Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = usnic acid derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1892 KB  
Article
A New Trichlorinated Xanthone and Compounds Isolated from Cladonia skottsbergii with Antimicrobial Properties
by Marvin J. Rositzki, Achara Raksat, Charles J. Simmons, Clifford Smith, Reverend Danette V. Choi, Supakit Wongwiwatthananukit and Leng Chee Chang
Pharmaceuticals 2026, 19(1), 174; https://doi.org/10.3390/ph19010174 - 19 Jan 2026
Viewed by 219
Abstract
Background/Objectives: The global rise in multidrug-resistant (MDR) bacteria, particularly methicillin-resistant and methicillin-susceptible Staphylococcus aureus (MRSA and MSSA), continues to pose a major public health challenge, including in Hawaii. This underscores the need to discover new antimicrobial agents from natural sources. Guided by [...] Read more.
Background/Objectives: The global rise in multidrug-resistant (MDR) bacteria, particularly methicillin-resistant and methicillin-susceptible Staphylococcus aureus (MRSA and MSSA), continues to pose a major public health challenge, including in Hawaii. This underscores the need to discover new antimicrobial agents from natural sources. Guided by teachings from a Buddhist master regarding the medicinal value of lichens, we investigated the endemic Hawaiian lichen Cladonia skottsbergii. Methods: Specimens of C. skottsbergii were collected from the Lotus Buddhist Monastery in Mountain View, Hawaii. A methanolic extract was prepared and purified using chromatographic techniques, and compound structures were elucidated through spectroscopic analyses and single-crystal X-ray diffraction. The antibacterial activity of the compounds was assessed against Gram-positive strains (MRSA, MSSA) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). Cytotoxicity was assessed using A549 (non-small cell lung cancer) and Vero E6 (non-tumorigenic) cell lines. Results: Three compounds were isolated: clarosione (1), a newly identified trichlorinated xanthone, and two known metabolites, (S)-usnic acid (2) and perlatolic acid (3). Compounds 2 and 3 demonstrated strong inhibitory effects against MRSA and MSSA. Their minimum inhibitory concentrations (MICs) ranged from 2 to 4 µg/mL, compared with vancomycin (0.5–1 µg/mL). Cytotoxicity testing showed higher sensitivity in A549 cells than in Vero E6 cells, resulting in favorable selectivity indices for the active compounds. Conclusions: In the current study, a new compound, clarosione (1) was discovered. This enhances our understanding of the constituents of C. skottsbergii and its potential antibacterial properties. Lichen-derived compounds may serve as lead candidates for further development, and further study is warranted. Full article
Show Figures

Graphical abstract

19 pages, 3682 KB  
Article
Transcriptomic Analysis of TDP1-Knockout HEK293A Cells Treated with the TDP1 Inhibitor (Usnic Acid Derivative)
by Alexandra L. Zakharenko, Nadezhda S. Dyrkheeva, Andrey V. Markov, Maxim A. Kleshchev, Elena I. Ryabchikova, Anastasia A. Malakhova, Konstantin E. Orishchenko, Larisa S. Okorokova, Dmitriy N. Shtokalo, Sergey P. Medvedev, Suren M. Zakian, Alexey A. Tupikin, Marsel R. Kabilov, Olga A. Luzina, Sergey M. Deyev and Olga I. Lavrik
Int. J. Mol. Sci. 2025, 26(19), 9291; https://doi.org/10.3390/ijms26199291 - 23 Sep 2025
Viewed by 764
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a key enzyme for the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, we obtained HEK293A cells with homozygous knockout of the TDP1 gene by the CRISPR/Cas9 method and used them as a cell model to study the [...] Read more.
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a key enzyme for the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, we obtained HEK293A cells with homozygous knockout of the TDP1 gene by the CRISPR/Cas9 method and used them as a cell model to study the mechanisms of anticancer therapy and to investigate the effect of TDP1 gene knockout on gene expression changes in the human HEK293A cell line by transcriptome analysis. In this study, we investigated the effect of a TDP1 inhibitor ((R,E)-2-acetyl-6-(2-(2-(4-bromobenzyliden) hydrazinyl) thiazol-4-yl)-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d] furan-1(9bH)-one, OL9-119, an usnic acid derivative), capable of potentiating the antitumor effect of topotecan, as well as its combination with topotecan, on the transcriptome of wild-type and TDP1 knockout HEK293A cells. OL9-119 was found to be able to reduce cell motility by decreasing the expression of a number of genes, which may explain the antimetastatic effect of this compound. Differentially expressed genes (DEGs) related to electron transport, mitochondrial function, and protein folding were also identified under TDP1 inhibitor treatment. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

5 pages, 424 KB  
Short Note
(R)-4-Acetyl-10-(2-chloro-1,3-thiazol-4-yl)-5,11,13-trihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.02,7]trideca-1(13),4,6,9,11-pentaen-3-one
by Aleksandr S. Filimonov, Olga A. Luzina and Nariman F. Salakhutdinov
Molbank 2025, 2025(3), M2061; https://doi.org/10.3390/M2061 - 16 Sep 2025
Viewed by 627
Abstract
A novel usnic acid derivative with 2-chlorothiazole substituent was obtained by a three-step synthesis from usnic acid. The structure of the product was proved by a set of physical methods, including 1H, 13C, HRMS, HSQC, HMBC and IR spectroscopy. Full article
Show Figures

Figure 1

77 pages, 22207 KB  
Review
Unassuming Lichens: Nature’s Hidden Antimicrobial Warriors
by Hongqiao Tian, Junlin Lu, Fangrong Liang, Haiyan Ding and Chaojiang Xiao
Int. J. Mol. Sci. 2025, 26(7), 3136; https://doi.org/10.3390/ijms26073136 - 28 Mar 2025
Cited by 1 | Viewed by 3142
Abstract
In a hidden corner of the Earth, an ongoing war is being waged: a battle between lichens and microorganisms. Lichens, ancient and unique symbiotic organisms, with their unique survival wisdom, are bursting with vitality in extreme environments. Over 80% of secondary metabolites in [...] Read more.
In a hidden corner of the Earth, an ongoing war is being waged: a battle between lichens and microorganisms. Lichens, ancient and unique symbiotic organisms, with their unique survival wisdom, are bursting with vitality in extreme environments. Over 80% of secondary metabolites in lichens are not found in other organisms, making lichen-derived compounds a promising resource for the development of new drugs, particularly against drug-resistant microorganisms, due to their distinctive chemical structures and biological activities. This article aims to explore in depth the lichen species exhibiting antimicrobial activity and their antimicrobial metabolites and focus on unique compounds such as divaricatic acid, usnic acid, vulpinic acid, salazinic acid, and rhizocarpic acid, which demonstrate significant antimicrobial effects against various resistant microorganisms, including methicillin-resistant Staphylococcus aureus, drug-resistant Mycobacterium tuberculosis, and Candida albicans and other drug-resistant microorganisms. Meanwhile, this paper discusses the potential applications and challenges associated with the use of lichens in medicine, agriculture, and food industry, aiming to elucidate these mysterious organisms for lichen researchers and enthusiasts while promoting further research and applications in the field of antimicrobials. Full article
Show Figures

Figure 1

17 pages, 1902 KB  
Article
Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media
by Nazia Tabassum, Fazlurrahman Khan, Geum-Jae Jeong, Do Kyung Oh and Young-Mog Kim
Antibiotics 2025, 14(2), 115; https://doi.org/10.3390/antibiotics14020115 - 22 Jan 2025
Viewed by 2579
Abstract
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the [...] Read more.
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the microbial accumulation of bacterial and fungal pathogens species. To combat this issue, naturally derived molecules have been reported to overcome the hurdle of antimicrobial resistance against the application of conventional antibiotics and antifungals. Methods: The present study aimed to employ the lichen-derived molecules, usnic acid (UA), to retard the development of biofilms of bacterial and fungal pathogens on the surface of titanium kept in the human artificial saliva (HAS) working as a growth-supporting, host-mimicking media. Results: The minimum inhibitory concentration of UA in HAS towards Candida albicans was >512 µg/mL, whereas against Staphylococcus aureus and Streptococcus mutans, it was determined to be 512 µg/mL. Whereas, in the standard growth media, the MIC value of UA towards S. mutans and S. aureus were 8 and 16 µg/mL; however, against C. albicans, it was 512 µg/mL. UA synergistically enhanced the efficacy of the antibiotics toward bacterial pathogens and the efficacy of antifungals against C. albicans. The antibiofilm results depict the fact that in the HAS, UA significantly reduced both mono-species of S. mutans, S. aureus, and C. albicans and mixed-species biofilm of C. albicans with S. mutans and S. aureus on the surface of the titanium. Conclusions: The present study showed that UA is a promising natural drug that can control oral polymicrobial disease as a result of the application of dental implants. Full article
Show Figures

Figure 1

22 pages, 7063 KB  
Article
Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes
by Aleksandr S. Filimonov, Marina A. Mikhailova, Nadezhda S. Dyrkheeva, Irina A. Chernyshova, Tatyana E. Kornienko, Konstantin A. Naumenko, Rashid O. Anarbaev, Andrey A. Nefedov, Chigozie Achara, Anthony D. M. Curtis, Olga A. Luzina, Konstantin P. Volcho, Nariman F. Salakhutdinov, Olga I. Lavrik and Jóhannes Reynisson
Chemistry 2024, 6(6), 1658-1679; https://doi.org/10.3390/chemistry6060101 - 17 Dec 2024
Cited by 1 | Viewed by 1740
Abstract
Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are important DNA repair enzymes that remove various adducts from the 3′- and 5′-ends of DNA, respectively. The suppression of the activity of these enzymes is considered as a promising adjuvant therapy for oncological diseases [...] Read more.
Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are important DNA repair enzymes that remove various adducts from the 3′- and 5′-ends of DNA, respectively. The suppression of the activity of these enzymes is considered as a promising adjuvant therapy for oncological diseases in combination with topoisomerase inhibitors. The simultaneous inhibition of TDP1 and TDP2 may result in greater antitumor effects, as these enzymes can mimic each other’s functions. We have previously shown that usnic acid-based sulfides can act as dual inhibitors, with TDP1 activity in the low micromolar range and their TDP2 at 1 mM. The oxidation of their sulfide moieties to sulfoxides led to an order of magnitude decrease in their cytotoxicity potential, while their TDP1 and TDP2 activity was preserved. In this work, we synthesized new series of usnic acid-based sulfides and their oxidized analogues, i.e., sulfoxides and sulfones, to systematically study these irregularities. The new compounds inhibit TDP1 with IC50 values (the concentration of inhibitor required to reduce enzyme activity by half) in the 0.33–25 μM range. Most sulfides and some sulfoxides and sulfones inhibit TDP2 with an IC50 = 138−421 μM. In addition, the most active compounds synergized (×4) with topotecan on the HeLa cell line as well as causing dose-dependent DNA damage, as confirmed by Comet assay. Sulfides with the 6-methylbenzoimidazol-2-yl substituent (8f, IC50 = 0.33/138 μM, TDP1/2) and sulfones containing a pyridine-2-yl fragment (12k, IC50 = 2/228 μM, TDP1/2) are the most potent derivatives and, therefore, are promising for further development. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

12 pages, 1251 KB  
Article
Novel Peptide–Drug Conjugates with Dual Anticancer Activity
by Siobhán O’Flaherty, Olga A. Luzina, Nadezhda S. Dyrkheeva, Ysaline Krier, Jérôme Leprince, Alexandra L. Zakharenko, Mikhail A. Pokrovsky, Andrey G. Pokrovsky, Olga I. Lavrik, Nariman F. Salakhutdinov, Mihayl Varbanov, Marc Devocelle and Konstantin P. Volcho
Int. J. Mol. Sci. 2024, 25(22), 12411; https://doi.org/10.3390/ijms252212411 - 19 Nov 2024
Cited by 1 | Viewed by 2754
Abstract
Cationic antimicrobial peptides (AMPs), also called host defence peptides, have established antimicrobial and anticancer activities. Conjugation of an AMP to a bioactive molecule with complementary activity can address some of the clinical limitations of the peptide candidate. This approach has been particularly applied [...] Read more.
Cationic antimicrobial peptides (AMPs), also called host defence peptides, have established antimicrobial and anticancer activities. Conjugation of an AMP to a bioactive molecule with complementary activity can address some of the clinical limitations of the peptide candidate. This approach has been particularly applied in antimicrobial applications of AMPs, but it remains relatively less explored in the generation of anticancer candidates. In this study, two usnic acid derivatives, based on hydrazinothiazole and benzylidenefuranone pharmacophore moieties, respectively, were conjugated to L-K6, a lysine/leucine-rich AMP, through a new pyrazole ligation intrinsically driven by the cargo molecule. Both components, the usnic acid derivative and the peptide, are selectively active against cancer cells, by targeting the human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) and through DNA damage, respectively. The two conjugates, based on a hydrazone linkage, exhibited pleiotropic effects, ranging from reduction in the activity of the parent drugs to their conservation or even enhancement. Notably, the conjugates retained some anti-TDP1 activity and displayed intermediate, or even higher, cytotoxicities against glioblastoma cells, compared to their individual components. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology 2.0)
Show Figures

Graphical abstract

5 pages, 1384 KB  
Communication
Synthesis of Novel Thiazoles Based on (+)-Usnic Acid
by Aleksandr S. Filimonov, Olga A. Luzina and Nariman F. Salakhutdinov
Molbank 2024, 2024(4), M1894; https://doi.org/10.3390/M1894 - 3 Oct 2024
Cited by 2 | Viewed by 1466
Abstract
A series of usnic acid derivatives containing a thiazole ring with an amide substituent were synthesized. The convenient method for synthesis of these compounds is a reaction of 14-bromousnic acid with N-acylthioureas. Acylation of aminothiazole does not lead to the targeted compound. Full article
Show Figures

Figure 1

20 pages, 6788 KB  
Article
The Potential of Usnic-Acid-Based Thiazolo-Thiophenes as Inhibitors of the Main Protease of SARS-CoV-2 Viruses
by Olga I. Yarovaya, Aleksandr S. Filimonov, Dmitriy S. Baev, Sophia S. Borisevich, Anna V. Zaykovskaya, Varvara Yu. Chirkova, Mariya K. Marenina, Yulia V. Meshkova, Svetlana V. Belenkaya, Dmitriy N. Shcherbakov, Maxim A. Gureev, Olga A. Luzina, Oleg V. Pyankov, Nariman F. Salakhutdinov and Mikhail V. Khvostov
Viruses 2024, 16(2), 215; https://doi.org/10.3390/v16020215 - 31 Jan 2024
Cited by 4 | Viewed by 2835
Abstract
Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on [...] Read more.
Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (−)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle—just as pure (+)- and (−)-usnic acids—showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand–protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains. Full article
(This article belongs to the Special Issue Mechanism of Receptor Recognition in Coronavirus)
Show Figures

Figure 1

20 pages, 2741 KB  
Article
Enhancement of the Antitumor and Antimetastatic Effect of Topotecan and Normalization of Blood Counts in Mice with Lewis Carcinoma by Tdp1 Inhibitors—New Usnic Acid Derivatives
by Tatyana E. Kornienko, Arina A. Chepanova, Alexandra L. Zakharenko, Aleksandr S. Filimonov, Olga A. Luzina, Nadezhda S. Dyrkheeva, Valeriy P. Nikolin, Nelly A. Popova, Nariman F. Salakhutdinov and Olga I. Lavrik
Int. J. Mol. Sci. 2024, 25(2), 1210; https://doi.org/10.3390/ijms25021210 - 19 Jan 2024
Cited by 9 | Viewed by 2217
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we [...] Read more.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

15 pages, 2959 KB  
Article
Usnic Acid Derivatives Inhibit DNA Repair Enzymes Tyrosyl-DNA Phosphodiesterases 1 and 2 and Act as Potential Anticancer Agents
by Alexandra L. Zakharenko, Nadezhda S. Dyrkheeva, Olga A. Luzina, Aleksandr S. Filimonov, Evgenii S. Mozhaitsev, Anastasia A. Malakhova, Sergey P. Medvedev, Suren M. Zakian, Nariman F. Salakhutdinov and Olga I. Lavrik
Genes 2023, 14(10), 1931; https://doi.org/10.3390/genes14101931 - 12 Oct 2023
Cited by 2 | Viewed by 2069
Abstract
Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as [...] Read more.
Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as topotecan and etoposide. In the present work, we found compounds capable of inhibiting both enzymes among derivatives of (−)-usnic acid. Both (+)- and (−)-enantiomers of compounds act equally effectively against Tdp1 with IC50 values in the range of 0.02–0.2 μM; only (−)-enantiomers inhibited Tdp2 with IC50 values in the range of 6–9 μM. Surprisingly, the compounds protect HEK293FT wild type cells from the cytotoxic effect of etoposide (CC50 3.0–3.9 μM in the presence of compounds and 2.4 μM the presence of DMSO) but potentiate it against Tdp2 knockout cells (CC50 1.2–1.6 μM in the presence of compounds against 2.3 μM in the presence of DMSO). We assume that the sensitizing effect of the compounds in the absence of Tdp2 is associated with the effective inhibition of Tdp1, which could take over the functions of Tdp2. Full article
(This article belongs to the Special Issue DNA Damage Induced by Anti-cancer Agents)
Show Figures

Figure 1

15 pages, 1634 KB  
Article
Microwave-Assisted Semisynthesis and Leishmanicidal Activity of Some Phenolic Constituents from Lichens
by Grover Castañeta, Rodrigo Villagomez, Efrain Salamanca, Pamela Canaviri-Paz, José A. Bravo, José L. Vila, Daniela Bárcenas-Pérez, José Cheel, Beatriz Sepúlveda, Alberto Giménez and Carlos Areche
Separations 2023, 10(10), 524; https://doi.org/10.3390/separations10100524 - 26 Sep 2023
Cited by 3 | Viewed by 2691
Abstract
Leishmaniasis is considered one of the most untreated tropical diseases in the world. In this study, we investigated the in vitro leishmanicidal activity and cytotoxicity of various isolated lichen substances, including atranorin (1), usnic acid (2), gyrophoric acid ( [...] Read more.
Leishmaniasis is considered one of the most untreated tropical diseases in the world. In this study, we investigated the in vitro leishmanicidal activity and cytotoxicity of various isolated lichen substances, including atranorin (1), usnic acid (2), gyrophoric acid (3), salazinic acid (4), galbinic acid (5), and parietin (6), and some semi-synthetic imine derivatives of usnic acid (7, 8, 9) and atranorin (10, 11, 12, 13). Imine condensation reactions with hydrazine and several amines were assisted by microwave heating, an efficient and eco-friendly energy source. The most interesting result was obtained for compound 2, which has high leishmanicidal activity but also high cytotoxicity. This cytotoxicity was mitigated in its derivative, 9, with better selectivity and high antileishmanic activity. This result may indicate that the usnic acid derivative (9) obtained using condensation with two cyclohexylamine groups is a promising lead compound for the discovery of new semisynthetic antiparasitic drugs. Full article
Show Figures

Graphical abstract

14 pages, 2498 KB  
Article
Usnic Acid-Loaded Magnetite Nanoparticles—A Comparative Study between Synthesis Methods
by Cristina Chircov, Alexandra Cătălina Bîrcă, Lorena Alexandra Dănciulescu, Ionela Andreea Neacșu, Ovidiu-Cristian Oprea, Roxana-Doina Trușcă and Ecaterina Andronescu
Molecules 2023, 28(13), 5198; https://doi.org/10.3390/molecules28135198 - 4 Jul 2023
Cited by 5 | Viewed by 2567
Abstract
Since cancer is a continuously increasing concern for the general population, more efficient treatment alternatives ought to be developed. In this regard, a promising direction is represented by the use of magnetite nanoparticles (MNPs) to act both as a nanocarrier for the targeted [...] Read more.
Since cancer is a continuously increasing concern for the general population, more efficient treatment alternatives ought to be developed. In this regard, a promising direction is represented by the use of magnetite nanoparticles (MNPs) to act both as a nanocarrier for the targeted release of antitumoral drugs and as hyperthermia agents. Thus, the present study focused on improving the control upon the outcome properties of MNPs by using two synthesis methods, namely the co-precipitation and microwave-assisted hydrothermal method, for the incorporation of usnic acid (UA), a natural lichen-derived metabolite with proven anticancer activity. The obtained UA-loaded MNPs were thoroughly characterized regarding their morpho-structural and physicochemical properties through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and zeta potential, scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). Results demonstrated the formation of magnetite as the unique mineralogical phase through both types of synthesis, with increased uniformity regarding the drug loading efficiency, size, stability, and magnetic properties obtained through the microwave-assisted hydrothermal method. Furthermore, the cytotoxicity of the nanostructures against the HEK 293T cell line was investigated through the XTT assay, which further proved their potential for anticancer treatment applications. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterial Synthesis)
Show Figures

Figure 1

22 pages, 3815 KB  
Article
Unravelling Novel Phytochemicals and Anticholinesterase Activity in Irish Cladonia portentosa
by Shipra Nagar, Maria Pigott, Wirginia Kukula-Koch and Helen Sheridan
Molecules 2023, 28(10), 4145; https://doi.org/10.3390/molecules28104145 - 17 May 2023
Cited by 6 | Viewed by 2810
Abstract
Acetylcholinesterase inhibitors remain the mainstay of symptomatic treatment for Alzheimer’s disease. The natural world is rich in acetylcholinesterase inhibitory molecules, and research efforts to identify novel leads is ongoing. Cladonia portentosa, commonly known as reindeer lichen, is an abundant lichen species found [...] Read more.
Acetylcholinesterase inhibitors remain the mainstay of symptomatic treatment for Alzheimer’s disease. The natural world is rich in acetylcholinesterase inhibitory molecules, and research efforts to identify novel leads is ongoing. Cladonia portentosa, commonly known as reindeer lichen, is an abundant lichen species found in Irish Boglands. The methanol extract of Irish C. portentosa was identified as an acetylcholinesterase inhibitory lead using qualitative TLC-bioautography in a screening program. To identify the active components, the extract was deconvoluted using a successive extraction process with hexane, ethyl acetate and methanol to isolate the active fraction. The hexane extract demonstrated the highest inhibitory activity and was selected for further phytochemical investigations. Olivetolic acid, 4-O-methylolivetolcarboxylic acid, perlatolic acid and usnic acid were isolated and characterized using ESI-MS and two-dimensional NMR techniques. LC-MS analysis also determined the presence of the additional usnic acid derivatives, placodiolic and pseudoplacodiolic acids. Assays of the isolated components confirmed that the observed anticholinesterase activity of C. portentosa can be attributed to usnic acid (25% inhibition at 125 µM) and perlatolic acid (20% inhibition at 250 µM), which were both reported inhibitors. This is the first report of isolation of olivetolic and 4-O-methylolivetolcarboxylic acids and the identification of placodiolic and pseudoplacodiolic acids from C. portentosa. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Sources II)
Show Figures

Figure 1

14 pages, 2380 KB  
Review
Critical Assessment of the Anti-Inflammatory Potential of Usnic Acid and Its Derivatives—A Review
by Wojciech Paździora, Irma Podolak, Marta Grudzińska, Paweł Paśko, Karolina Grabowska and Agnieszka Galanty
Life 2023, 13(4), 1046; https://doi.org/10.3390/life13041046 - 19 Apr 2023
Cited by 16 | Viewed by 3576
Abstract
Inflammation is a response of the organism to an external factor that disrupts its natural homeostasis, and it helps to eliminate the cause of tissue injury. However, sometimes the body’s response is highly inadequate and the inflammation may become chronic. Thus, the search [...] Read more.
Inflammation is a response of the organism to an external factor that disrupts its natural homeostasis, and it helps to eliminate the cause of tissue injury. However, sometimes the body’s response is highly inadequate and the inflammation may become chronic. Thus, the search for novel anti-inflammatory agents is still needed. One of the groups of natural compounds that attract interest in this context is lichen metabolites, with usnic acid (UA) as the most promising candidate. The compound reveals a broad spectrum of pharmacological properties, among which anti-inflammatory properties have been studied both in vitro and in vivo. The aim of this review was to gather and critically evaluate the results of the so-far published data on the anti-inflammatory properties of UA. Despite some limitations and shortcomings of the studies included in this review, it can be concluded that UA has interesting anti-inflammatory potential. Further research should be directed at the (i) elucidation of the molecular mechanism of UA; (ii) verification of its safety; (iii) comparison of the efficacy and toxicity of UA enantiomers; (iv) design of UA derivatives with improved physicochemical properties and pharmacological activity; and (v) use of certain forms or delivery carriers of UA, especially in its topical application. Full article
(This article belongs to the Special Issue Inflammation and Natural Products)
Show Figures

Figure 1

Back to TopTop