Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (606)

Search Parameters:
Keywords = urban vegetation landscape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Viewed by 21
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 - 2 Aug 2025
Viewed by 334
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

24 pages, 10417 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 - 1 Aug 2025
Viewed by 219
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 482
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Urban Expansion and Landscape Transformation in Năvodari, Romania: An Integrated Geospatial and Socio-Economic Perspective
by Cristina-Elena Mihalache and Monica Dumitrașcu
Land 2025, 14(7), 1496; https://doi.org/10.3390/land14071496 - 19 Jul 2025
Viewed by 452
Abstract
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. [...] Read more.
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. The study area is Năvodari Administrative-Territorial Unit (ATU), a coastal tourist city located along the Black Sea in Romania. By integrating geospatial datasets such as Urban Atlas and Corine Land Cover with population- and construction-related statistics, the analysis reveals a disproportionate increase in urbanized land compared to population growth. Time-series analyses based on the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) from 1990 to 2022 highlight significant ecological degradation, including vegetation loss and increased built-up density. The findings suggest that real estate investment and tourism-driven development play a more substantial role than demographic dynamics in shaping land use change. Understanding urban expansion as a coupled social–ecological process is essential for promoting sustainable planning and enhancing environmental resilience. While this study is focused on the coastal city of Năvodari, its insights are relevant to a broader international context, particularly for rapidly developing tourist destinations facing similar urban and ecological pressures. The findings support efforts toward more inclusive, balanced, and environmentally responsible urban development, aligning with the core principles of Sustainable Development Goal 11, particularly Target 11.3, which emphasizes sustainable urbanization and efficient land use. Full article
Show Figures

Figure 1

21 pages, 15035 KiB  
Article
Birds, Bees, and Botany: Measuring Urban Biodiversity After Nature-Based Solutions Implementation
by Mónica Q. Pinto, Simone Varandas, Emmanuelle Cohen-Shacham and Edna Cabecinha
Diversity 2025, 17(7), 486; https://doi.org/10.3390/d17070486 - 16 Jul 2025
Viewed by 439
Abstract
Nature-based Solutions (NbS) are increasingly adopted in urban settings to restore ecological functions and enhance biodiversity. This study evaluates the effects of NbS interventions on bird, insect, and plant communities in the Cavalum Valley urban green area, Penafiel (northern Portugal). Over a three-year [...] Read more.
Nature-based Solutions (NbS) are increasingly adopted in urban settings to restore ecological functions and enhance biodiversity. This study evaluates the effects of NbS interventions on bird, insect, and plant communities in the Cavalum Valley urban green area, Penafiel (northern Portugal). Over a three-year period, systematic field surveys assessed changes in species richness, abundance, and ecological indicators following actions such as riparian restoration, afforestation, habitat diversification, and invasive species removal. Results revealed a marked increase in bird overall abundance from 538 to 941 individuals and in average pollinator population size from 9.25 to 12.20. Plant diversity also improved, with a rise in native and RELAPE-listed species (5.23%). Functional group analyses underscored the importance of vegetative structure in supporting varied foraging and nesting behaviours. These findings highlight the effectiveness of integrated NbS in enhancing biodiversity and ecological resilience in urban landscapes while reinforcing the need for long-term monitoring to guide adaptive management and conservation planning. Future work could evaluate ecological resilience thresholds and community participation in citizen science monitoring. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

27 pages, 8650 KiB  
Article
Exploring the Impact of Architectural Landscape Characteristics of Urban Functional Areas in Xi’an City on the Thermal Environment in Summer Using Explainable Machine Learning
by Jiayue Xu, Le Xuan, Cong Li, Mengxue Zhang and Xuhui Wang
Sustainability 2025, 17(14), 6489; https://doi.org/10.3390/su17146489 - 16 Jul 2025
Viewed by 385
Abstract
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban [...] Read more.
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban morphology on LST across different functional zones. Therefore, this study takes Xi’an as a case and employs an interpretable CatBoost-SHAP machine learning model to evaluate the nonlinear influence of building landscape features on LST in different functional zones during summer. The results indicate the following: (1) The highest LST in the study area reached 52.68 °C, while the lowest was 21.68 °C. High-temperature areas were predominantly concentrated in the urban center and industrial zones with dense buildings, whereas areas around water bodies and green spaces exhibited relatively lower temperatures. (2) SHAP analysis revealed that landscape indicators exerted the most substantial impact across all functional zones, with green space zones contributing up to 62%. Among these, fractional vegetation coverage (FVC), as a core landscape factor, served as the primary cooling factor in all six functional zones and consistently demonstrated a negative effect. (3) Population density (POP) exhibited a generally high SHAP contribution across all functional zones, showing a positive correlation. Its effect was most pronounced in commercial zones, accounting for 16%. When POP ranged between 0 and 250 people, the warming effect was particularly prominent. (4) The mean building height (MBH) constituted a major influencing factor in most functional zones, especially in residential zones, where the SHAP value reached 0.7643. Within the range of 10–20 m, the SHAP value increased sharply, indicating a significant warming effect. (5) This study proposes targeted cooling strategies tailored to six functional zones, providing a scientific basis for formulating targeted mitigation strategies for different functional zones to alleviate the urban heat island effect. Full article
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
Revealing the Relationship Between Urban Park Landscape Features and Visual Aesthetics by Deep Learning-Driven and Spatial Analysis
by Jiaxuan Shi, Lyu Mei, Yumeng Meng and Weijun Gao
Buildings 2025, 15(14), 2487; https://doi.org/10.3390/buildings15142487 - 15 Jul 2025
Viewed by 325
Abstract
Urban parks are an important component of public urban spaces, which directly impact the living experiences of residents and the urban image. High-quality urban parks are crucial for enhancing the well-being of residents. This study selected Fukuoka, Japan, as the study site. Five [...] Read more.
Urban parks are an important component of public urban spaces, which directly impact the living experiences of residents and the urban image. High-quality urban parks are crucial for enhancing the well-being of residents. This study selected Fukuoka, Japan, as the study site. Five urban parks were chosen to evaluate landscape visual quality by using the Scenic Beauty Estimation (SBE) method. The Semantic Differential (SD) method was used to get sample subjective landscape features. Meanwhile, sample objective landscape features were obtained by using semantic segmentation techniques in deep learning and combined with spatial analysis to understand their distribution. A regression model was established, which used the SBE values as the dependent variable and subjective landscape features as the independent variables to analyze the relationship between urban park landscape visual quality and subjective landscape features. The regression analysis revealed that sense of layering, harmony, interestingness, sense of order, and vitality were the core factors influencing visual quality. All five features had a significant positive impact on landscape visual quality. The sense of order was the most influential factor, which would be the key to enhancing the landscape perception experience. Moreover, the XGBoost model and SHAP value from machine learning were used to reveal the nonlinear relationships and significant threshold effects between urban park visual quality and five objective landscape features: openness, greenness, enclosure, vegetation diversity, and Shannon–Wiener diversity index. This study showed that when openness exceeded 0.27, the positive effect was significant. The optimal threshold for the greenness was 0.38. Vegetation diversity and enclosure had to be below 0.82 and 0.58, respectively, to have a positive impact. Meanwhile, the positive influence of the Shannon–Wiener diversity index reached its maximum at a value of 1.37. This study not only establishes a systematic method for diagnosing landscape problems and evaluating landscape visual quality but also provides both theoretical support and practical guidance for urban park landscape optimization. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 4803 KiB  
Article
Global Health as Vector for Agroecology in Collective Gardens in Toulouse Region (France)
by Wilkens Jules, Stéphane Mombo and Camille Dumat
Urban Sci. 2025, 9(7), 272; https://doi.org/10.3390/urbansci9070272 - 15 Jul 2025
Viewed by 741
Abstract
Agroecological transitions in collective urban gardens in Toulouse region were studied through the prism of global health (2011–2022). The specific meaning of “global health” in the context of urban gardens concerns the health of gardeners (well-being and physical health), plants, soil, and animals, [...] Read more.
Agroecological transitions in collective urban gardens in Toulouse region were studied through the prism of global health (2011–2022). The specific meaning of “global health” in the context of urban gardens concerns the health of gardeners (well-being and physical health), plants, soil, and animals, as well as the interactions between humans and non-humans, which are crucial for gardeners. A sociotechnical research project was developed on four different collective gardening sites, consisting of the following: 1. surveys issued to 100 garden stakeholders to highlight issues and practices, participation in meetings with the social centers in charge of events, and focus groups; 2. participative agronomic and environmental measurements and field observations, including soil quality analyses; and 3. analysis of the available documentary corpus. In order to produce the results, these three research methods (surveys, agronomy, document analysis) were combined through a transdisciplinary approach, in that both the field experimentation outcomes and retrieved scientific publications and technical documents informed the discussions with gardeners. Consideration of the four different sites enabled the exploration of various contextual factors—such as soil or air quality—affecting the production of vegetables. A rise in the concerns of gardeners about the impacts of their activities on global health was observed, including aspects such as creating and enjoying landscapes, taking care of the soil and biodiversity, developing social connections through the transmission of practices, and regular outside physical activity and healthier eating. The increased consideration for global health issues by all stakeholders promotes the implementation of agroecological practices in gardens to improve biodiversity and adherence to circular economy principles. Four concepts emerged from the interviews: health, production of vegetables, living soil, and social interactions. Notably, nuances between the studied sites were observed, according to their history, environment, and organization. These collective gardens can thus be considered as accessible laboratories for social and agroecological experimentation, being areas that can strongly contribute to urban ecosystem services. Full article
(This article belongs to the Special Issue Social Evolution and Sustainability in the Urban Context)
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 286
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

19 pages, 20060 KiB  
Article
Relationship Between Urban Forest Structure and Seasonal Variation in Vegetation Cover in Jinhua City, China
by Hao Yang, Shaowei Chu, Hao Zeng and Youbing Zhao
Forests 2025, 16(7), 1129; https://doi.org/10.3390/f16071129 - 9 Jul 2025
Viewed by 312
Abstract
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for [...] Read more.
Urban forests play a crucial role in enhancing vegetation cover and bolstering the ecological functions of cities by expanding green space, improving ecological connectivity, and reducing landscape fragmentation. This study examines these dynamics in Jinhua City, China, utilizing Landsat 8 satellite imagery for all four seasons of 2023, accessed through the Google Earth Engine (GEE) platform. Fractional vegetation cover (FVC) was calculated using the pixel binary model, followed by the classification of FVC levels. To understand the influence of landscape structure, nine representative landscape metrics were selected to construct a landscape index system. Pearson correlation analysis was employed to explore the relationships between these indices and seasonal FVC variations. Furthermore, the contribution of each index to seasonal FVC was quantified using a random forest (RF) regression model. The results indicate that (1) Jinhua exhibits the highest average FVC during the summer, reaching 0.67, while the lowest value is observed in winter, at 0.49. The proportion of areas with very high coverage peaks in summer, accounting for 50.6% of the total area; (2) all landscape metrics exhibited significant correlations with seasonal FVC. Among them, the class area (CA), percentage of landscape (PLAND), largest patch index (LPI), and patch cohesion index (COHESION) showed strong positive correlations with FVC, whereas the total edge length (TE), landscape shape index (LSI), patch density (PD), edge density (ED), and area-weighted mean shape index (AWMSI) were negatively correlated with FVC; (3) RF regression analysis revealed that CA and PLAND contributed most substantially to FVC, followed by COHESION and LPI, while PD, AWMSI, LSI, TE, and ED demonstrated relatively lower contributions. These findings provide valuable insights for optimizing urban forest landscape design and enhancing urban vegetation cover, underscoring that increasing large, interconnected forest patches represents an effective strategy for improving FVC in urban environments. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
A Beautiful Bird in the Neighborhood: Canopy Cover and Vegetation Structure Predict Avian Presence in High-Vacancy City
by Sebastian Moreno, Andrew J. Mallinak, Charles H. Nilon and Robert A. Pierce
Land 2025, 14(7), 1433; https://doi.org/10.3390/land14071433 - 8 Jul 2025
Viewed by 505
Abstract
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How [...] Read more.
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How does bird species composition reflect the potential conservation value of these neighborhoods? (2) Which vegetation structures predict bird abundance across a fine-grained urban landscape? To answer these questions, we conducted avian and vegetation surveys across 100 one-hectare plots in St. Louis, Missouri, USA. These surveys showed that species richness was positively associated with canopy cover (β = 0.32, p = 0.003). Canopy cover was also the strongest predictor of American Robin (Turdus migratorius) and Northern Cardinal (Cardinalis cardinalis) abundance (β = 1.9 for both species). In contrast, impervious surfaces and abandoned buildings were associated with generalist species. European Starling (Sturnus vulgaris) abundance was strongly and positively correlated with NMS Axis 1 (r = 0.878), while Chimney Swift (Chaetura pelagica) abundance was negatively correlated (r = −0.728). These findings underscore the significance of strategic habitat management in promoting urban biodiversity and addressing ecological challenges within urban landscapes. They also emphasize the importance of integrating biodiversity goals into urban planning policies to ensure sustainable and equitable development. Full article
Show Figures

Figure 1

29 pages, 24963 KiB  
Article
Monitoring and Future Prediction of Land Use Land Cover Dynamics in Northern Bangladesh Using Remote Sensing and CA-ANN Model
by Dipannita Das, Foyez Ahmed Prodhan, Muhammad Ziaul Hoque, Md. Enamul Haque and Md. Humayun Kabir
Earth 2025, 6(3), 73; https://doi.org/10.3390/earth6030073 - 4 Jul 2025
Viewed by 1123
Abstract
Land use and land cover (LULC) in Northern Bangladesh have undergone substantial transformations due to both anthropogenic and natural drivers. This study examines historical LULC changes (1990–2022) and projects future trends for 2030 and 2054 using remote sensing and the Cellular Automata-Artificial Neural [...] Read more.
Land use and land cover (LULC) in Northern Bangladesh have undergone substantial transformations due to both anthropogenic and natural drivers. This study examines historical LULC changes (1990–2022) and projects future trends for 2030 and 2054 using remote sensing and the Cellular Automata-Artificial Neural Network (CA-ANN) model. Multi-temporal Landsat imagery was classified with 80.75–86.23% accuracy (Kappa: 0.75–0.81). Model validation comparing simulated and actual 2014 data yielded 79.98% accuracy, indicating a reasonably good performance given the region’s rapidly evolving and heterogeneous landscape. The results reveal a significant decline in waterbodies, which is projected to shrink by 34.4% by 2054, alongside a 1.21% reduction in cropland raising serious environmental and food security concerns. Vegetation, after an initial massive decrease (1990–2014), increased (2014–2022) due to different forms of agroforestry practices and is expected to increase by 4.64% by 2054. While the model demonstrated fair predictive power, its moderate accuracy highlights challenges in forecasting LULC in areas characterized by informal urbanization, seasonal land shifts, and riverbank erosion. These dynamics limit prediction reliability and reflect the region’s ecological vulnerability. The findings call for urgent policy action particularly afforestation, water resource management, and integrated land use planning to ensure environmental sustainability and resilience in this climate-sensitive area. Full article
Show Figures

Figure 1

27 pages, 12277 KiB  
Article
Quantifying Landscape Effects on Urban Park Thermal Environments Using ENVI-Met and 3D Grid Profile Analysis
by Dongyang Yan, Liang Xu, Qifan Wang, Jing Feng and Xixi Wu
Forests 2025, 16(7), 1085; https://doi.org/10.3390/f16071085 - 30 Jun 2025
Viewed by 505
Abstract
Blue–green infrastructure is widely recognized for mitigating the urban heat island effect. However, most existing ENVI-met 5.6.1 studies focus on average thermal conditions and overlook fine-scale spatial gradients. This study investigates the urban park in Luoyang City by integrating high-resolution 3D ENVI-met simulations, [...] Read more.
Blue–green infrastructure is widely recognized for mitigating the urban heat island effect. However, most existing ENVI-met 5.6.1 studies focus on average thermal conditions and overlook fine-scale spatial gradients. This study investigates the urban park in Luoyang City by integrating high-resolution 3D ENVI-met simulations, multi-source data, and field measurements to quantify thermal gradients between park interiors and surrounding built-up areas. A midline cut-off approach was applied to extract horizontal and vertical thermal profiles. The results show that (1) temperature and physiological equivalent temperature (PET) differences are most pronounced at park edges and transition zones, where vegetation and water bodies serve as natural cooling buffers; (2) urban form indicators, especially the building coverage and open space ratio, significantly impact wind speed and the PET, with greenery improving thermal comfort via shading and evapotranspiration, while impervious surfaces intensify heat stress; (3) the park exhibits a distinct cold island effect, with the average PET in the core area up to 12.3 °C lower than in adjacent built-up zones. The effective cooling distance, which is identified through buffer-based zonal statistics, rapidly attenuates within approximately 200 m from the park boundary. These findings offer a novel spatial perspective on thermal regulation mechanisms of urban landscapes and provide quantitative evidence to guide the design of climate-resilient green infrastructure. Full article
(This article belongs to the Special Issue Designing Urban Green Spaces in a Changing Climate)
Show Figures

Figure 1

Back to TopTop