Quantifying Landscape Effects on Urban Park Thermal Environments Using ENVI-Met and 3D Grid Profile Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Framework
2.2. Model Establishment
2.2.1. Study Area
2.2.2. Data Acquisition and Model Construction
2.3. Numerical Simulation
2.3.1. Model Selection and Description
2.3.2. Model Configuration
2.3.3. Selection of Observation Points and Spatial Unit Definition
2.3.4. Assessment of Thermal Comfort
2.4. Statistical Analysis
2.4.1. Quantitative Indicators of Landscape Character of Urban Parks
2.4.2. Correlation Analysis
3. Results and Discussion
3.1. Model Validation
3.2. Temporal Characteristics of the Distribution of the Thermal Environment
3.3. Spatial Characteristics of the Distribution of the Thermal Environment
3.3.1. Potential Air Temperature
3.3.2. Relative Humidity
3.3.3. Wind Speed
3.3.4. Mean Radiant Temperature
3.3.5. PET
3.4. Quantitative Relationship Between Landscape Morphological Elements and the Thermal Environment
3.4.1. Impact Mechanisms of Landscape Morphological Elements on the Thermal Environment
3.4.2. Correlation Analysis of Landscape Morphological Elements and Thermal Environment
3.5. Trends in Thermal Environmental Gradients
4. Discussion
4.1. Analysis of Changes in Thermal Environmental Gradients
4.2. Landscape Composition in Relation to the Thermal Environment
4.3. Theoretical and Policy Implications
4.4. Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, W.; Li, J. Assessing the Three-Dimensional Vegetation Carbon Sink of Urban Green Spaces Using Unmanned Aerial Vehicles and Machine Learning. Ecol. Indic. 2025, 173, 113380. [Google Scholar] [CrossRef]
- Liang, H.; Yan, Q.; Yan, Y.; Zhang, Q. Exploring the Provision, Efficiency and Improvements of Urban Green Spaces on Accessibility at the Metropolitan Scale. J. Environ. Manag. 2024, 352, 120118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, P.Y.; Gan, D.R.Y.; Samsudin, R. Assessment of Mediators in the Associations between Urban Green Spaces and Self-Reported Health. Landsc. Urban Plan. 2022, 226, 104503. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Bluespace to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Ai, J.; Kim, M. Research on Plant Landscape Design of Urban Industrial Site Green Space Based on Green Infrastructure Concept. Plants 2025, 14, 747. [Google Scholar] [CrossRef]
- Lan, H.; Lau, K.K.-L.; Shi, Y.; Ren, C. Improved Urban Heat Island Mitigation Using Bioclimatic Redevelopment along an Urban Waterfront at Victoria Dockside, Hong Kong. Sust. Cities Soc. 2021, 74, 103172. [Google Scholar] [CrossRef]
- Arrar, H.F.; Kaoula, D.; Santamouris, M.; Foufa-Abdessemed, A.; Emmanuel, R.; Matallah, M.E.; Ahriz, A.; Attia, S. Coupling of Different Nature Base Solutions for Pedestrian Thermal Comfort in a Mediterranean Climate. Build. Environ. 2024, 256, 111480. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Zhou, Y.; Zhang, T.; Ma, Z.; Meng, X. Spatial Patterns and Temporal Variations of Footprint and Intensity of Surface Urban Heat Island in 141 China Cities. Sustain. Cities Soc. 2022, 77, 103585. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.; Li, X.; Wang, S. Local Climate Zone Ventilation and Urban Land Surface Temperatures: Towards a Performance-Based and Wind-Sensitive Planning Proposal in Megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the Effect of Urban Development on Urban Heat Island Based on Remote Sensing and Geo-Spatial Approach in Kolkata and Adjacent Areas, India. Sustain. Cities Soc. 2021, 74, 103186. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y. Remote Sensing Retrieval of Urban Land Surface Temperature in Hot-Humid Region. Urban Clim. 2018, 24, 299–310. [Google Scholar] [CrossRef]
- Bonafoni, S.; Baldinelli, G.; Verducci, P. Sustainable Strategies for Smart Cities: Analysis of the Town Development Effect on Surface Urban Heat Island through Remote Sensing Methodologies. Sustain. Cities Soc. 2017, 29, 211–218. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of Urban Surface Characteristics on Spatiotemporal Pattern of Land Surface Temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef]
- Roy, T.B.; Middey, A.; Krupadam, R.J. Unveiling the Microclimate: A Comprehensive Review of Tools, Techniques, and Future Directions for Sustainable Cities. Build. Environ. 2025, 274, 112726. [Google Scholar] [CrossRef]
- Al-Najjar, H.; Kalantar, B.; Abdul Halin, A. Editorial: Advancements in Land Cover Classification and Machine Learning Techniques for Urban Areas Using Remote Sensing Big Data. Front. Environ. Sci. 2025, 13, 1584485. [Google Scholar] [CrossRef]
- Sharma, G.; Morgenroth, J.; Richards, D.R.; Ye, N. Advancing Urban Forest and Ecosystem Service Assessment through the Integration of Remote Sensing and I-Tree Eco: A Systematic Review. Urban For. Urban Green. 2025, 104, 128659. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, L.; Zhang, Y.; Liu, M.; Yang, Y.; Liu, Z.; Zhang, L. Effects of Microclimatic Factors on Stomatal Conductance of Plants in Vertical Greenery Systems in Humid Subtropical Areas. Sustain. Cities Soc. 2022, 85, 104056. [Google Scholar] [CrossRef]
- Qi, Q.; Meng, Q.; Wang, J.; He, B.; Liang, H.; Ren, P. Applicability of Mobile-Measurement Strategies to Different Periods: A Field Campaign in a Precinct with a Block Park. Build. Environ. 2022, 211, 108762. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, D.; Wang, Y.; Xu, W.; Yang, Y. Field Measurement Study on the Impacts of Urban Spatial Indicators on Urban Climate in a Chinese Basin and Static-Wind City. Build. Environ. 2019, 147, 482–494. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Kendall, A. Field Measurement of Albedo for Different Land Cover Materials and Effects on Thermal Performance. Build. Environ. 2013, 59, 536–546. [Google Scholar] [CrossRef]
- Niachou, K.; Livada, I.; Santamouris, M. Experimental Study of Temperature and Airflow Distribution inside an Urban Street Canyon during Hot Summer Weather Conditions—Part I: Air and Surface Temperatures. Build. Environ. 2008, 43, 1383–1392. [Google Scholar] [CrossRef]
- Benbrahim, R.; Sriti, L.; Besbas, S.; Nocera, F.; Longhitano, A. Assessing the Impact of Urban Area Size on Thermal Comfort in Compact Urban Fabrics Considering the Saharan City of Ghardaïa, Algeria. Sustainability 2025, 17, 2213. [Google Scholar] [CrossRef]
- Chen, G.; Charlie Lam, C.K.; Wang, K.; Wang, B.; Hang, J.; Wang, Q.; Wang, X. Effects of Urban Geometry on Thermal Environment in 2D Street Canyons: A Scaled Experimental Study. Build. Environ. 2021, 198, 107916. [Google Scholar] [CrossRef]
- Guo, P.; Wang, S.; Xu, B.; Meng, Q.; Wang, Y. Reduced-Scale Experimental Model and Numerical Investigations to Buoyance-Driven Natural Ventilation in a Large Space Building. Build. Environ. 2018, 145, 24–32. [Google Scholar] [CrossRef]
- Lee, P.J.; Kim, Y.H.; Jeon, J.Y.; Song, K.D. Effects of Apartment Building Façade and Balcony Design on the Reduction of Exterior Noise. Build. Environ. 2007, 42, 3517–3528. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Physical Modeling of Pedestrian Energy Exchange within the Urban Canopy. Build. Environ. 2006, 41, 783–795. [Google Scholar] [CrossRef]
- Touhami, H.; Berkouk, D.; Bouzir, T.A.K.; Khelil, S.; Gomaa, M.M. The Influence of Multisensory Perception on Student Outdoor Comfort in University Campus Design. Atmosphere 2025, 16, 150. [Google Scholar] [CrossRef]
- Yang, S.; Chong, A.; Liu, P.; Biljecki, F. Thermal Comfort Insight: Thermal Affordance and Its Visual Assessment for Sustainable Streetscape Design. Build. Environ. 2025, 271, 112569. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Hu, D. Effects of Urban Morphology on Thermal Comfort at the Micro-Scale. Sustain. Cities Soc. 2022, 86, 104150. [Google Scholar] [CrossRef]
- Xu, F.; Gao, Z.; Zhang, J.; Hu, Y.; Ding, W. Influence of Typical Street-Side Public Building Morphologies on the Ventilation Performance of Streets and Squares. Build. Environ. 2022, 221, 109331. [Google Scholar] [CrossRef]
- Wu, Z.; Dou, P.; Chen, L. Comparative and Combinative Cooling Effects of Different Spatial Arrangements of Buildings and Trees on Microclimate. Sustain. Cities Soc. 2019, 51, 101711. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical Study on the Effects of Aspect Ratio and Orientation of an Urban Street Canyon on Outdoor Thermal Comfort in Hot and Dry Climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Spantideas, S.T.; Giannopoulos, A.E.; Trakadas, P. Autonomous Price-Aware Energy Management System in Smart Homes via Actor-Critic Learning with Predictive Capabilities. IEEE Trans. Autom. Sci. Eng. 2025, 22, 15018–15033. [Google Scholar] [CrossRef]
- Park, J.S. Long-Term Field Measurement on Effects of Wind Speed and Directional Fluctuation on Wind-Driven Cross Ventilation in a Mock-up Building. Build. Environ. 2013, 62, 1–8. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, P.; Wei, J.; Yu, F.; Huang, C. Sustainable Urban Designs Integrating Aboveground Microclimates and Underground Heat Islands: A Systematic Review and Design Strategies. Renew. Sustain. Energy Rev. 2025, 212, 115445. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef]
- Pigeon, G.; Moscicki, M.A.; Voogt, J.A.; Masson, V. Simulation of Fall and Winter Surface Energy Balance over a Dense Urban Area Using the TEB Scheme. Meteorol. Atmos. Phys. 2008, 102, 159–171. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different Methods for Estimating the Mean Radiant Temperature in an Outdoor Urban Setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Sarria, F.R.; Delgado, M.G.; Palma, R.M.; Amores, T.P.; Ramos, J.S.; Dominguez, S. alvarez Modelling Pollutant Dispersion in Urban Canyons to Enhance Air Quality and Urban Planning. Appl. Sci. 2025, 15, 1752. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Fu, T.-M. Accelerating Urban Street Canyon Wind Flow Predictions with Deep Learning Method. Build. Simul. 2025, 18, 923–936. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Moustaoui, M.; Broadbent, A.M.; Gupta, V.; Georgescu, M. Diurnal Interaction between Urban Expansion, Climate Change and Adaptation in US Cities. Nat. Clim. Change 2018, 8, 1097–1103. [Google Scholar] [CrossRef]
- Makaremi, N.; Salleh, E.; Jaafar, M.Z.; GhaffarianHoseini, A. Thermal Comfort Conditions of Shaded Outdoor Spaces in Hot and Humid Climate of Malaysia. Build. Environ. 2012, 48, 7–14. [Google Scholar] [CrossRef]
- Vitale, V.; Salerno, G. A Numerical Prediction of the Passive Cooling Effects on Thermal Comfort for a Historical Building in Rome. Energy Build. 2017, 157, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the Effects of Urban Heat Island Mitigation Strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Takebayashi, H. Effects of Air Temperature, Humidity, and Wind Velocity Distribution on Indoor Cooling Load and Outdoor Human Thermal Environment at Urban Scale. Energy Build. 2022, 257, 111792. [Google Scholar] [CrossRef]
- Jiao, M.; Zhou, W.; Zheng, Z.; Wang, J.; Qian, Y. Patch Size of Trees Affects Its Cooling Effectiveness: A Perspective from Shading and Transpiration Processes. Agric. For. Meteorol. 2017, 247, 293–299. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lin, C.-T. Preliminary Study of the Influence of the Spatial Arrangement of Urban Parks on Local Temperature Reduction. Urban For. Urban Green. 2016, 20, 348–357. [Google Scholar] [CrossRef]
- Gao, Z.; Zaitchik, B.F.; Hou, Y.; Chen, W. Toward Park Design Optimization to Mitigate the Urban Heat Island: Assessment of the Cooling Effect in Five U.S. Cities. Sustain. Cities Soc. 2022, 81, 103870. [Google Scholar] [CrossRef]
- Shi, M.; Wang, Y.; Lv, H.; Jia, W. Climate Gentrification along with Parks’ Cooling Performance in One of China’s Tropical Industrial Cities. Sci. Total Environ. 2023, 892, 164603. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, Y.; Yi, X.; Lun, F.; Hu, Q.; Huang, N.; Wen, G.; Zhou, H.; Hu, X. Exploring the Influence of Local Urban Heat Features on Park Cooling Effects: Insights from Chinese Cities. Build. Environ. 2024, 262, 111782. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, L.; Wu, C.; Zhang, Z.; Zhang, Z.; Lin, X.; Li, X.; Hu, Y.; Ge, H. Spatialized Importance of Key Factors Affecting Park Cooling Intensity Based on the Park Scale. Sust. Cities Soc. 2023, 99, 104952. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. The Effects of Street Tree Planting on Urban Heat Island Mitigation in Montreal. Sust. Cities Soc. 2016, 27, 122–128. [Google Scholar] [CrossRef]
- Adams, M.P.; Smith, P.L. A Systematic Approach to Model the Influence of the Type and Density of Vegetation Cover on Urban Heat Using Remote Sensing. Landsc. Urban Plan. 2014, 132, 47–54. [Google Scholar] [CrossRef]
- Ibsen, P.C.; Crawford, B.R.; Corro, L.M.; Bagstad, K.J.; McNellis, B.E.; Jenerette, G.D.; Diffendorfer, J.E. Urban Tree Cover Provides Consistent Mitigation of Extreme Heat in Arid but Not Humid Cities. Sustain. Cities Soc. 2024, 113, 105677. [Google Scholar] [CrossRef]
- Feng, X.; Yu, J.; Xin, C.; Ye, T.; Wang, T.; Chen, H.; Zhang, X.; Zhang, L. Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu. Land 2023, 12, 451. [Google Scholar] [CrossRef]
- Sun, R.; Chen, A.; Chen, L.; Lu, Y. Cooling Effects of Wetlands in an Urban Region: The Case of Beijing. Ecol. Indic. 2012, 20, 57–64. [Google Scholar] [CrossRef]
- Cruz, J.A.; Blanco, A.C.; Garcia, J.J.; Santos, J.A.; Moscoso, A.D. Evaluation of the Cooling Effect of Green and Blue Spaces on Urban Microclimate through Numerical Simulation: A Case Study of Iloilo River Esplanade, Philippines. Sust. Cities Soc. 2021, 74, 103184. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal Variations in the Cooling Effect of Urban Green Areas on Surrounding Urban Areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- GB 50176-2016; Thermal Design Code for Civil Buildings. Architecture & Building Press: Beijing, China, 2016.
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-Met Microscale Model for Suitability in Analysis of Targeted Urban Heat Mitigation Strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Paas, B.; Schneider, C. A Comparison of Model Performance between ENVI-Met and Austal2000 for Particulate Matter. Atmos. Environ. 2016, 145, 392–404. [Google Scholar] [CrossRef]
- Ouyang, W.; Morakinyo, T.E.; Ren, C.; Ng, E. The Cooling Efficiency of Variable Greenery Coverage Ratios in Different Urban Densities: A Study in a Subtropical Climate. Build. Environ. 2020, 174, 106772. [Google Scholar] [CrossRef]
- Kleerekoper, L.; Taleghani, M.; van den Dobbelsteen, A.; Hordijk, T. Urban Measures for Hot Weather Conditions in a Temperate Climate Condition: A Review Study. Renew. Sustain. Energy Rev. 2017, 75, 515–533. [Google Scholar] [CrossRef]
- Acero, J.A.; Herranz-Pascual, K. A Comparison of Thermal Comfort Conditions in Four Urban Spaces by Means of Measurements and Modelling Techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E. A Study on the Impact of Shadow-Cast and Tree Species on in-Canyon and Neighborhood’s Thermal Comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Alinasab, N.; Mohammadzadeh, N.; Karimi, A.; Mohammadzadeh, R.; Gál, T. A Measurement-Based Framework Integrating Machine Learning and Morphological Dynamics for Outdoor Thermal Regulation. Int. J. Biometeorol. 2025. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, B.; Chen, G.; Li, J.; Song, C. Influence of Park Size and Its Surrounding Urban Landscape Patterns on the Park Cooling Effect. J. Urban Plan. Dev. 2015, 141, A4014002. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The Roles of Landscape Both inside the Park and the Surroundings in Park Cooling Effect. Sust. Cities Soc. 2020, 52, 101864. [Google Scholar] [CrossRef]
- Han, D.; Yang, X.; Cai, H.; Xu, X. Impacts of Neighboring Buildings on the Cold Island Effect of Central Parks: A Case Study of Beijing, China. Sustainability 2020, 12, 9499. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the Cooling Effects of Urban Parks on Surrounding Environments Using Landsat TM Data: A Case Study in Guangzhou, Southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Jamei, Y.; Rajagopalan, P.; Sun, Q. Spatial Structure of Surface Urban Heat Island and Its Relationship with Vegetation and Built-up Areas in Melbourne, Australia. Sci. Total Environ. 2019, 659, 1335–1351. [Google Scholar] [CrossRef]
- Karimi, A.; Moreno-Rangel, D.; Garcia-Martinez, A. Granular Mapping of UHI and Heatwave Effects: Implications for Building Performance and Urban Resilience. Build. Environ. 2025, 273, 112705. [Google Scholar] [CrossRef]
- Mo, F.; He, N.; Chen, L.; Li, M.; Yu, S.; Zhang, J.; Wang, W.; Wei, J. Strategies for Stabilization of Zn Anodes for Aqueous Zn-Based Batteries: A Mini Review. Front. Chem. 2022, 9, 822624. [Google Scholar] [CrossRef]
- Jacobs, C.; Klok, L.; Bruse, M.; Cortesao, J.; Lenzholzer, S.; Kluck, J. Are Urban Water Bodies Really Cooling? Urban CLim. 2020, 32, 100607. [Google Scholar] [CrossRef]
- Sodoudi, S.; Zhang, H.; Chi, X.; Mueller, F.; Li, H. The Influence of Spatial Configuration of Green Areas on Microclimate and Thermal Comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of Tree Locations and Arrangements on Outdoor Microclimates and Human Thermal Comfort in an Urban Residential Environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications-A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. In Seasonal Forecasts, Climatic Change and Human Health: Health and Climate; Thomson, M.C., Garcia-Herrera, R., Beniston, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 161–172. ISBN 978-1-4020-6877-5. [Google Scholar]
- Xu, C.; Wang, W.; Zhu, H. Spatial Gradient Differences in the Cooling Island Effect and Influencing Factors of Urban Park Green Spaces in Beijing. Buildings 2024, 14, 1206. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Spatial Pattern Impact of Impervious Surface Density on Urban Heat Island Effect: A Case Study in Xuzhou, China. Land 2022, 11, 2135. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using Green Infrastructure for Urban Climate-Proofing: An Evaluation of Heat Mitigation Measures at the Micro-Scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, T.; Wang, L. Heat Stress Resilience Assessment of Urban Form from Physical Space Dimension: A Case Study of Guangdong-Hong Kong-Macao Greater Bay Area. Urban Clim. 2024, 55, 101905. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate Development in Open Urban Spaces: The Influence of Form and Materials. Energy Build. 2015, 108, 156–174. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Ge, X.; Han, D.; Zhuang, W.; Tang, Y.; Shen, X. Multiscale Urban Design Based on the Optimization of the Wind and Thermal Environments: A Case Study of the Core Area of Suzhou Science and Technology City. Front. Archit. Res. 2024, 13, 822–841. [Google Scholar] [CrossRef]
- Wang, J.; Yin, P.; Li, D.; Zheng, G.; Sun, B. Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area. J. Urban Plan. Dev 2021, 147, 05021016. [Google Scholar] [CrossRef]
- Petralli, M.; Massetti, L.; Brandani, G.; Orlandini, S. Urban Planning Indicators: Useful Tools to Measure the Effect of Urbanization and Vegetation on Summer Air Temperatures. Int. J. Climatol. 2014, 34, 1236–1244. [Google Scholar] [CrossRef]
- Yang, A.-S.; Juan, Y.-H.; Wen, C.-Y.; Chang, C.-J. Numerical Simulation of Cooling Effect of Vegetation Enhancement in a Subtropical Urban Park. Appl. Energy 2017, 192, 178–200. [Google Scholar] [CrossRef]
- Pradhan, K.; Ettinger, A.K.; Case, M.J.; Hille Ris Lambers, J. Applying Climate Change Refugia to Forest Management and Old-Growth Restoration. Glob. Change Biol. 2023, 29, 3692–3706. [Google Scholar] [CrossRef]
- Duy, T.D.; Huang, J.; Cheng, Y.; Thi, C.T.T. Da Nang Green Space System Planning: An Ecology Landscape Approach. Sustainability 2018, 10, 3506. [Google Scholar] [CrossRef]
- Li, X.; Xia, G.; Lin, T.; Xu, Z.; Wang, Y. Construction of Urban Green Space Network in Kashgar City, China. Land 2022, 11, 1826. [Google Scholar] [CrossRef]
- Wu, H.; Yang, C.; Chen, J.; Yang, S.; Lu, T.; Lin, X. Effects of Green Space Landscape Patterns on Particulate Matter in Zhejiang Province, China. Atmos. Pollut. Res. 2018, 9, 923–933. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, H.; Li, D.; Altan, O.; Cheng, T. Remote Sensing Monitoring of Multi-Scale Watersheds Impermeability for Urban Hydrological Evaluation. Remote Sens. Environ. 2019, 232, 111338. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, X.; Nie, Q.; Sun, F.; Tang, L. The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China. Sustainability 2020, 12, 475. [Google Scholar] [CrossRef]
- Han, K.-W.; Shi, K.-B.; Yan, X.-J.; Ling, F.; Hao, G.-C.; Qin, Q.-R. Estimating Water Surface Evaporation Losses under Floating Coverage: Modeling and Application. J. Hydrol. 2023, 626, 130252. [Google Scholar] [CrossRef]
- Arngrímsson, S.A.; Evans, E.M.; Saunders, M.J.; Ogburn, C.L.; Lewis, R.D.; Cureton, K.J. Validation of Body Composition Estimates in Male and Female Distance Runners Using Estimates from a Four-Component Model. Am. J. Hum. Biol. 2000, 12, 301–314. [Google Scholar] [CrossRef]
- Carrea, L.; Embury, O.; Merchant, C.J. Datasets Related to In-Land Water for Limnology and Remote Sensing Applications: Distance-to-Land, Distance-to-Water, Water-Body Identifier and Lake-Centre Co-Ordinates. Geosci. Data J. 2015, 2, 83–97. [Google Scholar] [CrossRef]
- Okabe, K.; Okabe, A. Functional Method for Analyzing Open-Space Ratios around Individual Buildings and Its Implementation with GIS. ISPRS Int. J. Geo-Inf. 2024, 13, 70. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Tian, T.; Wu, J.; Dong, Q.; Peng, S.; Che, Y. The Influence of the Landscape Pattern on the Urban Land Surface Temperature Varies with the Ratio of Land Components: Insights from 2D/3D Building/Vegetation Metrics. Sust. Cities Soc. 2022, 78, 103599. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, X.; Dai, M. Strategies for Sustainable Urban Development and Morphological Optimization of Street Canyons: Measurement and Simulation of PM2.5 at Different Points and Heights. Sust. Cities Soc. 2022, 87, 104191. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, Q.; Zhang, L.; Sun, C. Summer Cooling Island Effects of Blue-Green Spaces in Severe Cold Regions: A Case Study of Harbin, China. Build. Environ. 2024, 257, 111539. [Google Scholar] [CrossRef]
- Niu, J.; Xiong, J.; Qin, H.; Hu, J.; Deng, J.; Han, G.; Yan, J. Influence of Thermal Comfort of Green Spaces on Physical Activity: Empirical Study in an Urban Park in Chongqing, China. Build. Environ. 2022, 219, 109168. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brazel, A.J. Assessing Xeriscaping as a Sustainable Heat Island Mitigation Approach for a Desert City. Build. Environ. 2012, 47, 170–181. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Zhao, L. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area. Atmosphere 2018, 9, 198. [Google Scholar] [CrossRef]
- Herath, P.; Bai, X.; Jin, H.; Thatcher, M. Does the Spatial Configuration of Urban Parks Matter in Ameliorating Extreme Heat? Urban Clim. 2024, 53, 101756. [Google Scholar] [CrossRef]
Type | Model Parameters | Simulation Conditions |
---|---|---|
Modeling established | / | |
Time | season | Summer |
start date | 10 July 2023 | |
starting time | 00:00 | |
total simulation time | 24 h | |
Place | latitude and longitude | Luoyang, China (34.67° N, 112.41° E) |
Model | number of grids | X·Y·Z = 337·281·50 |
grid size | X·Y·Z = 4·4·3 m | |
Meteorology | 10 m height wind speed | 1.15 m/s |
wind direction | 189.75° | |
temperature | MIN = 29° | |
MAX = 40.4° | ||
humidity | MIN = 42% | |
MAX = 89% |
PET Threshold | Thermal Perception | Grade of Thermal Stress (PET) |
---|---|---|
<4 | Very cold | Extreme cold stress |
4–8 | Cold | Strong cold stress |
8–13 | Cool | Moderate cold stress |
13–18 | Slightly cool | Slight cold stress |
18–23 | Comfortable | No thermal stress |
23–29 | Slightly warm | Slight heat stress |
29–35 | Warm | Moderate heat stress |
35–41 | Hot | Strong heat stress |
>41 | Very hot | Extreme heat stress |
Type | Abbreviation | Full Name | Formula | Annotation |
---|---|---|---|---|
Greenery | GCR | Greening Coverage Rate | indicates the green area; indicates the total area | |
CCR | Canopy Coverage Rate | indicates the area covered by the canopy; indicates the total area | ||
GSSI | Green Space Shape Index | indicates the perimeter of the green space; indicates the green area | ||
ELGS | Edge Length of Green Space | indicates the length of the boundary line segment of the green patch | ||
Pavement | ISCR | Impervious Surface Coverage Rate | indicates the area of impervious surface; indicates the total area | |
Water | WBCR | Water Body Coverage Rate | indicates the area of the water body; indicates the total area | |
DWBx | Distance to Water Bodies | indicates the X coordinate of any point on the water body; indicates the X coordinate of the center of the grid cell; min indicates the shortest straight line distance in the X-axis direction | ||
DWBy | Distance to Water Bodies | indicates the Y coordinate of any point on the water body; indicates the Y coordinate of the center of the grid cell; indicates the shortest straight-line distance representing the Y-axis direction | ||
Buildings | OSR | Open Space Ratio | indicates the area of open space; indicates the total area | |
BCR | Building Coverage Rate | indicates the floor space of the building; indicates the total area | ||
ABH | Average Building Height | indicates the height of a single building; indicates the footprint of the building |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Xu, L.; Wang, Q.; Feng, J.; Wu, X. Quantifying Landscape Effects on Urban Park Thermal Environments Using ENVI-Met and 3D Grid Profile Analysis. Forests 2025, 16, 1085. https://doi.org/10.3390/f16071085
Yan D, Xu L, Wang Q, Feng J, Wu X. Quantifying Landscape Effects on Urban Park Thermal Environments Using ENVI-Met and 3D Grid Profile Analysis. Forests. 2025; 16(7):1085. https://doi.org/10.3390/f16071085
Chicago/Turabian StyleYan, Dongyang, Liang Xu, Qifan Wang, Jing Feng, and Xixi Wu. 2025. "Quantifying Landscape Effects on Urban Park Thermal Environments Using ENVI-Met and 3D Grid Profile Analysis" Forests 16, no. 7: 1085. https://doi.org/10.3390/f16071085
APA StyleYan, D., Xu, L., Wang, Q., Feng, J., & Wu, X. (2025). Quantifying Landscape Effects on Urban Park Thermal Environments Using ENVI-Met and 3D Grid Profile Analysis. Forests, 16(7), 1085. https://doi.org/10.3390/f16071085