Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,233)

Search Parameters:
Keywords = urban environmental management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2446 KB  
Article
Analysis of the Evolution and Driving Factors of Nitrogen Balance in Zhejiang Province from 2011 to 2021
by Hongwei Yang, Guoxian Huang, Qi Lang and JieHao Zhang
Environments 2026, 13(1), 55; https://doi.org/10.3390/environments13010055 - 20 Jan 2026
Abstract
With rapid socioeconomic development and intensified human activities, nitrogen (N) loads have continued to rise, exerting significant impacts on the environment. Most existing studies focus on single cities or short time periods, which limits their ability to capture nitrogen dynamics under rapid urbanization. [...] Read more.
With rapid socioeconomic development and intensified human activities, nitrogen (N) loads have continued to rise, exerting significant impacts on the environment. Most existing studies focus on single cities or short time periods, which limits their ability to capture nitrogen dynamics under rapid urbanization. Based on statistical data from multiple cities in Zhejiang Province from 2011 to 2021, this study applied nitrogen balance accounting and statistical analysis to systematically evaluate the spatiotemporal variations in nitrogen inputs, outputs, and surpluses, as well as their driving factors. The results indicate that although nitrogen inputs and outputs fluctuated over the past decade, the overall nitrogen surplus showed an increasing trend, with the nitrogen surplus per unit area rising from 49.89 kg/(ha·a) in 2011 to 62.59 kg/(ha·a) in 2021. Zhejiang’s nitrogen load was higher than the national average but remained below the levels of highly urbanized regions such as the Yangtze River Delta and Pearl River Delta. Accelerated urbanization and increasing anthropogenic pressures were identified as major contributors to the rising nitrogen surplus, with significant inter-city disparities. Cities like Hangzhou, Ningbo, Wenzhou, and Jinhua were found to face higher risks of nitrogen pollution. Redundancy analysis and Pearson correlation analysis revealed that nitrogen surplus was positively correlated with cropland area, livestock population, total population, precipitation, GDP, and industrial output, further highlighting the dominant role of human activities in nitrogen cycling. This study provides the long-term quantitative assessment of nitrogen balance under multi-city coupling at the provincial scale and identifies key influencing factors. These findings provide scientific support for integrated nitrogen management across multiple environmental compartments in Zhejiang Province, including surface water, groundwater, agricultural systems, and urban wastewater, under conditions of rapid urbanization. Full article
Show Figures

Figure 1

25 pages, 20841 KB  
Article
Spatio-Temporal Dynamics and Driving Mechanism of Ecosystem Services Under Ecological Restoration in the Kubuqi Desert, Northern China
by Chunliang Lv, Yangyang Liu, Xu Zhang, Jinfeng Wang, Yongning Hu and Yang Cao
Land 2026, 15(1), 182; https://doi.org/10.3390/land15010182 - 19 Jan 2026
Abstract
Desertification is an ever-growing global ecological and environmental problem. With the implementation of various ecological restoration initiatives, vegetation cover in many desert regions has increased substantially. Consequently, it is essential to understand the dynamics of ecosystem services (ESs) in desert ecosystems to better [...] Read more.
Desertification is an ever-growing global ecological and environmental problem. With the implementation of various ecological restoration initiatives, vegetation cover in many desert regions has increased substantially. Consequently, it is essential to understand the dynamics of ecosystem services (ESs) in desert ecosystems to better inform environmental management. This study integrates the InVEST model, RWEQ model, Spearman correlation analysis, trade-off and synergy coefficient method, and the Partial Least Squares Path Model (PLS-PM) to systematically assess the spatio-temporal dynamics and underlying driving mechanisms of five key ESs in the Kubuqi (KBQ) Desert, northern China. Specifically, the application of PLS-PM enables the identification of latent pathways, indirect effects, and multi-step causal relationships, which traditional correlation-based methods fail to capture. The results show that the KBQ Desert underwent substantial land use changes from 2000 to 2020: sandy land decreased by 2697.83 km2, grassland increased by 1864.15 km2, and cropland and urban land expanded by 519.15 km2 and 257.74 km2, respectively. ESs exhibited divergent trajectories. habitat quality (HQ), carbon sequestration (CS), soil conservation (SC), and water yield (WY) all showed overall increases, with WY and SC increasing particularly strongly, whereas Sand-fixation service (G) displayed a fluctuating trend. Over the past two decades, HQ–CS, HQ–G, and CS–G have shown moderately strong synergies, while CS–WY has exhibited a pronounced trade-off, and SC–G and SC–CS have displayed relatively weaker trade-offs. The spatial distribution results of trade-off and synergy relationships show that the KBQ Desert is dominated by a synergy relationship, and the main synergy relationship combinations are CS–HQ, CS–SC, and HQ–SC. The correlation coefficients between other ES pairs are generally low. Additionally, this study identifies key pathways through the PLS-PM method, such as PRE → NDVI → ES and LU → NDVI → ES, revealing the complex interactions between precipitation (PRE), land use (LU), and vegetation dynamics. The findings show that land use (LU) consistently exerts a strong negative impact on CS, while PRE and NDVI have a significant positive effect on WY. These pathways deepen our understanding of how climate and anthropogenic factors affect ESs, particularly the influence of temperature (TEMP) on evapotranspiration (ETP), which in turn affects WY. Additionally, the impact of NDVI on wind–sand fixation (G) and SC varies over time, with vegetation dynamics playing a particularly enhanced role in 2010 and 2015. These findings highlight the impact of ecological restoration and land management on regional ESs changes. A comprehensive understanding of the interactions between climate factors, LU, and vegetation dynamics will help in developing more effective intervention strategies. Full article
24 pages, 15825 KB  
Article
Enhancing High-Resolution Land Cover Classification Using Multi-Level Cross-Modal Attention Fusion
by Yangwei Jiang, Ting Liu, Junhao Zhou, Yihan Guo and Tangao Hu
Land 2026, 15(1), 181; https://doi.org/10.3390/land15010181 - 19 Jan 2026
Abstract
High-precision land cover classification is fundamental to environmental monitoring, urban planning, and sustainable land-use management. With the growing availability of multimodal remote sensing data, combining spectral and structural information has become an effective strategy for improving classification performance in complex high-resolution scenes. However, [...] Read more.
High-precision land cover classification is fundamental to environmental monitoring, urban planning, and sustainable land-use management. With the growing availability of multimodal remote sensing data, combining spectral and structural information has become an effective strategy for improving classification performance in complex high-resolution scenes. However, most existing methods predominantly rely on shallow feature concatenation, which fails to capture long-range dependencies and cross-modal interactions that are critical for distinguishing fine-grained land cover categories. This study proposes a multi-level cross-modal attention fusion network, Cross-Modal Cross-Attention UNet (CMCAUNet), which integrates a Cross-Modal Cross-Attention Fusion (CMCA) module and a Skip-Connection Attention Gate (SCAG) module. The CMCA module progressively enhances multimodal feature representations throughout the encoder, while the SCAG module leverages high-level semantics to refine spatial details during decoding and improve boundary delineation. Together, these modules enable more effective integration of spectral–textural and structural information. Experiments conducted on the ISPRS Vaihingen and Potsdam datasets demonstrate the effectiveness of the proposed approach. CMCAUNet achieves an mean Intersection over Union (mIoU) ratio of 81.49% and 84.76%, with Overall Accuracy (OA) of 90.74% and 90.28%, respectively. The model also shows superior performance in small object classification, with targets like “Car,” achieving 90.85% and 96.98% OA for the “Car” category. Ablation studies further confirm that the combination of CMCA and SCAG modules significantly improves feature discriminability and leads to more accurate and detailed land cover maps. Full article
Show Figures

Figure 1

15 pages, 1489 KB  
Article
Gut Microbiome Variations in Herring Gulls (Larus argentatus) from Different Environments in the United Kingdom
by Wai Tung Kan, Samantha A. Siomko, Nicola J. Rooney and Paul Wigley
Animals 2026, 16(2), 300; https://doi.org/10.3390/ani16020300 - 19 Jan 2026
Abstract
Over the last century, anthropogenic activities have contributed to habitat degradation and fragmentation but have also affected the individual health of animals. In this study, we investigated the effect of environmental differences on the gut microbiome of Herring Gulls (Larus argentatus) [...] Read more.
Over the last century, anthropogenic activities have contributed to habitat degradation and fragmentation but have also affected the individual health of animals. In this study, we investigated the effect of environmental differences on the gut microbiome of Herring Gulls (Larus argentatus) by collecting fresh faecal samples from ten geographically different populations in the UK, including captive and wild birds, and comparing the resulting gut microbiome diversity and composition. A significantly higher alpha diversity was identified in captive gulls than in urban and suburban gulls for the 46 sequenced samples. When comparing gut microbiome composition, urban inhabitants exhibited a higher abundance of Ligilactobacillus and a lower abundance of Streptococcus than suburban gulls. Such differences could suggest a highly polluted environment for urban-dwelling gulls, while suburban populations could have a wider foraging range and a more diverse diet. In addition, samples from Bristol, West Kirby, Gloucester and Liverpool were all characterised by a significantly higher abundance of one or more of the other bacterial taxa. The high proportion of Mycoplasma could indicate avian mycoplasmosis in the Liverpool population. This study sheds light on the understudied subject of the wild avian gut microbiome and its possible application to wildlife health and disease management. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

21 pages, 10379 KB  
Article
Spatial Optimization of Urban-Scale Sponge Structures and Functional Areas Using an Integrated Framework Based on a Hydrodynamic Model and GIS Technique
by Mengxiao Jin, Quanyi Zheng, Yu Shao, Yong Tian, Jiang Yu and Ying Zhang
Water 2026, 18(2), 262; https://doi.org/10.3390/w18020262 - 19 Jan 2026
Abstract
Rapid urbanization has exacerbated urban-stormwater challenges, highlighting the critical need for coordinated surface-water and groundwater management through rainfall recharge. However, current sponge city construction methods often overlook the crucial role of underground aquifers in regulating the water cycle and mostly rely on simplified [...] Read more.
Rapid urbanization has exacerbated urban-stormwater challenges, highlighting the critical need for coordinated surface-water and groundwater management through rainfall recharge. However, current sponge city construction methods often overlook the crucial role of underground aquifers in regulating the water cycle and mostly rely on simplified engineering approaches. To address these limitations, this study proposes a spatial optimization framework for urban-scale sponge systems that integrates a hydrodynamic model (FVCOM), geographic information systems (GIS), and Monte Carlo simulations. This framework establishes a comprehensive evaluation system that synergistically integrates surface water inundation depth, geological lithology, and groundwater depth to quantitatively assess sponge city suitability. The FVCOM was employed to simulate surface water inundation processes under extreme rainfall scenarios, while GIS facilitated spatial analysis and data integration. The Monte Carlo simulation was utilized to optimize the spatial layout by objectively determining factor weights and evaluate result uncertainty. Using Shenzhen City in China as a case study, this research combined the “matrix-corridor-patch” theory from landscape ecology to optimize the spatial structure of the sponge system. Furthermore, differentiated planning and management strategies were proposed based on regional characteristics and uncertainty analysis. The research findings provide a replicable and verifiable methodology for developing sponge city systems in high-density urban areas. The core value of this methodology lies in its creation of a scientific decision-making tool for direct application in urban planning. This tool can significantly enhance a city’s climate resilience and facilitate the coordinated, optimal management of water resources amid environmental changes. Full article
(This article belongs to the Special Issue "Watershed–Urban" Flooding and Waterlogging Disasters)
Show Figures

Figure 1

29 pages, 6513 KB  
Article
Hydrochemical Evolution of Groundwater Under Landfill Leachate Influence: Case of the Tangier Municipal Site
by Mohamed-Amine Lahkim-Bennani, Abdelghani Afailal Tribak, Brunella Bonaccorso, Haitam Afilal and Abdelhamid Rossi
Sustainability 2026, 18(2), 965; https://doi.org/10.3390/su18020965 - 17 Jan 2026
Viewed by 97
Abstract
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean [...] Read more.
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean settings. This study assesses the hydrogeochemical impact of the newly operational Tangier Landfill and Recovery Center on local groundwater resources to inform sustainable remediation strategies. A combined approach was applied to samples collected in dry and wet seasons, using Piper and Stiff diagrams to trace facies evolution together with a dual-index assessment based on the Canadian (CCME-WQI) and Weighted Arithmetic (WAWQI) Water Quality Indices. Results show that upgradient waters remain of Good–Excellent quality and are dominated by Ca–HCO3 facies, whereas downgradient wells display extreme mineralization, with EC up to 15,480 µS/cm and Cl and SO42− exceeding 1834 and 2114 mg/L, respectively. At hotspot sites P4 and P8, As reaches 0.065 mg/L and Cd 0.006 mg/L, far above the WHO drinking-water guidelines. While the CCME-WQI captures the general salinity-driven degradation pattern, the WAWQI pinpoints these acute toxicity zones as Very poor–Unsuitable. The study demonstrates that rainfall intensifies toxicity through a seasonal “Piston Effect” that mobilizes stored contaminants rather than diluting them, underscoring the need for seasonally adaptive monitoring to ensure the environmental sustainability of landfill-adjacent aquifers. Full article
(This article belongs to the Section Sustainable Water Management)
27 pages, 6715 KB  
Article
Study on the Lagged Response Mechanism of Vegetation Productivity Under Atypical Anthropogenic Disturbances Based on XGBoost-SHAP
by Jingdong Sun, Longhuan Wang, Shaodong Huang, Yujie Li and Jia Wang
Remote Sens. 2026, 18(2), 300; https://doi.org/10.3390/rs18020300 - 16 Jan 2026
Viewed by 182
Abstract
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. [...] Read more.
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. This study combined multi-source environmental data with an interpretable machine learning framework (XGBoost-SHAP) to analyze spatiotemporal variations in net primary productivity (NPP) across the Beijing-Tianjin-Hebei region during the strict lockdown (March–May) and recovery (June–August) periods, using 2017–2019 as a baseline. Results indicate that: (1) NPP showed a significant increase during lockdown, with 88.4% of pixels showing positive changes, especially in central urban areas. During recovery, vegetation responses weakened (65.31% positive) and became more spatially heterogeneous. (2) Integrating lagged environmental variables improved model performance (R2 increased by an average of 0.071). SHAP analysis identified climatic factors (temperature, precipitation, radiation) as dominant drivers of NPP, while aerosol optical depth (AOD) and nighttime light (NTL) had minimal influence and weak lagged effects. Importantly, under lockdown, vegetation exhibited stronger immediate responses to concurrent temperature, precipitation, and radiation (SHAP contribution increased by approximately 7.05% compared to the baseline), whereas lagged effects seen in baseline conditions were substantially reduced. Compared to the lockdown period, anthropogenic disturbances during the recovery phase showed a direct weakening of their impact (decreasing by 6.01%). However, the air quality improvements resulting from the spring lockdown exhibited a significant cross-seasonal lag effect. (3) Spatially, NPP response times showed an “urban-immediate, mountainous-delayed” pattern, reflecting both the ecological memory of mountain systems and the rapid adjustment capacity of urban vegetation. These findings demonstrate that short-term removal of anthropogenic disturbances shifted vegetation responses toward greater immediacy and sensitivity to environmental conditions. This offers new insights into a “green window period” for ecological management and supports evidence-based, adaptive regional climate and ecosystem policies. Full article
Show Figures

Graphical abstract

32 pages, 10741 KB  
Article
A Robust Deep Learning Ensemble Framework for Waterbody Detection Using High-Resolution X-Band SAR Under Data-Constrained Conditions
by Soyeon Choi, Seung Hee Kim, Son V. Nghiem, Menas Kafatos, Minha Choi, Jinsoo Kim and Yangwon Lee
Remote Sens. 2026, 18(2), 301; https://doi.org/10.3390/rs18020301 - 16 Jan 2026
Viewed by 97
Abstract
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of [...] Read more.
Accurate delineation of inland waterbodies is critical for applications such as hydrological monitoring, disaster response preparedness and response, and environmental management. While optical satellite imagery is hindered by cloud cover or low-light conditions, Synthetic Aperture Radar (SAR) provides consistent surface observations regardless of weather or illumination. This study introduces a deep learning-based ensemble framework for precise inland waterbody detection using high-resolution X-band Capella SAR imagery. To improve the discrimination of water from spectrally similar non-water surfaces (e.g., roads and urban structures), an 8-channel input configuration was developed by incorporating auxiliary geospatial features such as height above nearest drainage (HAND), slope, and land cover classification. Four advanced deep learning segmentation models—Proportional–Integral–Derivative Network (PIDNet), Mask2Former, Swin Transformer, and Kernel Network (K-Net)—were systematically evaluated via cross-validation. Their outputs were combined using a weighted average ensemble strategy. The proposed ensemble model achieved an Intersection over Union (IoU) of 0.9422 and an F1-score of 0.9703 in blind testing, indicating high accuracy. While the ensemble gains over the best single model (IoU: 0.9371) were moderate, the enhanced operational reliability through balanced Precision–Recall performance provides significant practical value for flood and water resource monitoring with high-resolution SAR imagery, particularly under data-constrained commercial satellite platforms. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

17 pages, 1700 KB  
Article
Urban River Microplastics as Vectors for Pharmaceutical Contaminants in a Savannah Region (Caatinga Biome)
by Yannice Tatiane da Costa Santos, Anderson Targino da Silva Ferreira, Lyndyanne Dias Martins, Hellen da Silva Sousa, Francisco Wedson Faustino, Maria Carolina Hernandez Ribeiro, Maria Kuznetsova, Anderson Zanardi de Freitas and Niklaus Ursus Wetter
Microplastics 2026, 5(1), 13; https://doi.org/10.3390/microplastics5010013 - 16 Jan 2026
Viewed by 118
Abstract
The study investigates the presence of emerging contaminants in a river within a watershed located in the Brazilian semiarid region, specifically within the Caatinga biome, emphasizing the importance of environmental monitoring in areas that have historically been underrepresented in scientific research. The analysis [...] Read more.
The study investigates the presence of emerging contaminants in a river within a watershed located in the Brazilian semiarid region, specifically within the Caatinga biome, emphasizing the importance of environmental monitoring in areas that have historically been underrepresented in scientific research. The analysis focused on the associations between microplastics and pharmaceutical compounds, demonstrating that the discharge of untreated domestic effluents and the low efficiency of sanitation systems increase water resource contamination and threaten water security. The interdependence between these variables underscores the need for integrated public policies for waste management, complemented by environmental education strategies and technological innovations. The work makes an unprecedented contribution to expanding knowledge about emerging pollutants in semiarid environments, highlighting the urgency of holistic approaches, continuous monitoring, and strengthening environmental governance to ensure the sustainability and resilience of ecosystems like the Caatinga in the face of the challenges posed by global environmental change, urban growth, and those outlined in the Sustainable Development Goals. Full article
(This article belongs to the Special Issue Microplastics in Freshwater Ecosystems)
Show Figures

Figure 1

33 pages, 4974 KB  
Article
AI-Enabled Sustainable Landscape Design: A Decision-Support Framework Based on “Generative-Critical” Multi-Agent
by Li Li, Xuesong Yang, Sijia Liu and Feiyang Deng
Urban Sci. 2026, 10(1), 56; https://doi.org/10.3390/urbansci10010056 - 16 Jan 2026
Viewed by 106
Abstract
Under the dual pressures of global climate change and accelerating urbanization, landscape design has been tasked with the critical mission of enhancing urban environmental resilience and ecological livability. However, conventional design practices often struggle to efficiently integrate complex sustainability norms with aesthetic creativity, [...] Read more.
Under the dual pressures of global climate change and accelerating urbanization, landscape design has been tasked with the critical mission of enhancing urban environmental resilience and ecological livability. However, conventional design practices often struggle to efficiently integrate complex sustainability norms with aesthetic creativity, leading to a disconnect between form and function. To address this issue, this study proposes and validates an AI-enabled sustainability decision-support framework. The framework is based on a “Generative-Critical” multi-agent workflow that enables “Self-Correcting” iterative optimization of design schemes through a built-in expert knowledge base and a quantitative scorecard. The framework’s effectiveness was validated through a cultural park case study and a blind evaluation by 10 experts. It guided a design from an initial concept with only aesthetic forms and lacking effective stormwater management, to an ecologically integrated scheme that strategically incorporated bioretention ponds at key nodes and converted hard plazas into permeable pavements. This transformation significantly elevated the scheme’s sustainability score from 59.3 to 88.0 (p < 0.001), while the framework itself achieved a high system usability scale (SUS) score of 85.5. These results confirm that the proposed “Generative-Critical” mechanism can effectively guide AIGC to adhere to ecological-technical norms and constraints while pursuing aesthetic innovation, thereby achieving a scientific integration of aesthetic form and ecological function at the early conceptual design stage. This study offers a scalable methodology for AI-assisted sustainable design and provides a novel intelligent tool for creating resilient urban landscapes that possess both environmental performance and aesthetic value. Full article
Show Figures

Figure 1

22 pages, 1464 KB  
Article
Optimal Recycling Ratio of Biodried Product at 12% Enhances Digestate Valorization: Synergistic Acceleration of Drying Kinetics, Nutrient Enrichment, and Energy Recovery
by Xiandong Hou, Hangxi Liao, Bingyan Wu, Nan An, Yuanyuan Zhang and Yangyang Li
Bioengineering 2026, 13(1), 109; https://doi.org/10.3390/bioengineering13010109 - 16 Jan 2026
Viewed by 195
Abstract
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), [...] Read more.
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), six BDP treatments were tested in 60 L bioreactors. Metrics included drying kinetics, product properties, and environmental–economic trade-offs. The results showed that 12% BDP achieved a peak temperature integral (514.13 °C·d), an optimal biodrying index (3.67), and shortened the cycle to 12 days. Furthermore, 12% BDP yielded total nutrients (N + P2O5 + K2O) of 4.19%, meeting the NY 525-2021 standard in China, while ≤3% BDP maximized fuel suitability with LHV > 5000 kJ·kg−1, compliant with CEN/TC 343 RDF standards. BDP recycling reduced global warming potential by 27.3% and eliminated leachate generation, mitigating groundwater contamination risks. The RDF pathway (12% BDP) achieved the highest NPV (USD 716,725), whereas organic fertilizer required farmland subsidies (28.57/ton) to offset its low market value. A 12% BDP recycling ratio optimally balances technical feasibility, environmental safety, and economic returns, offering a closed-loop solution for global food waste valorization. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

32 pages, 3521 KB  
Review
A Systemic Approach for Assessing the Design of Circular Urban Water Systems: Merging Hydrosocial Concepts with the Water–Energy–Food–Ecosystem Nexus
by Nicole Arnaud, Manuel Poch, Lucia Alexandra Popartan, Marta Verdaguer, Félix Carrasco and Bernhard Pucher
Water 2026, 18(2), 233; https://doi.org/10.3390/w18020233 - 15 Jan 2026
Viewed by 159
Abstract
Urban Water Systems (UWS) are complex infrastructures that interact with energy, food, ecosystems and socio-political systems, and are under growing pressure from climate change and resource depletion. Planning circular interventions in this context requires system-level analysis to avoid fragmented, siloed decisions. This paper [...] Read more.
Urban Water Systems (UWS) are complex infrastructures that interact with energy, food, ecosystems and socio-political systems, and are under growing pressure from climate change and resource depletion. Planning circular interventions in this context requires system-level analysis to avoid fragmented, siloed decisions. This paper develops the Hydrosocial Resource Urban Nexus (HRUN) framework that integrates hydrosocial thinking with the Water–Energy–Food–Ecosystems (WEFE) nexus to guide UWS design. We conduct a structured literature review and analyse different configurations of circular interventions, mapping their synergies and trade-offs across socioeconomic and environmental functions of hydrosocial systems. The framework is operationalised through a typology of circular interventions based on their circularity purpose (water reuse, resource recovery and reuse, or water-cycle restoration) and management scale (from on-site to centralised), while greening degree (from grey to green infrastructure) and digitalisation (integration of sensors and control systems) are treated as transversal strategies that shape their operational profile. Building on this typology, we construct cause–effect matrices for each intervention type, linking recurring operational patterns to hydrosocial functionalities and revealing associated synergies and trade-offs. Overall, the study advances understanding of how circular interventions with different configurations can strengthen or weaken system resilience and sustainability outcomes. The framework provides a basis for integrated planning and for quantitative and participatory tools that can assess trade-offs and governance effects of different circular design choices, thereby supporting the transition to more resilient and just water systems. Full article
(This article belongs to the Special Issue Advances in Water Resource Management and Planning)
Show Figures

Figure 1

20 pages, 1399 KB  
Review
Nature-Based Solutions for Resilience: A Global Review of Ecosystem Services from Urban Forests and Cover Crops
by Anastasia Ivanova, Reena Randhir and Timothy O. Randhir
Diversity 2026, 18(1), 47; https://doi.org/10.3390/d18010047 - 15 Jan 2026
Viewed by 153
Abstract
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. [...] Read more.
Climate change and land-use intensification are speeding up the loss of ecosystem services that support human health, food security, and environmental stability. Vegetative interventions—such as urban forests in cities and cover crops in farming systems—are increasingly seen as nature-based solutions for climate adaptation. However, their benefits are often viewed separately. This review combines 20 years of research to explore how these strategies, together, improve provisioning, regulating, supporting, and cultural ecosystem services across various landscapes. Urban forests help reduce urban heat islands, improve air quality, manage stormwater, and offer cultural and health benefits. Cover crops increase soil fertility, regulate water, support nutrient cycling, and enhance crop yields, with potential for carbon sequestration and biofuel production. We identify opportunities and challenges, highlight barriers to adopting these strategies, and suggest integrated frameworks—including spatial decision-support tools, incentive programs, and education—to encourage broader use. By connecting urban and rural systems, this review underscores vegetation as a versatile tool for resilience, essential for reaching global sustainability goals. Full article
(This article belongs to the Special Issue 2026 Feature Papers by Diversity's Editorial Board Members)
Show Figures

Graphical abstract

23 pages, 3941 KB  
Article
How Environmental Perception and Place Governance Shape Equity in Urban Street Greening: An Empirical Study of Chicago
by Fan Li, Longhao Zhang, Fengliang Tang, Jiankun Liu, Yike Hu and Yuhang Kong
Forests 2026, 17(1), 119; https://doi.org/10.3390/f17010119 - 15 Jan 2026
Viewed by 148
Abstract
Urban street greening structure plays a crucial role in promoting environmental justice and enhancing residents’ daily well-being, yet existing studies have primarily focused on vegetation quantity while neglecting how perception and governance interact to shape fairness. This study develops an integrated analytical framework [...] Read more.
Urban street greening structure plays a crucial role in promoting environmental justice and enhancing residents’ daily well-being, yet existing studies have primarily focused on vegetation quantity while neglecting how perception and governance interact to shape fairness. This study develops an integrated analytical framework that combines deep learning, machine learning, and spatial analysis to examine the impact of perceptual experience and socio-economic indicators on the equity of greening structure distribution in urban streets, and to reveal the underlying mechanisms driving this equity. Using DeepLabV3+ semantic segmentation, perception indices derived from street-view imagery, and population-weighted Gini coefficients, the study quantifies both the structural and perceptual dimensions of greening equity. XGBoost regression, SHAP interpretation, and Partial Dependence Plot analysis were applied to reveal the influence mechanism of the “Matthew effect” of perception and the Site governance responsiveness on the fairness of the green structure. The results identify two key findings: (1) perception has a positive driving effect and a negative vicious cycle effect on the formation of fairness, where positive perceptions such as beauty and safety gradually enhance fairness, while negative perceptions such as depression and boredom rapidly intensify inequality; (2) Site management with environmental sensitivity and dynamic mutual feedback to a certain extent determines whether the fairness of urban green structure can persist under pressure, as diverse Tree–Bush–Grass configurations reflect coordinated management and lead to more balanced outcomes. Policy strategies should therefore emphasize perceptual monitoring, flexible maintenance systems, and transparent public participation to achieve resilient and equitable urban street greening structures. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

21 pages, 626 KB  
Article
Built Environment and Elderly Safety Risks in Old Residential Communities Under Urban Renewal
by Ziying Wen, Caimiao Zheng, Jian Li Hao and Shiwang Yu
Urban Sci. 2026, 10(1), 54; https://doi.org/10.3390/urbansci10010054 - 15 Jan 2026
Viewed by 85
Abstract
With China’s rapidly aging population, enhancing the safety and age-friendliness of existing residential communities has become a pressing need in the context of urban renewal. Based on empirical analysis of 146 questionnaires collected from aging communities in Jiangsu Province, this study examines how [...] Read more.
With China’s rapidly aging population, enhancing the safety and age-friendliness of existing residential communities has become a pressing need in the context of urban renewal. Based on empirical analysis of 146 questionnaires collected from aging communities in Jiangsu Province, this study examines how built environment factors influence safety risks and perceived security among older adults. The results show that public seating (F3), pedestrian pathways (F11), staircases (F1), lighting (F5), landscaping (F10), and outdoor animals (F12) significantly affect both actual safety risks and perceived safety. Insufficient lighting, uneven pathways, unstable seating, and unsafe staircases are the primary causes of falls, collisions, and abrasions, while issues such as standing water, overgrown vegetation, and stray animals further reduce residents’ sense of security. The findings indicate that improving elderly safety relies more on environmental visibility, accessibility, and spatial maintenance than on compensating for individual physical limitations. Therefore, interventions such as enhancing lighting, maintaining pedestrian routes, providing stable seating, and strengthening community management can effectively reduce risks and enhance perceived security. This study offers empirical evidence to guide age-friendly community renewal and provides policy insights for promoting safe, inclusive, and sustainable development in aging cities. Full article
(This article belongs to the Section Urban Governance for Health and Well-Being)
Show Figures

Figure 1

Back to TopTop