efficiency by expanding the lower volume of the RH degasser and adjusting the circulation gas flow rates (190 Nm3/h, 230 Nm3/h, 250 Nm3/h). The effects of these variations on decarburization time, carbon content, and mechanical properties were systematically evaluated. The Enlarged RH degasser (ERH) achieved a higher decarburization rate than the conventional RH degasser (CRH) at the same gas flow rate of 190 Nm3/h, identifying 230 Nm3/h as the optimal rate for ERH. The experimental decarburization times to reach a carbon content of 0.003 wt% in ultra-low carbon steel were 12.4 min for CRH and 10.8 min for ERH, thus reducing the time by 1.6 min. Conversely, the calculated decarburization times were 13.11 min for CRH and 10.75 min for ERH, with ERH showing a reduction of 2.36 min. Consequently, calculated times were 0.76 min longer than experimental times. No significant differences in inclusions were observed between the CRH and ERH at circulation times of 3, 4, and 5 min; however, the mechanical properties of the ERH showed improvements at 4 and 5 min. Therefore, from an economic perspective, 4 min was established as the optimum time. Ultimately, enhancing the lower volume of the RH degasser has increased productivity and decreased production costs. Full article
(This article belongs to the Special Issue Advances in Materials Processing (4th Edition))
Show Figures

Figure 1

20 pages, 4116 KB  
Article
Temperature Field Distribution Testing and Improvement of Near Space Environment Simulation Test System for Unmanned Aerial Vehicles
by Jinghui Gao, Tianjin Cheng, Qing Hao, Chen Li, Chunlian Duan, Xiang Ma, Yanchu Yang, Hui Feng and Yongxiang Li
Drones 2025, 9(10), 726; https://doi.org/10.3390/drones9100726 - 21 Oct 2025
Viewed by 546
Abstract
Temperature distribution inside the vacuum chamber of the TRX 2000(A) near space environment simulation test system (NSESTS) was investigated through both experimentation and computational fluid dynamics simulation. Comparison between the experimental result and the simulation result showed that these two results were very [...] Read more.
Temperature distribution inside the vacuum chamber of the TRX 2000(A) near space environment simulation test system (NSESTS) was investigated through both experimentation and computational fluid dynamics simulation. Comparison between the experimental result and the simulation result showed that these two results were very close to each other, validating the feasibility of using the simulation method to study the temperature distribution inside the NSESTS. Then, the effect of wind, either downwind or upwind, on temperature uniformity inside the NSESTS was investigated through the simulation method. The simulation result showed that the non-uniformity coefficient will be reduced from 0.2757 to 0.2012 (by 27.1%) in the case of downwind and to 0.2055 (by 25.5%) in the case of upwind. Then, the simulation result was validated by experiment. The result of this research indicates that the temperature uniformity can be greatly improved through installment of additional fans inside the NSESTS. Full article
(This article belongs to the Special Issue Design and Flight Control of Low-Speed Near-Space Unmanned Systems)
Show Figures

Figure 1

20 pages, 4199 KB  
Article
Study on the Thermal and Rheological Properties of Nano-TiO2-Modified Double Phase Change Asphalt
by Xingming Liu, Xiaojun Cheng, Shanshan Wang, Sishuang Wei, Meng Guo, Shanglin Song and Fukui Zhang
Materials 2025, 18(20), 4799; https://doi.org/10.3390/ma18204799 - 21 Oct 2025
Viewed by 494
Abstract
In this paper, paraffin-44H (PW-44H) and paraffin-5 (PW-5) were respectively selected as the high/low-temperature phase change core material, and expanded vermiculite (EVM) was selected as the phase change carrier matrix. A high-temperature composite phase change material (CPCM), 44H/EVM, and a low-temperature CPCM, 5/EVM, [...] Read more.
In this paper, paraffin-44H (PW-44H) and paraffin-5 (PW-5) were respectively selected as the high/low-temperature phase change core material, and expanded vermiculite (EVM) was selected as the phase change carrier matrix. A high-temperature composite phase change material (CPCM), 44H/EVM, and a low-temperature CPCM, 5/EVM, were prepared by combining melt blending with vacuum adsorption. Nano-TiO2 was incorporated as a thermal conductor into the CPCMs to enhance the heat transfer efficiency between the CPCM and asphalt. The heat storage performance, chemical stability, microstructure, and thermal stability of the two CPCMs were studied. The results show that when the dosage of nano-TiO2 is 2%, the critical temperature range and heat storage performance of the CPCMs reach the optimum. Among them, the enthalpy value of the phase transition of the high-temperature PCM 44H-nTiO2/EVM is 150.8 J/g, and the phase transition occurs over a temperature range of 37.3 °C to 45.9 °C. The enthalpy value of the phase transition of the low-temperature PCM 5-nTiO2/EVM is 106.6 J/g, and the phase transition range is −7.9–0.4 °C. Moreover, the incorporation of nano-TiO2 increased the thermal conductivity of the high- and low-temperature CPCMs by 47.2% and 51.6%, respectively. Finally, the high- and low-temperature CPCMs were compounded in a 1:1 ratio and mixed into asphalt to obtain a composite double PCM asphalt. The heat storage performance of the original sample asphalt and the double phase change asphalt was investigated by DSC, DSR, and an environmental chamber. The results show that when the dosage of PCM is 20%, compared with the original asphalt, the high-temperature extreme value and the low-temperature extreme value of the double phase change asphalt are reduced by 3.4 °C and 2.1 °C, respectively. The heating rate and cooling rate decreased by 8.5% and 5.6%, respectively, and the rheological properties can meet the requirements of the specifications. It can be seen that the addition of double PCMs can effectively slow down the heating/cooling rate of asphalt, thereby improving the temperature sensitivity of asphalt. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

12 pages, 3666 KB  
Article
Development and Experimental Validation of a Filament-Assisted Chemical Vapor Deposition (FACVD) Reactor Using a Plastic Chamber
by Him Chan Kang, Jeong Heon Lee and Jae B. Kwak
Coatings 2025, 15(10), 1213; https://doi.org/10.3390/coatings15101213 - 15 Oct 2025
Viewed by 678
Abstract
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible [...] Read more.
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible substrates. FACVD enables polymer deposition under mild vacuum and temperature conditions, providing an opportunity to utilize plastic vacuum chambers as cost-effective and easily machinable alternatives to metallic chambers. In this study, a custom-designed acrylic chamber was fabricated and integrated into an FACVD system. Glycidyl methacrylate (GMA) and tert-butyl peroxide (TBPO) were considered as the monomer and initiator, respectively, for creating thin films under a low-temperature and moderate-vacuum deposition process. Polymeric film (pGMA) contains reactive epoxy groups that allow versatile post-polymerization modifications and are widely applied in coatings and biomedical fields. Preliminary experiments demonstrated the successful growth of pGMA thin films, with Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirming the characteristic polymer features, including the disappearance of the C=C stretching band as direct evidence of polymerization. Ellipsometry determines a uniformity of film thickness of approximately 85% for the 4-inch wafers’ area, with deposition rates in the range of 18–26 nm/h. These results highlight the potential of polymer-based chambers as cost-effective and versatile alternatives to advanced vapor-phase polymerization processes. Full article
Show Figures

Figure 1

Back to TopTop