Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,746)

Search Parameters:
Keywords = use of green technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1646 KiB  
Article
How Does New Quality Productive Forces Affect Green Total Factor Energy Efficiency in China? Consider the Threshold Effect of Artificial Intelligence
by Boyu Yuan, Runde Gu, Peng Wang and Yuwei Hu
Sustainability 2025, 17(15), 7012; https://doi.org/10.3390/su17157012 (registering DOI) - 1 Aug 2025
Abstract
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving [...] Read more.
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving this relationship, is essential for economic transformation and long-term sustainability. This study establishes an evaluation framework for NQPF, integrating technological, green, and digital dimensions. We apply fixed-effects models, the spatial Durbin model (SDM), a moderation model, and a threshold model to analyze the influence of NQPF on Green Total Factor Energy Efficiency (GTFEE) and its spatial implications. This underscores the necessity of distinguishing it from traditional productivity frameworks and adopting a new analytical perspective. Furthermore, by considering dimensions such as input, application, innovation capability, and market efficiency, we reveal the moderating role and heterogeneous effects of artificial intelligence (AI). The findings are as follows: The development of NQPF significantly enhances GTFEE, and the conclusion remains robust after tail reduction and endogeneity tests. NQPF has a positive spatial spillover effect on GTFEE; that is, while improving the local GTFEE, it also improves neighboring regions GTFEE. The advancement of AI significantly strengthens the positive impact of NQPF on GTFEE. AI exhibits a significant U-shaped threshold effect: as AI levels increase, its moderating effect transitions from suppression to facilitation, with marginal benefits gradually increasing over time. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

22 pages, 1929 KiB  
Article
Investigating Provincial Coupling Coordination Between Digital Infrastructure and Green Development in China
by Beibei Zhang, Zhenni Zhou, Juan Zheng, Zezhou Wu and Yan Liu
Buildings 2025, 15(15), 2724; https://doi.org/10.3390/buildings15152724 (registering DOI) - 1 Aug 2025
Abstract
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index [...] Read more.
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index system is established and then the coupling relationship and the barrier factors between digital infrastructure and green development are analyzed. A provincial analysis is conducted by using data from China. The results in the study indicate (1) coupling coordination between digital infrastructure and green development exhibits a relatively low state, characterized by an overall upward trend; (2) noteworthy disparities are observed in the spatio-temporal pattern of the coupling coordination degree, reflecting the overall evolutionary trend from low to high coupling coordination, along with the characteristics of positive spatial correlation and high spatial concentration; and (3) obstacle factors are analyzed from the aspects of digital infrastructure and green development, emphasizing the construction of mobile phone base stations and investment in pollution control, among other aspects. This study contributes valuable insights for improvement paths for digital infrastructure and green development, offering recommendations for optimizing strategies to promote their coupled development. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

21 pages, 300 KiB  
Article
Research on the Mechanisms and Pathways of Digital Economy—Driven Agricultural Green Development: Evidence from Sichuan Province, China
by Changhong Chen and Yule Wang
Sustainability 2025, 17(15), 6980; https://doi.org/10.3390/su17156980 (registering DOI) - 31 Jul 2025
Abstract
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), [...] Read more.
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), a comprehensive evaluation index system for agricultural green development was formulated. Fixed-effects, mediating-effects, and threshold-effects models were employed to systematically analyze the direct effects, transmission pathways, and nonlinear characteristics of the digital economy on agricultural green development. (2) The fixed-effects model shows that the digital economy markedly propels agricultural green development in Sichuan Province. The mediating-effects model verifies two transmission pathways: “digital economy → technological progression → agricultural green development” and “digital economy → industrial structure upgrading → agricultural green development”. The threshold-effects model suggests that when the digital economy is in the low-threshold interval, it exerts a suppressive impact on agricultural green development; however, once the threshold is surpassed, its promoting effect strengthens significantly. (3) The results demonstrate the following findings: First, the digital economy exerts a significant positive effect on agricultural green development. Second, this promoting effect exhibits significant nonlinear characteristics that vary with the level of digital economy development. Third, the impact manifests remarkable regional heterogeneity, necessitating context-specific development strategies. (4) Five optimization recommendations are proposed: promote the categorized development of agricultural digital technologies and industrial upgrading; advance digital infrastructure and technology adaptation in phases; design differentiated regional policies; establish a hierarchical and classified long-term guarantee mechanism; and strengthen the “industry-university-research-application” collaborative innovation and dynamic monitoring system. Full article
23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 (registering DOI) - 31 Jul 2025
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
12 pages, 3315 KiB  
Article
NeRF-RE: An Improved Neural Radiance Field Model Based on Object Removal and Efficient Reconstruction
by Ziyang Li, Yongjian Huai, Qingkuo Meng and Shiquan Dong
Information 2025, 16(8), 654; https://doi.org/10.3390/info16080654 (registering DOI) - 31 Jul 2025
Viewed by 12
Abstract
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study [...] Read more.
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study introduces a 3D scene reconstruction and rendering strategy based on implicit neural representation through the efficient and removable neural radiation fields model (NeRF-RE). Leveraging neural radiance fields (NeRF), the model incorporates a multi-resolution hash grid and proposal network to improve training efficiency and modeling accuracy, while integrating a segment-anything model to safeguard public privacy. Take the crabapple tree, extensively utilized in urban garden design across temperate regions of the Northern Hemisphere. A dataset comprising 660 images of crabapple trees exhibiting three distinct geometric forms is collected to assess the NeRF-RE model’s performance. The results demonstrated that the ‘harvest gold’ crabapple scene had the highest reconstruction accuracy, with PSNR, LPIPS and SSIM of 24.80 dB, 0.34 and 0.74, respectively. Compared to the Mip-NeRF 360 model, the NeRF-RE model not only showed an up to 21-fold increase in training efficiency for three types of crabapple trees, but also exhibited a less pronounced impact of dataset size on reconstruction accuracy. This study reconstructs real scenes with high fidelity using virtual reality technology. It not only facilitates people’s personal enjoyment of the beauty of natural gardens at home, but also makes certain contributions to the publicity and promotion of urban landscapes. Full article
(This article belongs to the Special Issue Extended Reality and Its Applications)
Show Figures

Figure 1

24 pages, 2013 KiB  
Article
Can Local Industrial Policy Enhance Urban Land Green Use Efficiency? Evidence from the “Made in China 2025” National Demonstration Zone Policy
by Shoupeng Wang, Haixin Huang and Fenghua Wu
Land 2025, 14(8), 1567; https://doi.org/10.3390/land14081567 - 31 Jul 2025
Viewed by 43
Abstract
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and [...] Read more.
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and ULGUE based on panel data from 286 Chinese cities (2010–2022), employing an integrated methodology that combines the Difference-in-Differences (DID) model, Super-Efficiency Slacks-Based Measure Data Envelopment Analysis model, and ArcGIS spatial analysis techniques. The findings clearly demonstrate that the establishment of the “Made in China 2025” pilot policy significantly improves urban land green use efficiency in pilot cities, a conclusion that endures following a succession of stringent evaluations. Moreover, studying its mechanisms suggests that the pilot policy primarily enhances urban land green use efficiency by promoting industrial upgrading, accelerating technological innovation, and strengthening environmental regulations. Heterogeneity analysis further indicates that the policy effects are more significant in urban areas characterized by high manufacturing agglomeration, non-provincial capital/non-municipal status, high industrial intelligence levels, and less sophisticated industrial structure. This research not only provides valuable policy insights for China to enhance urban land green use efficiency and promote high-quality regional sustainable development but also offers meaningful references for global efforts toward advancing urban sustainability. Full article
Show Figures

Figure 1

28 pages, 2933 KiB  
Review
Learning and Development in Entrepreneurial Era: Mapping Research Trends and Future Directions
by Fayiz Emad Addin Al Sharari, Ahmad ali Almohtaseb, Khaled Alshaketheep and Kafa Al Nawaiseh
Adm. Sci. 2025, 15(8), 299; https://doi.org/10.3390/admsci15080299 (registering DOI) - 31 Jul 2025
Viewed by 171
Abstract
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these [...] Read more.
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these models influence business success in a rapidly changing global landscape. The research employs bibliometric analysis, VOSviewer cluster analysis, and co-citation analysis to explore the literature from 1994 to 2024. Data collected from the Web of Science Core Collection database reflect significant trends in entrepreneurial L&D, with particular emphasis on the use of digital tools, sustainability processes, and governance systems. Findings emphasize the imperative role of L&D in fostering entrepreneurship, more so in areas such as digital transformation and the adoption of new technologies. The study also identifies central regions propelling this field, such as UK and USA. Future studies will be centered on the role of digital technologies, innovation, and green business models within entrepreneurial L&D frameworks. This study provides useful insight into the future of L&D within the entrepreneurial domain, guiding academia and companies alike in the planning of effective learning strategies to foster innovation and sustainable business growth. Full article
Show Figures

Figure 1

26 pages, 632 KiB  
Article
When Do Innovation and Renewable Energy Transition Drive Environmental Sustainability?
by Anis Omri, Fadhila Hamza and Noura Alkahtani
Sustainability 2025, 17(15), 6910; https://doi.org/10.3390/su17156910 - 30 Jul 2025
Viewed by 179
Abstract
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) [...] Read more.
This study examines the contributions of renewable energy transition (RET) and environmental innovation (EI) to environmental performance in G7 countries from 2003 to 2021, with a focus on the transmission channels of green finance and environmental governance. Using the Augmented Mean Group (AMG) estimator and confirming robustness through the Dynamic Common Correlated Effects Mean Group (DCCE-MG) method, the study explores both direct and indirect effects of RET and EI on two key environmental indicators: the Environmental Performance Index and the Load Capacity Factor. The results reveal that both RET and EI have a significant impact on environmental performance. Moreover, green finance and environmental governance serve as crucial channels through which RET and EI exert their influence. These findings underscore the importance of developing effective financial instruments and robust regulatory frameworks to translate energy and innovation policies into tangible environmental benefits. By highlighting the interplay between technological advancement, financial capacity, and institutional quality, this study provides novel insights into the environmental policy landscape of advanced economies and offers guidance for designing integrated strategies to achieve long-term sustainability goals. Full article
Show Figures

Figure 1

31 pages, 590 KiB  
Article
Leveraging Digitalization to Boost ESG Performance in Different Business Contexts
by Gomaa Agag, Sameh Aboul-Dahab, Sherif El-Halaby, Said Abdo and Mohamed A. Khashan
Sustainability 2025, 17(15), 6899; https://doi.org/10.3390/su17156899 - 29 Jul 2025
Viewed by 344
Abstract
Digital technology has become an essential engine of green development and economic progress due to the meteoric rise of new technologies. Our paper seeks to explore the impact of digitalization on environmental, social and governance (ESG) performance in different business contexts. Data were [...] Read more.
Digital technology has become an essential engine of green development and economic progress due to the meteoric rise of new technologies. Our paper seeks to explore the impact of digitalization on environmental, social and governance (ESG) performance in different business contexts. Data were collected from listed firms across 19 Asian countries from 2015 to 2024, covering 1839 firms, yielding 18,390 firm-year observations and establishing a balanced panel data set. We used the dynamic panel data model to test the proposed hypotheses. The findings revealed that digitalization has a significant and positive impact on ESG performance. It also revealed that environmental uncertainty moderates this relationship. Moreover, our analysis indicated that the impact of digitalization on ESG performance is stronger for product (vs. service) firms, stronger for B2B (vs. B2C) firms and stronger for firms in IT-intensive industries. In addition, the analysis indicated that the impact of digitalization on ESG performance is stronger in more dynamic, complex and munificent environments. Our examination offers meaningful implications for theory and practice by expanding our knowledge of the complex mechanism underpinning the positive correlation between digitalization and ESG performance. Full article
(This article belongs to the Special Issue Corporate Marketing Management in the Context of Sustainability)
Show Figures

Figure 1

26 pages, 1352 KiB  
Article
Complement or Crowd Out? The Impact of Cross-Tool Carbon Control Policy Combination on Green Innovation in Chinese Cities
by Jun Shen, Jiana He, Xiuli Liu and Qinqin Shi
Sustainability 2025, 17(15), 6881; https://doi.org/10.3390/su17156881 - 29 Jul 2025
Viewed by 241
Abstract
In order to fulfill the commitment to the “dual carbon goal” at an early date, China has implemented a series of carbon control policies. However, the actual impact of these policy combinations on green innovation in Chinese cities remains unknown. Taking the implementation [...] Read more.
In order to fulfill the commitment to the “dual carbon goal” at an early date, China has implemented a series of carbon control policies. However, the actual impact of these policy combinations on green innovation in Chinese cities remains unknown. Taking the implementation of the low-carbon pilot policy (LCP) and the carbon emission trading pilot policy (CET) as the research opportunity, this paper uses panel data from 276 prefecture-level cities and a multiple-period difference-in-differences (DID) model to explore the impact of carbon control policy combination on green innovation in China and their mechanisms. The results indicate the following: A single LCP or CET can significantly boost green innovation. However, the impact of cross-tool carbon control policy combination on green innovation is notably greater than that of a single policy, with a trend of increasing effectiveness over time. Even after a series of robustness tests, this conclusion remains valid. Heterogeneity analysis shows that the promotion effect is more significant in the eastern region and high-level administrative cities. The policy combination incentivizes green innovation through fiscal technology expenditure and public environmental awareness, focusing more on fostering strategic green innovation. Consequently, the Chinese government should tailor policy combinations to specific contexts, expand their implementation judiciously, and consistently drive forward green innovation. Full article
Show Figures

Figure 1

27 pages, 4327 KiB  
Article
The Art Nouveau Path: Promoting Sustainability Competences Through a Mobile Augmented Reality Game
by João Ferreira-Santos and Lúcia Pombo
Multimodal Technol. Interact. 2025, 9(8), 77; https://doi.org/10.3390/mti9080077 - 29 Jul 2025
Viewed by 238
Abstract
This paper presents a qualitative case study on the design, implementation, and validation of the Art Nouveau Path, a mobile augmented reality game developed to foster sustainability competences through engagement with Aveiro’s Art Nouveau built heritage. Grounded in the GreenComp framework and [...] Read more.
This paper presents a qualitative case study on the design, implementation, and validation of the Art Nouveau Path, a mobile augmented reality game developed to foster sustainability competences through engagement with Aveiro’s Art Nouveau built heritage. Grounded in the GreenComp framework and developed through a Design-Based Research approach, the game integrates location-based interaction, narrative storytelling, and multimodal augmented reality and multimedia content to activate key competences such as systems thinking, futures literacy, and sustainability-oriented action. The game was validated with 33 in-service schoolteachers, both through a simulation-based training workshop and a curricular review of the game. A mixed-methods strategy was used, combining structured questionnaires, open-ended reflections, and curricular review. The findings revealed strong emotional and motivational engagement, interdisciplinary relevance, and alignment with formal education goals. Teachers emphasized the game’s capacity to connect local identity with global sustainability challenges through immersive and reflective experiences. Limitations pointed to the need for enhanced pedagogical scaffolding, clearer integration into STEAM subjects, and broader accessibility across technological contexts. This study demonstrates that these games, when grounded in competence-based frameworks and inclusive design, can meaningfully support multimodal, situated learning for sustainability and offer valuable contributions to pedagogical innovation in Education for Sustainable Development. Full article
Show Figures

Figure 1

30 pages, 78202 KiB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Viewed by 304
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 1019 KiB  
Article
Deciphering the Environmental Consequences of Competition-Induced Cost Rationalization Strategies of the High-Tech Industry: A Synergistic Combination of Advanced Machine Learning and Method of Moments Quantile Regression Procedures
by Salih Çağrı İlkay, Harun Kınacı and Esra Betül Kınacı
Sustainability 2025, 17(15), 6867; https://doi.org/10.3390/su17156867 - 28 Jul 2025
Viewed by 479
Abstract
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of [...] Read more.
This study intends to portray how varying degrees of environmental policy stringency and the growing pressure of global competition reflect on high-tech (HT) sectors’ cost rationalization strategies and lead to environmental consequences in 15 G20 countries (1992–2019). Moreover, we center the pattern of cost rationalization management regarding the opportunity cost of ecosystem service consumption and propose to test the fundamental hypothesis stating the possible transmission of competition-induced technological innovations to green economic transformation. Our new methodology estimates quantile-specific effects with MM-QR, while identifying the main interaction effects between regulatory pressure and trade competition uses an extended STIRPAT model. The results reveal a paradoxical finding: despite higher environmental policy stringency and opportunity costs of ecosystem services, HT sectors persistently adopt environmentally detrimental cost-reduction approaches. These findings carry important policy implications: (1) environmental regulations for HT sectors require complementary innovation subsidies, (2) trade agreements should incorporate clean technology transfer clauses, and (3) governments must monitor sectoral emission leakage risks. Our dual machine learning–econometric approach provides policymakers with targeted insights for different emission scenarios, highlighting the need for differentiated strategies across clean and polluting HT subsectors. Full article
Show Figures

Figure 1

25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Viewed by 274
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

Back to TopTop