Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,169)

Search Parameters:
Keywords = urban health indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 15138 KiB  
Article
Optimizing Pedestrian-Friendly Spaces in Xi’an’s Residential Streets: Accounting for PM2.5 Exposure
by Xina Ma, Handi Xie and Jingwen Wang
Atmosphere 2025, 16(8), 947; https://doi.org/10.3390/atmos16080947 - 7 Aug 2025
Abstract
Urban street canyons in high-density areas exacerbate PM2.5 accumulation, posing significant public health risks. Through integrated empirical and computational methods—including empirical PM2.5 and microclimate measurements, multivariate regression analysis, and high-resolution ENVI-met5.1 simulations—this study quantifies the threshold effects of pedestrian-oriented morphological indicators [...] Read more.
Urban street canyons in high-density areas exacerbate PM2.5 accumulation, posing significant public health risks. Through integrated empirical and computational methods—including empirical PM2.5 and microclimate measurements, multivariate regression analysis, and high-resolution ENVI-met5.1 simulations—this study quantifies the threshold effects of pedestrian-oriented morphological indicators on PM2.5 exposure in east–west-oriented residential streets. Key findings include the following: (1) the height-to-width ratio (H/W) negatively correlates with exposure, where H/W = 2.0 reduces the peak concentrations by 37–41% relative to H/W = 0.5 through enhanced vertical advection; (2) the Build-To-Line ratio (BTR) exhibits a positive correlation with exposure, with BTR = 63.2% mitigating exposure by 12–15% compared to BTR = 76.8% by reducing aerodynamic stagnation; (3) pollution exposure can be mitigated by enhancing airflow ventilation within street canyons through architectural facade design. These evidence-based morphological thresholds (H/W ≥ 1.5, BTR ≤ 70%) provide actionable strategies for reducing health risks in polluted urban corridors, supporting China to meet its national air quality improvement targets. Full article
(This article belongs to the Special Issue Characteristics and Control of Particulate Matter)
Show Figures

Figure 1

20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

14 pages, 8210 KiB  
Article
Effects of Forest Environments in Attenuating D-Galactose-Induced Immunosenescence: Insights from a Murine Model
by Yanling Li and Xiaocong Li
Biology 2025, 14(8), 998; https://doi.org/10.3390/biology14080998 - 5 Aug 2025
Viewed by 23
Abstract
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the [...] Read more.
With the global aging population on the rise, identifying environmental factors that modulate immunosenescence is critical for health interventions. While urban green spaces are known to confer health benefits, the long-term effects of forest exposure on immunosenescence remain unclear. This study investigated the differential impacts of urban forest versus urban environments on immunosenescence using a D-galactose-induced murine model. Mice were assigned to urban or forest environments for 8 weeks, with serum cytokines (IL-2, IL-6, TNF-α, IFN-γ), T-cell subsets, and organ indices analyzed. Forest environments exhibited significantly higher humidity and negative air ion concentrations alongside lower noise levels compared to urban settings. Aged forest-exposed mice showed attenuated immunosenescence markers, including significantly lower IL-6 levels (p < 0.01) and improved thymic indices, suggesting urban forest environments may mitigate immune decline. These findings highlight the potential of urban forests in promoting healthy aging, advocating for their integration into urban planning. Further human studies are warranted to translate these findings into public health strategies. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 221
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

25 pages, 4751 KiB  
Article
Dynamic Evolution and Resilience Enhancement of the Urban Tourism Ecological Health Network: A Case Study in Shanghai, China
by Man Wei and Tai Huang
Systems 2025, 13(8), 654; https://doi.org/10.3390/systems13080654 - 2 Aug 2025
Viewed by 234
Abstract
Urban tourism has evolved into a complex adaptive system, where unregulated expansion disrupts the ecological balance and intensifies resource stress. Understanding the dynamic evolution and resilience mechanisms of the tourism ecological health network (TEHN) is essential for supporting sustainable urban tourism as a [...] Read more.
Urban tourism has evolved into a complex adaptive system, where unregulated expansion disrupts the ecological balance and intensifies resource stress. Understanding the dynamic evolution and resilience mechanisms of the tourism ecological health network (TEHN) is essential for supporting sustainable urban tourism as a coupled human–natural system. Using Shanghai as a case study, we applied the “vigor–organization–resilience–services” (VORS) framework to evaluate ecosystem health, which served as a constraint for constructing the TEHN, using the minimum cumulative resistance (MCR) model for the period from 2001 to 2023. A resilience framework integrating structural and functional dimensions was further developed to assess spatiotemporal evolution and guide targeted enhancement strategies. The results indicated that as ecosystem health degraded, particularly in peripheral areas, the urban TEHN in Shanghai shifted from a dispersed to a centralized structure, with limited connectivity in the periphery. The resilience of the TEHN continued to grow, with structural resilience remaining at a high level, while functional resilience still required enhancement. Specifically, the low integration and limited choice between the tourism network and the transportation system hindered tourists from selecting routes with higher ecosystem health indices. Enhancing functional resilience, while sustaining structural resilience, is essential for transforming the TEHN into a multi-centered, multi-level system that promotes efficient connectivity, ecological sustainability, and long-term adaptability. The results contribute to a systems-level understanding of tourism–ecology interactions and support the development of adaptive strategies for balancing network efficiency and environmental integrity. Full article
(This article belongs to the Section Complex Systems and Cybernetics)
Show Figures

Figure 1

27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 - 1 Aug 2025
Viewed by 192
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 254
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 299
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Urban Mangroves Under Threat: Metagenomic Analysis Reveals a Surge in Human and Plant Pathogenic Fungi
by Juliana Britto Martins de Oliveira, Mariana Barbieri, Dario Corrêa-Junior, Matheus Schmitt, Luana Lessa R. Santos, Ana C. Bahia, Cláudio Ernesto Taveira Parente and Susana Frases
Pathogens 2025, 14(8), 759; https://doi.org/10.3390/pathogens14080759 - 1 Aug 2025
Viewed by 232
Abstract
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to [...] Read more.
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to environmental stress. The results revealed a fungal community with reduced richness—28% lower than expected for similar ecosystems—likely linked to physicochemical changes such as heavy metal accumulation, acidic pH, and eutrophication, all typical of urbanized coastal areas. Notably, we detected an increase in potentially pathogenic genera, including Candida, Aspergillus, and Pseudoascochyta, alongside a decrease in key saprotrophic genera such as Fusarium and Thelebolus, indicating a shift in ecological function. The fungal assemblage was dominated by the phyla Ascomycota and Basidiomycota, and despite adverse conditions, symbiotic mycorrhizal fungi remained present, suggesting partial resilience. A considerable fraction of unclassified fungal taxa also points to underexplored microbial diversity with potential ecological or health significance. Importantly, this study does not aim to compare pristine and contaminated environments, but rather to provide a sanitary alert by identifying the presence and potential proliferation of pathogenic fungi in a degraded mangrove system. These findings highlight the sensitivity of mangrove fungal communities to environmental disturbance and reinforce the value of metagenomic approaches for monitoring ecosystem health. Incorporating fungal metagenomic surveillance into environmental management strategies is essential to better understand biodiversity loss, ecological resilience, and potential public health risks in degraded coastal environments. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

48 pages, 10031 KiB  
Article
Redefining Urban Boundaries for Health Planning Through an Equity Lens: A Socio-Demographic Spatial Analysis Model in the City of Rome
by Elena Mazzalai, Susanna Caminada, Lorenzo Paglione and Livia Maria Salvatori
Land 2025, 14(8), 1574; https://doi.org/10.3390/land14081574 - 31 Jul 2025
Viewed by 214
Abstract
Urban health planning requires a multi-scalar understanding of the territory, capable of capturing socio-economic inequalities and health needs at the local level. In the case of Rome, current administrative subdivisions—Urban Zones (Zone Urbanistiche)—are too large and internally heterogeneous to serve as [...] Read more.
Urban health planning requires a multi-scalar understanding of the territory, capable of capturing socio-economic inequalities and health needs at the local level. In the case of Rome, current administrative subdivisions—Urban Zones (Zone Urbanistiche)—are too large and internally heterogeneous to serve as effective units for equitable health planning. This study presents a methodology for the territorial redefinition of Rome’s Municipality III, aimed at supporting healthcare planning through an integrated analysis of census sections. These were grouped using a combination of census-based socio-demographic indicators (educational attainment, employment status, single-person households) and real estate values (OMI data), alongside administrative and road network data. The resulting territorial units—21 newly defined Mesoareas—are smaller than Urban Zones but larger than individual census sections and correspond to socio-territorially homogeneous neighborhoods; this structure enables a more nuanced spatial understanding of health-related inequalities. The proposed model is replicable, adaptable to other urban contexts, and offers a solid analytical basis for more equitable and targeted health planning, as well as for broader urban policy interventions aimed at promoting spatial justice. Full article
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 313
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

16 pages, 2125 KiB  
Review
A Quantitative Literature Review on Forest-Based Practices for Human Well-Being
by Alessandro Paletto, Sofia Baldessari, Elena Barbierato, Iacopo Bernetti, Arianna Cerutti, Stefania Righi, Beatrice Ruggieri, Alessandra Landi, Sandra Notaro and Sandro Sacchelli
Forests 2025, 16(8), 1246; https://doi.org/10.3390/f16081246 - 30 Jul 2025
Viewed by 508
Abstract
Over the last decade, the scientific community has increasingly focused on forest-based practices for human well-being (FBPW), a term that includes all forest activities (e.g., forest bathing, forest therapy, social outdoor initiatives) important for improving people’s health and emotional status. This paper aims [...] Read more.
Over the last decade, the scientific community has increasingly focused on forest-based practices for human well-being (FBPW), a term that includes all forest activities (e.g., forest bathing, forest therapy, social outdoor initiatives) important for improving people’s health and emotional status. This paper aims to develop a quantitative literature review on FBPW based on big data analysis (text mining on Scopus title and abstract) and PRISMA evaluation. The two techniques facilitate investigations across different geographic areas (major areas and geographical regions) and allow a focus on various topics. The results of text mining highlight the prominence of publications on FBPW for the improvement of human health in East Asia (e.g., Japan and South Korea). Furthermore, some specific themes developed by the literature for each geographical area emerge: urban green areas, cities, and parks in Africa; sustainable forest management and planning in the Americas; empirical studies on physiological and psychological effects of FBPW in Asia; and forest management and FBPW in Europe. PRISMA indicates a gap in studies focused on the reciprocal influences of forest variables and well-being responses. An investigation of the main physiological indicators applied in the scientific literature for the theme is also developed. The main strengths and weaknesses of the method are discussed, with suggestions for potential future lines of research. Full article
Show Figures

Figure 1

14 pages, 257 KiB  
Article
Mental and Physical Health of Chinese College Students After Shanghai Lockdown: An Exploratory Study
by Jingyu Sun, Rongji Zhao and Antonio Cicchella
Healthcare 2025, 13(15), 1864; https://doi.org/10.3390/healthcare13151864 - 30 Jul 2025
Viewed by 248
Abstract
The mental and physical health of college students, especially in urban environments like Shanghai, is crucial given the high academic and urban stressors, which were intensified by the COVID-19 lockdown. Prior research has shown gender differences in health impacts during public health crises, [...] Read more.
The mental and physical health of college students, especially in urban environments like Shanghai, is crucial given the high academic and urban stressors, which were intensified by the COVID-19 lockdown. Prior research has shown gender differences in health impacts during public health crises, with females often more vulnerable to mental health issues. Objective: This study aimed to comprehensively assess the physical and psychological health of Chinese college students post-lockdown, focusing on the relationship between stress, anxiety, depression, sleep patterns, and physical health, with a particular emphasis on gender differences. Methods: We conducted a cross-sectional study involving 116 students in Shanghai, utilizing psychological scales (HAMA, IPAQ, PSQI, SDS, FS 14, PSS, SF-36) and physical fitness tests (resting heart rate, blood pressure, hand grip, forced vital capacity, standing long jump, sit-and-reach, one-minute sit-up test and the one-minute squat test, single-leg stand test with eyes closed), to analyze health and behavior during the pandemic lockdown. All students have undergone the same life habits during the pandemic. Results: The HAMA scores indicated no significant levels of physical or mental anxiety. The PSS results (42.45 ± 8.93) reflected a high overall stress level. Furthermore, the PSQI scores (5.4 ± 2.91) suggested that the participants experienced mild insomnia. The IPAQ scores indicated higher levels of job-related activity (1261.49 ± 2144.58), transportation activity (1253.65 ± 987.57), walking intensity (1580.78 ± 1412.20), and moderate-intensity activity (1353.03 ± 1675.27) among college students following the lockdown. Hand grip strength (right) (p = 0.001), sit-and-reach test (p = 0.001), standing long jump (p = 0.001), and HAMA total score (p = 0.033) showed significant differences between males and females. Three principal components were identified in males: HAMA, FS14, and PSQI, explaining a total variance of 70.473%. Similarly, three principal components were extracted in females: HAMA, PSQI, and FS14, explaining a total variance of 69.100%. Conclusions: Our study underscores the complex interplay between physical activity (PA), mental health, and quality of life, emphasizing the need for gender-specific interventions. The persistent high stress, poor sleep quality, and reduced PA levels call for a reorganized teaching schedule to enhance student well-being without increasing academic pressure. Full article
26 pages, 2486 KiB  
Review
Sports in Natural Forests: A Systematic Review of Environmental Impact and Compatibility for Readability
by Iulian Bratu, Lucian Dinca, Ionut Schiteanu, George Mocanu, Gabriel Murariu, Mirela Stanciu and Miglena Zhiyanski
Sports 2025, 13(8), 250; https://doi.org/10.3390/sports13080250 - 29 Jul 2025
Viewed by 488
Abstract
The intersection of sports and natural forests and green spaces represents an emerging interdisciplinary field with implications for public health, environmental science, and sustainable land management and refers to the variety of cultural ecosystem services demanded by people from ecosystems. This manuscript presents [...] Read more.
The intersection of sports and natural forests and green spaces represents an emerging interdisciplinary field with implications for public health, environmental science, and sustainable land management and refers to the variety of cultural ecosystem services demanded by people from ecosystems. This manuscript presents a systematic bibliometric and thematic analysis of 148 publications for the period 1993–2024 identified through Web of Science and Scopus, aiming to evaluate the current state of research on sports activities conducted in natural forest environments. Findings indicated a marked increase in scientific interest of this topic over the past two decades, with key contributions from countries such as England, Germany, China, and the United States. Researchers most frequently examined sports such as hiking, trail running, mountain biking, and orienteering for their capacity to provide physiological and psychological benefits, reduce stress, and enhance mental well-being. The literature analysis highlights ecological concerns, particularly those associated with habitat disturbance, biodiversity loss, and conflicts between recreation and conservation. Six principal research themes were identified: sports in urban forests, sports tourism, hunting and fishing, recreational sports, health benefits, and environmental impacts. Keyword and co-authorship analyses revealed a multidisciplinary knowledge base with evolving thematic focuses. In conclusion, the need for integrated approaches that incorporate ecological impact assessment, stakeholder perspectives, and adaptive forest governance to ensure sustainable recreational use of natural forest ecosystems is underlined. Full article
(This article belongs to the Special Issue Fostering Sport for a Healthy Life)
Show Figures

Figure 1

Back to TopTop