Urban River Microplastics as Vectors for Pharmaceutical Contaminants in a Savannah Region (Caatinga Biome)
Abstract
1. Introduction
2. Methodological Approach
2.1. Study Area and Fieldwork Sample Points
2.2. Polymer Treatment and µ-Raman Characterization
2.3. Learning Integrated Analysis
3. Results
3.1. Absorbed Drugs
3.2. Analysis of Associations and Relationships
4. Discussion
4.1. Pharmaceutical Vector Mechanisms
4.2. Polymer–Drug Interactions
4.3. Ecotoxicological Risks and Modeling
4.4. Monitoring, Methods, and Governance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; The World Bank: Washington, DC, USA, 2018; ISBN 978-1-4648-1329-0. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in Freshwater Systems: A Review of the Emerging Threats, Identification of Knowledge Gaps and Prioritisation of Research Needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.C.M.; Van Der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in Freshwater and Terrestrial Environments: Evaluating the Current Understanding to Identify the Knowledge Gaps and Future Research Priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T. Microplastics in Freshwater Ecosystems: What We Know and What We Need to Know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and Release of Chemicals from Plastics to the Environment and to Wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption Behavior of Organic Pollutants on Microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Rowland, S.J.; Galloway, T.S.; Thompson, R.C. Potential for Plastics to Transport Hydrophobic Contaminants. Environ. Sci. Technol. 2007, 41, 7759–7764. [Google Scholar] [CrossRef]
- Kwon, J.; Chang, S.; Hong, S.H.; Shim, W.J. Microplastics as a Vector of Hydrophobic Contaminants: Importance of Hydrophobic Additives. Integr. Environ. Assess. Manag. 2017, 13, 494–499. [Google Scholar] [CrossRef]
- McDougall, L.; Thomson, L.; Brand, S.; Wagstaff, A.; Lawton, L.A.; Petrie, B. Adsorption of a Diverse Range of Pharmaceuticals to Polyethylene Microplastics in Wastewater and Their Desorption in Environmental Matrices. Sci. Total Environ. 2022, 808, 152071. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.E.; Duffus-Hodson, C.A.; Clark, A.; Prendergast-Miller, M.T.; Thorpe, K.L. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates. Environ. Sci. Technol. 2017, 51, 4714–4721. [Google Scholar] [CrossRef] [PubMed]
- Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; You, S.; Ok, Y.S. Interactions between Microplastics, Pharmaceuticals and Personal Care Products: Implications for Vector Transport. Environ. Int. 2021, 149, 106367. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Bakir, A.; Burton, G.A.; Janssen, C.R. Microplastic as a Vector for Chemicals in the Aquatic Environment: Critical Review and Model-Supported Reinterpretation of Empirical Studies. Environ. Sci. Technol. 2016, 50, 3315–3326. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.S.; Pestana, C.J.; Moffat, C.F.; Gkoulemani, N.; Hui, J.; Irvine, J.T.S.; Lawton, L.A. Aging Microplastics Enhances the Adsorption of Pharmaceuticals in Freshwater. Sci. Total Environ. 2024, 912, 169467. [Google Scholar]
- Kalaronis, D.; Evgenidou, E.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Adsorption of a Mixture of Daily Use Pharmaceuticals on Pristine and Aged Polypropylene Microplastics. Environments 2024, 11, 198. [Google Scholar] [CrossRef]
- Fan, X.; Gan, R.; Liu, J.; Xie, Y.; Xu, D.; Xiang, Y.; Su, J.; Teng, Z.; Hou, J. Adsorption and Desorption Behaviors of Antibiotics by Tire Wear Particles and Polyethylene Microplastics with or without Aging Processes. Sci. Total Environ. 2021, 771, 145451. [Google Scholar] [CrossRef]
- Tumwesigye, E.; Nnadozie, C.F.; Akamagwuna, F.C.; Noundou, X.S.; Nyakairu, G.W.; Odume, O.N. Microplastics as Vectors of Chemical Contaminants and Biological Agents in Freshwater Ecosystems: Current Knowledge Status and Future Perspectives. Environ. Pollut. 2023, 330, 121829. [Google Scholar] [CrossRef]
- Long, D.A. Raman Spectroscopy, 1st ed.; McGraw-Hill: New York, NY, USA, 1977; Volume 1, ISBN 0070386757. [Google Scholar]
- Lyon, L.A.; Keating, C.D.; Fox, A.P.; Baker, B.E.; He, L.; Nicewarner, S.R.; Mulvaney, S.P.; Natan, M.J. Raman Spectroscopy. Anal. Chem. 1998, 70, 341–362. [Google Scholar] [CrossRef]
- Bereczki, A.; Dipold, J.; Freitas, A.Z.; Wetter, N.U. Sub-10 Nm Nanoparticle Detection Using Multi-Technique-Based Micro-Raman Spectroscopy. Polymers 2023, 15, 4644. [Google Scholar] [CrossRef]
- Kiefer, W. The Raman Effect? A Unified Treatment of the Theory of Raman Scattering by Molecules; Long, D.A., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; p. 597. ISBN 0-471-49028-8. [Google Scholar]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The Physical Impacts of Microplastics on Marine Organisms: A Review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- dos Santos, J.L.; Bereczki, A.; Pascoal, D.R.d.C.; Gimiliani, G.T.; Cotrim, M.E.B.; de Freitas, A.Z.; Wetter, N.U.; Parra, D.F. Combination of Micro-Raman and Infrared Spectroscopy to Identify Intriguing Case of Aged Microplastics of Estuarine Sediments. Macromol. Symp. 2024, 413, 2400061. [Google Scholar] [CrossRef]
- Sebastião, G.I.A.; Rani-Borges, B.; Dipold, J.; Freitas, A.Z.; Wetter, N.U.; Ando, R.A.; Waldman, W.R. Forensic Determination of Adhesive Vinyl Microplastics in Urban Soils. J. Environ. Manag. 2025, 373, 123498. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in Freshwater Systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of Microplastics Using Raman Spectroscopy: Latest Developments and Future Prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef]
- Maja, V.; Sanja, V.; Tajana, S.; Branko, K.; Jelena, M.J.; Jasmina, A.; Aleksandra, T. Assessing the Interaction between 4-Methylbenzylidene Camphor and Microplastic Fibers in Aquatic Environments: Adsorption Kinetics and Mechanisms. Sci. Total Environ. 2024, 956, 177383. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Arulmani, S.R.B.; Yan, J.; Wu, L.; Wu, T.; Zhang, H.; Xiao, T. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review. Nanomaterials 2022, 12, 2256. [Google Scholar] [CrossRef]
- Khuyen, V.T.K.; Le, D.V.; Anh, L.H.; Fischer, A.R.; Dornack, C. Investigating the Correlation of Microplastic Pollution Between Seawater and Marine Salt Using Micro-Raman Spectroscopy. Front. Mar. Sci. 2021, 8, 735975. [Google Scholar] [CrossRef]
- Jiao, M.; Cao, S.; Ren, L.; Li, R. Analysis of Composite Microplastics in Sediment Using 3D Raman Spectroscopy and Imaging Method. J. Hazard. Mater. Adv. 2021, 3, 100016. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, Y.; Chen, L.; Wen, D. Prevalence of Small-Sized Microplastics in Coastal Sediments Detected by Multipoint Confocal Micro-Raman Spectrum Scanning. Sci. Total Environ. 2022, 831, 154741. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Marengo, J.A. Future Climate Change Scenarios and Their Application for Studies of Impacts, Vulnerability, and Adaptation in Brazil. Adapt. Cambio Climático Serv. Ecosistémicos América Lat. 2010, 23, 23–31. [Google Scholar]
- Thompson, R.C.; Moore, C.J.; Vom Saal, F.S.; Swan, S.H. Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Guterres, A. The Sustainable Development Goals Report 2020; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2020; pp. 1–64. [Google Scholar]
- Ferreira, A.T.d.S.; Wetter, N.U.; Ribeiro, M.C.H.; Esteves, L.S.; Dias, A.J.G.; Grohmann, C.H.; Kuznetsova, M.; de Freitas, A.Z.; de Oliveira, R.C.; Siegle, E. Recognizing Microplastic Deposits on Sandy Beaches by Altimetric Positioning, μ-Raman Spectroscopy and Multivariate Statistical Models. Mar. Pollut. Bull. 2024, 209, 117025. [Google Scholar] [CrossRef]
- Ferreira, A.T.d.S.; Oliveira, R.C.d.; Siegle, E.; Ribeiro, M.C.H.; Esteves, L.S.; Kuznetsova, M.; Dipold, J.; Freitas, A.Z.d.; Wetter, N.U. Microplastic Deposits Prediction on Urban Sandy Beaches: Integrating Remote Sensing, GNSS Positioning, µ-Raman Spectroscopy, and Machine Learning Models. Microplastics 2025, 4, 12. [Google Scholar] [CrossRef]
- Leal, I.R.; Da Silva, J.M.C.; Tabarelli, M.; Lacher, T.E., Jr. Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 2005, 19, 701–706. [Google Scholar] [CrossRef]
- Ab’Saber, A.N. Os Domínios de Natureza No Brasil—Potencialidades Paisagísticas, 8th ed.; Martins Filho, P., Ed.; Ateliê Editorial: São Paulo, Brazil, 2021; ISBN 9786555800319. [Google Scholar]
- Silva, T.; Costa, C. Aspectos Da Gestão Dos Recursos Hídricos Na Sub-Bacia Hidrográfica Do Rio Salgado, 1st ed.; COGERH/CE: Juazeiro do Norte, Brazil, 2021; ISBN 978-85-67915-39-5. [Google Scholar]
- Rosado, E.L.; Vieira, A.S.; Curi, W.F.; LausanneFontgalland, I.; Sarmento, F.J.; Ferreira, A.C. Integrated and Multiobjective Simulation: A Qualitative and Quantitative Analysis of the Water System Located in the Salgado River Sub-Basin in the State of Ceará. Am. J. Eng. Res. (AJER) 2022, 11, 79–98. [Google Scholar]
- Lima Neto, R.T.; Mendonça, L.A.R.; Pereira, J.d.A.; Sousa, C.A.V.d.; Gonçalves, J.Y.d.B.; Frischkorn, H. Análise Morfométrica e Ambiental Da Microbacia Hidrográfica Do Rio Granjeiro, Crato/CE. Rem Rev. Esc. Minas 2008, 61, 365–369. [Google Scholar] [CrossRef]
- Castro, F.F.B.d. Problemáticas Socioambientais Decorrentes Da Canalização Do Rio Granjeiro Em Crato-CE. Rev. Geociências Nordeste 2016, 2, 1525–1531. [Google Scholar] [CrossRef]
- Instituto Trata Brasil. Ranking Do Saneamento Do Instituto Trata Brasil de 2025 (SNIS/SINISA 2023); Instituto Trata Brasil: São Paulo, Brazil, 2025. [Google Scholar]
- Galvin, J.F.P. An Introduction to the Meteorology and Climate of the Tropics; John Wiley & Sons: Chichester, UK, 2015; ISBN 1119086221. [Google Scholar]
- Ayoade, J.O. Introduction to Climatology for the Tropics; John Wiley & Sons: Chichester, UK, 1983; ISBN 0471103497. [Google Scholar]
- Braun, O.P.G. Estratigrafia Dos Sedimentos Da Parte Interior Da Região Nordeste Do Brasil (Bacias de Tucano-Jatobá, Mirandiba-Araripe); Ministry of Mines and Energy: Rio de Janeiro, Brazil, 1966. [Google Scholar]
- Cavalcante, J.C.; Vasconcelos, A.M.; Mdeiros, M.d.F.; Paiva, I.G. Mapa Geológico Do Estado Do Ceará; CPRM: Fortaleza, Brazil, 2003. [Google Scholar]
- Bandeira da Silva, J.; Falcão Sobrinho, J.; Albuquerque, F. Geomorphosite Hill of Horto (Lookout Type) and Its Geomorphological Value (Geopark Araripe/CE). Acta Geográfica 2024, 18, 230–246. [Google Scholar] [CrossRef]
- Carvalho, I.d.S.; Raminelli, R.; Henriques, M.H.P.; Soares, R.C.; de Andrade, J.A.F.G.; de Freitas, F.I. The Araripe Geopark (NE Brazil): Discovering the Earth’s Past as a Driver of Economic and Social Transformation. Geoheritage 2021, 13, 60. [Google Scholar] [CrossRef]
- Henriques, M.H.; Castro, A.; Félix, Y.R.; Carvalho, I.S. Promoting Sustainability in a Low Density Territory through Geoheritage: Casa Da Pedra Case-Study (Araripe Geopark, NE Brazil). Resour. Policy 2020, 67, 101684. [Google Scholar] [CrossRef]
- Herzog, A.; Sales, A.; Hillmer, G. The UNESCO Araripe Geopark: A Short Story of the Evolution of Life, Rocks and Continents; Expressão Gráfica e Editora: Pernambuco, Brazil, 2008; ISBN 8575633821. [Google Scholar]
- Di, M.; Wang, J. Microplastics in Surface Waters and Sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616, 1620–1627. [Google Scholar] [CrossRef]
- Gao, Z.; Cizdziel, J.V.; Chen, L. Microplastics Profile in Sludge from a University Wastewater Treatment Plant and the Influence of Chemical Digestions on Nile Red Stained Microplastics. J. Environ. Chem. Eng. 2023, 11, 109671. [Google Scholar] [CrossRef]
- Al-Azzawi, M.S.M.; Knoop, O.; Drewes, J.E. Validation of Sample Preparation Methods for Small Microplastics (≤10 Μm) in Wastewater Effluents. Chem. Eng. J. 2022, 446, 137082. [Google Scholar] [CrossRef]
- Ferraro, J.R. Introductory Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 0080509126. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons: Chichester, UK, 2019; ISBN 1119440556. [Google Scholar]
- Skoog, D.A.; West, D.; Holler, F.; Crouch, S. Fundamentals of Analytical Chemistry, 8th ed.; Thompson Learning: Belmont, MA, USA, 2004. [Google Scholar]
- Fávero, L.P.; Belfiore, P. Manual de Análise de Dados: Estatística e Modelagem Multivariada Com Excel®, SPSS® e Stata®; Elsevier: Rio de Janeiro, Brasil, 2017. [Google Scholar]
- dos Santos, V.R.; Fávero, L.P.L.; Moreira, M.Â.L.; dos Santos, M.; de Oliveira, L.d.A.; de Araújo Costa, I.P.; de Oliveira Capela, G.P.; Kojima, E.H. Development of a Computational Tool in the Python Language for the Application of the AHP-Gaussian Method. Procedia Comput. Sci. 2023, 221, 354–361. [Google Scholar] [CrossRef]
- Haberman, S.J. Analysis of Qualitative Data: Introductory Topics; Academic Press, Incorporated: New York, NY, USA, 1978. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1992; ISBN 0130417734. [Google Scholar]
- Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry; Pearson Always Learning: London, UK, 2012; ISBN 9780273742760. [Google Scholar]
- Tarannum, N.; Kumar, D. Pyridine: Exposure, Risk Management, and Impact on Life and Environment. In Hazardous Chemicals; Elsevier: Amsterdam, The Netherlands, 2025; pp. 363–374. [Google Scholar]
- Sahu, D.; Sreekanth, P.S.R.; Behera, P.K.; Pradhan, M.K.; Patnaik, A.; Salunkhe, S.; Cep, R. Advances in Synthesis, Medicinal Properties and Biomedical Applications of Pyridine Derivatives: A Comprehensive Review. Eur. J. Med. Chem. Rep. 2024, 12, 100210. [Google Scholar] [CrossRef]
- Simões, S. High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions. Materials 2024, 17, 5997. [Google Scholar] [CrossRef]
- Sharma, S.; Barman, T.; Mishra, G.; Kumar, A. Micro and Nanoplastics Pollution: A Review on Global Concern and Its Impacts on Ecosystems. Land. Degrad. Dev. 2024, 35, 2963–2981. [Google Scholar] [CrossRef]
- Oller, A.R.; Costa, M.; Oberdörster, G. Carcinogenicity Assessment of Selected Nickel Compounds. Toxicol. Appl. Pharmacol. 1997, 143, 152–166. [Google Scholar] [CrossRef]
- Sinnott, M. Carbohydrate Chemistry and Biochemistry: Structure and Mechanism; Royal Society of Chemistry: Cambridge, UK, 2007; ISBN 0854042563. [Google Scholar]
- Singh, R.K.; Kumar, A.; Mishra, A.K. Chemistry and Pharmacology of Acetanilide Derivatives: A Mini Review. Lett. Org. Chem. 2019, 16, 6–15. [Google Scholar] [CrossRef]
- Johannsen, F.R. Risk Assessment of Carcinogenic and Noncarcinogenic Chemicals. Crit. Rev. Toxicol. 1990, 20, 341–367. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.C.; Sheskey, P.J.; Weller, P.J. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2006; Volume 6. [Google Scholar]
- Wan, L.; Wu, Y.; Zhang, Y.; Zhang, W. Toxicity, Biodegradation of Moxifloxacin and Gatifloxacin on Chlamydomonas Reinhardtii and Their Metabolic Fate. Ecotoxicol. Environ. Saf. 2022, 240, 113711. [Google Scholar] [CrossRef]
- Du, J.; Liu, Q.; Pan, Y.; Xu, S.; Li, H.; Tang, J. The Research Status, Potential Hazards and Toxicological Mechanisms of Fluoroquinolone Antibiotics in the Environment. Antibiotics 2023, 12, 1058. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Kinigopoulou, V.; Pashalidis, I.; Kalderis, D.; Anastopoulos, I. Microplastics as Carriers of Inorganic and Organic Contaminants in the Environment: A Review of Recent Progress. J. Mol. Liq. 2022, 350, 118580. [Google Scholar] [CrossRef]
- Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Health 2022, 19, 5283. [Google Scholar] [CrossRef]
- Huan, L.I.; Long, Z.H.U.; Mindong, M.A.; Haiwen, W.U.; Lihui, A.N.; Zhanhong, Y. Occurrence of Microplastics in Commercially Sold Bottled Water. Sci. Total Environ. 2023, 867, 161553. [Google Scholar]
- Gateuille, D.; Naffrechoux, E. Transport of Persistent Organic Pollutants: Another Effect of Microplastic Pollution? Wiley Interdiscip. Rev. Water 2022, 9, e1600. [Google Scholar] [CrossRef]
- Schep, L.J.; Slaughter, R.J.; Watts, M.; Mackenzie, E.; Gee, P. The Clinical Toxicology of Ketamine. Clin. Toxicol. 2023, 61, 415–428. [Google Scholar] [CrossRef]
- Pérez-Pereira, A.; Ribeiro, C.; Teles, F.; Gonçalves, R.; MF Gonçalves, V.; Pereira, J.A.; Carrola, J.S.; Pires, C.; Tiritan, M.E. Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies. Environ. Toxicol. Chem. 2022, 41, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Y.-C.; Tsai, Y.-T.; Yu, T.-H.; Wang, X.-H.; Lin, C.-F. Occurrence and Fate of Pharmaceuticals and Personal Care Products in Taiwan’s Aquatic Environment. Desalin. Water Treat. 2011, 32, 57–64. [Google Scholar] [CrossRef]
- Lee, C.-C.; Hsieh, C.-Y.; Chen, C.S.; Tien, C.-J. Emergent Contaminants in Sediments and Fishes from the Tamsui River (Taiwan): Their Spatial-Temporal Distribution and Risk to Aquatic Ecosystems and Human Health. Environ. Pollut. 2020, 258, 113733. [Google Scholar] [CrossRef] [PubMed]
- Subhan, N. Phytochemical and Pharmacological Investigations of Australian Acacia: An Ethnomedicine-Guided Bioprospective Approach. Ph.D. Thesis, Charles Sturt University, Bathurst, Australia, 2016. [Google Scholar]
- Alamgir, A.N.M. Drugs: Their Natural, Synthetic, and Biosynthetic Sources. In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1: Pharmacognosy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 105–123. [Google Scholar]
- Bi, G.; Liang, J.; Bian, Y.; Shan, G.; Besskaya, V.; Wang, Q.; Zhan, C. The Immunomodulatory Role of All-Trans Retinoic Acid in Tumor Microenvironment. Clin. Exp. Med. 2023, 23, 591–606. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, X.; Lu, R.; Zhang, Z.; Ma, T. All-Trans Retinoic Acid in Hematologic Disorders: Not Just Acute Promyelocytic Leukemia. Front. Pharmacol. 2024, 15, 1404092. [Google Scholar] [CrossRef]
- Turova, N.Y.; Turevskaya, E.P.; Kessler, V.G.; Yanovskaya, M.I. The Chemistry of Metal Alkoxides; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yu, M.; Liu, Y.; Chen, X.; Zhao, Y. Synthesis and Performance of an Environmentally Friendly Polycarboxylate Superplasticizer Based on Modified Poly (Aspartic Acid). Constr. Build. Mater. 2019, 202, 154–161. [Google Scholar] [CrossRef]
- Breilly, D.; Fadlallah, S.; Froidevaux, V.; Colas, A.; Allais, F. Origin and Industrial Applications of Lignosulfonates with a Focus on Their Use as Superplasticizers in Concrete. Constr. Build. Mater. 2021, 301, 124065. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, D.; Wang, L.; Yang, W. A Novel Approach to Methoxy Polyethylene Glycol-Grafted Sulfonated Poly (Maleic Anhydride-Alt-Styrene) as Superplasticizers in Cement Pastes. Constr. Build. Mater. 2023, 370, 130598. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, W.; Liu, Y.; Zou, D.; Li, Y.; Lin, Y.; Zhao, J. A Comprehensive Review of Microplastic Aging: Laboratory Simulations, Physicochemical Properties, Adsorption Mechanisms, and Environmental Impacts. Sci. Total Environ. 2024, 957, 177427. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, G.; Kumar, A.; Dhiman, P.; Mola, G.T.; Shan, A.; Si, C. Microplastic Pollutants in Water: A Comprehensive Review on Their Remediation by Adsorption Using Various Adsorbents. Chemosphere 2024, 352, 141365. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G. Microplastics as Vectors of Contaminants. Mar. Pollut. Bull. 2019, 146, 921–924. [Google Scholar] [CrossRef]
- Huang, D.; Chen, H.; Shen, M.; Tao, J.; Chen, S.; Yin, L.; Zhou, W.; Wang, X.; Xiao, R.; Li, R. Recent Advances on the Transport of Microplastics/Nanoplastics in Abiotic and Biotic Compartments. J. Hazard. Mater. 2022, 438, 129515. [Google Scholar] [CrossRef]
- Shen, M.; Zhu, Y.; Zhang, Y.; Zeng, G.; Wen, X.; Yi, H.; Ye, S.; Ren, X.; Song, B. Micro(Nano)Plastics: Unignorable Vectors for Organisms. Mar. Pollut. Bull. 2019, 139, 328–331. [Google Scholar] [CrossRef]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Perera, A.A.N.T.; Gupta, V.; Sharma, M.; Parhi, M.P.; Haq, I. Treatment of Microplastics from Pharmaceutical Industrial Wastewater. In Advanced Treatment Technologies for the Removal of Microplastics in Wastewater; CRC Press: Boca Raton, FL, USA, 2025; pp. 235–256. ISBN 1003379389. [Google Scholar]
- Picó, Y.; Álvarez-Ruiz, R.; Alfarhan, A.; El-Sheikh, M.A.; Alshahrani, H.O.; Barceló, D. Pharmaceuticals, Pesticides, Personal Care Products and Microplastics Contamination Assessment of Al-Hassa Irrigation Network (Saudi Arabia) and Its Shallow Lakes. Sci. Total Environ. 2020, 701, 135021. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, A.; Subbiah, S.; Anderson, T.A.; Green, M.J.; Zhao, X.; Cañas-Carrell, J.E. Sorption of Three Common Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) to Microplastics. Sci. Total Environ. 2020, 715, 136974. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Hou, Z.; Zhou, H.; Liu, L. Microplastics Alter the Distribution and Toxic Potential of Typical Pharmaceuticals in Aqueous Solutions: Mechanisms and Theory Calculations. ACS EST Water 2025, 5, 5605–5613. [Google Scholar] [CrossRef]
- Klavins, M.; Klavins, L.; Stabnikova, O.; Stabnikov, V.; Marynin, A.; Ansone-Bertina, L.; Mezulis, M.; Vaseashta, A. Interaction between Microplastics and Pharmaceuticals Depending on the Composition of Aquatic Environment. Microplastics 2022, 1, 520–535. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of Antibiotics on Microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Ma, R.; Wang, B.; Zhang, Y.; Yin, L.; Yu, G.; Deng, S.; Huang, J.; Wang, Y. Effects of Microplastics on the Uptake, Distribution and Biotransformation of Chiral Antidepressant Venlafaxine in Aquatic Ecosystem. J. Hazard. Mater. 2018, 359, 104–112. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, Z.; Huang, L.; Huang, L.; Huang, L.; Fan, Y.; Fan, Y.; Zhou, S.; Zhou, S.; Zou, X.; et al. Contrasting Effects of Microplastic Aging upon the Adsorption of Sulfonamides and Its Mechanism. Chem. Eng. J. 2022, 430, 132939. [Google Scholar] [CrossRef]
- Martinho, S.D.; Fernandes, V.C.; Figueiredo, S.; Vilarinho, R.; Moreira, J.A.; Delerue-Matos, C. Laboratory Studies about Microplastic Aging and Its Effects on the Adsorption of Chlorpyrifos. Polymers 2023, 15, 3468. [Google Scholar] [CrossRef]
- Zjačić, J.P.; Tonković, S.; Pulitika, A.; Katančić, Z.; Kovačić, M.; Kušić, H.; Murgić, Z.H.; Božić, A.L. Effect of Aging on Physicochemical Properties and Size Distribution of PET Microplastic: Influence on Adsorption of Diclofenac and Toxicity Assessment. Toxics 2023, 11, 615. [Google Scholar] [CrossRef]
- Dick, L.; Batista, P.R.; Zaby, P.; Manhart, G.; Kopatz, V.; Kogler, L.; Pichler, V.; Grebien, F.; Bakos, V.; Plósz, B.G. The Adsorption of Drugs on Nanoplastics Has Severe Biological Impact. Sci. Rep. 2024, 14, 25853. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qin, Q.; Hu, Z.; Yan, L.; Ieong, U.-I.; Xu, Y. Adsorption of Chlorophenols on Polyethylene Terephthalate Microplastics from Aqueous Environments: Kinetics, Mechanisms and Influencing Factors. Environ. Pollut. 2020, 265, 114926. [Google Scholar] [CrossRef]
- Agboola, O.D.; Benson, N.U. Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Front. Environ. Sci. 2021, 9, 678574. [Google Scholar] [CrossRef]
- Hui, J.; Yang, X.; Osman, R.; Geissen, V. The Role of Microplastic Aging on Chlorpyrifos Adsorption-Desorption and Microplastic Bioconcentration. Environ. Pollut. 2023, 331, 121910. [Google Scholar] [CrossRef]
- Ai, J.; Du, B.; Gao, X.; Qiao, J.; Zhou, S.; Yin, X.; Jiang, Y.; Wang, J.; Zuo, Y.; Sun, H. Synergistic Effects of Microplastic Stability and Adsorption Rate on Co-Transport of Microplastics and Pb under Surfactant. J. Clean. Prod. 2024, 461, 142676. [Google Scholar] [CrossRef]
- Osman, M.S.; Nizam, M.I.; Shukri, S.N.A.S.M.; Shukri, S.M. Mini Review on Recent Advances of the Adsorption Mechanism between Microplastics and Emerging Contaminants for Conservation of Water. Int. J. Conserv. Sci. 2023, 14, 1549–1558. [Google Scholar] [CrossRef]
- Pascall, M.A.; Zabik, M.E.; Zabik, M.J.; Hernandez, R.J. Uptake of Polychlorinated Biphenyls (PCBs) from an Aqueous Medium by Polyethylene, Polyvinyl Chloride, and Polystyrene Films. J. Agric. Food Chem. 2005, 53, 164–169. [Google Scholar] [CrossRef]
- Gamboa, A.C.; Gaida, W.; Volpi, G.B.; Deitos, T.; Machado, A.M.d.A.; Breunig, F.M.; Rosa, G.M.d.; Flach, K.A. Microplastics in Rivers of South America: An Emerging Area of Research. Soc. Nat. 2025, 37, e74055. [Google Scholar] [CrossRef]
- Rani-Borges, B.; Martins, T.F.G.; Pompêo, M. Status of Brazilian Research on Microplastics Present in Aquatic Ecosystems: Freshwater. Panam. J. Aquat. Sci. 2021, 16, 106–117. [Google Scholar]
- Munoz, M.; Ortiz, D.; Pedro, Z.M.d.; Nieto-Sandoval, J.; Casas, J.A. Adsorption of Micropollutants onto Realistic Microplastics: Role of Microplastic Nature, Size, Age, and NOM Fouling. Chemosphere 2021, 283, 131085. [Google Scholar] [CrossRef]
- Arienzo, M.; Donadio, C. Microplastic–Pharmaceuticals Interaction in Water Systems. J. Mar. Sci. Eng. 2023, 11, 1437. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; van der Hoek, J.P.; Liu, G.; Lompe, K.M. Photo-Oxidation of Micro-and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. Environ. Sci. Technol. 2024, 58, 991–1009. [Google Scholar] [CrossRef]
- Zhu, X.; Hao, C.; Zhang, M.; Lan, B. Enhanced Adsorption of Bromoform onto Microplastic Polyethylene Terephthalate Exposed to Ozonation and Chlorination. Molecules 2022, 28, 259. [Google Scholar] [CrossRef]
- Tan, Z.; Deng, H.; Ou, H.; Wu, X.; Liao, Z.; Ou, H. Interfacial Quantum Chemical Characterization of Aromatic Organic Matter Adsorption on Oxidized Microplastic Surfaces. Chemosphere 2024, 350, 141132. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.M.; Lu, P.Z.; Liu, X.P. Fate and Abundance of Antibiotic Resistance Genes on Microplastics in Facility Vegetable Soil. Sci. Total Environ. 2020, 709, 136276. [Google Scholar] [CrossRef]
- Rakesh, S.; Davamani, V.; Murugaragavan, R.; Ramesh, P.; Shrirangasami, S. Microplastics Contamination in the Environment. Pharma Innov. J. 2021, 10, 1412–1417. [Google Scholar]
- Nizam, M.I.; Hafiz, N.A.; Osman, M.S.; Wahab, M.S.A.; Wang, L.; Bakar, N.F.A.; Hussain, M.H.; Mustapa, N.L.S.; Wang, C. Insights into the Adsorption of Ibuprofen onto Polyethylene Microplastics Using Molecular Dynamic Simulation. J. Environ. Manag. 2025, 389, 126094. [Google Scholar] [CrossRef]
- Leng, Y.; Wang, W.; Cai, H.; Chang, F.; Xiong, W.; Wang, J. Sorption Kinetics, Isotherms and Molecular Dynamics Simulation of 17β-Estradiol onto Microplastics. Sci. Total Environ. 2023, 858, 159803. [Google Scholar] [CrossRef]
- He, W.; He, W.; Wang, X.; Wang, X.; Zhang, Y.; Zhang, Y.; Zhu, B.; Zhu, B.; Wu, H.; Wu, H. Adsorption Behavior of Aged Polystyrene Microplastics (PSMPs) for Manganese in Water: Critical Role of Hydrated Functional Zone Surrounding the Microplastic Surface. J. Environ. Chem. Eng. 2022, 10, 109040. [Google Scholar] [CrossRef]
- Chakraborty, T.K.; Audhikary, K.; Ghosh, G.C.; Rahman, M.S.; Habib, A.; Islam, M.S.; Zaman, S.; Islam, K.R.; Netema, B.N.; Nice, M.S.; et al. Adsorption of Acid and Basic Dye from the Simulated Wastewater Using Carbonized Microplastic Particles Synthesized from Recycled Polyethylene Terephthalate Plastic Waste Bottles: An Integrated Approach for Experimental and Practical Applications. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 491–506. [Google Scholar] [CrossRef]
- Tseng, L.Y.; Tseng, L.Y.; You, C.; You, C.; Vu, C.; Vu, C.; Chistolini, M.K.; Chistolini, M.K.; Wang, C.Y.; Wang, C.Y.; et al. Adsorption of Contaminants of Emerging Concern (CECs) with Varying Hydrophobicity on Macro- and Microplastic Polyvinyl Chloride, Polyethylene, and Polystyrene: Kinetics and Potential Mechanisms. Water 2022, 14, 2581. [Google Scholar] [CrossRef]
- Vasudeva, M.; Warrier, A.; Kartha, V.B.; Unnikrishnan, V. Advances in Microplastic Characterization: Spectroscopic Techniques and Heavy Metal Adsorption Insights. Trends Anal. Chem. 2024, 183, 118111. [Google Scholar] [CrossRef]
- Chang, J.; Liang, J.; Fang, W.; Zhang, H.; Zhang, Y.; Zhao, H.; Zhang, R.; Zhang, P.; Zhang, G. Adsorption Behaviors and Bioavailability of Tetrabromobisphenol A in the Presence of Polystyrene Microplastic in Soil: Effect of Microplastics Aging. Environ. Pollut. 2023, 334, 122156. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Alves, L.M. A Seca de 2012–15 No Semiárido Do Nordeste Do Brasil No Contexto Histórico. Rev. Climanálise 2016, 3, 49–54. [Google Scholar]
- Pereira, M.P.S.; Justino, F.; Malhado, A.C.M.; Barbosa, H.; Marengo, J. The Influence of Oceanic Basins on Drought and Ecosystem Dynamics in Northeast Brazil. Environ. Res. Lett. 2014, 9, 124013. [Google Scholar] [CrossRef]
- Marengo, J.A. Vulnerabilidade, Impactos e Adaptação à Mudança Do Clima No Semi-Árido Do Brasil. Parcer. Estratégicas 2008, 13, 149–176. [Google Scholar]
- Abdollahi, S.; Raissi, H.; Farzad, F. The Role of Microplastics as Vectors of Antibiotic Contaminants via a Molecular Simulation Approach. Sci. Rep. 2025, 15, 27007. [Google Scholar] [CrossRef] [PubMed]



| Sample | Polymer | PolymerCAS | PolymerCod | Pharm | PharmCAS | PharmCod | PharmType |
|---|---|---|---|---|---|---|---|
| P1 | 5-Vinyl-2-Norbornene | 3048-64-4 | 5VNB | 6-Amino-3-bromo-2-methylpyridine | 42753-71-9 | ABMP | Chemical Precursor |
| P1 | Poly(phenylene sulfide) | 25212-74-2 | PPS | Acetamide | 60-35-5 | ACM | Diuretic |
| P1 | Cellulose, Carboxymethyl, Sodium Salt | 9004-32-4 | CMC | Gatifloxacin | 112811-59-3 | GFLX | Antibiotic |
| P1 | Poly(ethylene terephthalate) | 25038-59-9 | PET | Norketamine HCl | 79499-59-5 | NK | Antidepressant |
| P1 | Poly(ethylene terephthalate) | 25038-59-9 | PET | 3,7,8,2′-Tetrahydroxyflavone | 438001-91-3 | THF | Antioxidant |
| P1 | Poly(phenylene sulfide) | 25212-74-2 | PPS | All-Trans-Retinoic Acid | 302-79-4 | ATRA | Dermatological-Oncological |
| P1 | Tetraethylsilane | 631-36-7 | TES | All-Trans-Retinoic Acid | 302-79-4 | ATRA | Dermatological-Oncological |
| P1 | Tetraethylsilane | 631-36-7 | TES | All-Trans-Retinoic Acid | 302-79-4 | ATRA | Dermatological-Oncological |
| P1 | Polystyrene sulfonate | 9080-79-9 | PSS | All-Trans-Retinoic Acid | 302-79-4 | ATRA | Dermatological-Oncological |
| P1 | Polystyrene sulfonate | 9080-79-9 | PSS | 1,3,7-Trimethylxanthine | 58-08-2 | CAF | CNS Stimulant |
| P1 | Tetraethylsilane | 631-36-7 | TES | All-Trans-Retinoic Acid | 302-79-4 | ATRA | Dermatological-Oncological |
| P2 | Polysulfone | 25135-51-7 | PSU | 5-Nitroisatin | 0611-09-06 | 5NI | Antibiotic |
| P2 | 2-Acetyl-5-norbornene, mixture of endo and exo | 5063-03-06 | ANE | AG-494 | 133550-35-3 | AG-494 | Inhibitor |
| P2 | Poly(ethylene terephthalate) | 25038-59-9 | PET | 5-Nitroisatin | 0611-09-06 | 5NI | Antibiotic |
| P2 | Polyester Film 3000 Series | 25038-59-9 | PFS3K | 5-Nitroisatin | 0611-09-06 | 5NI | Antibiotic |
| P2 | Polyester Film | 25038-59-9 | PF | 5-Nitroisatin | 0611-09-06 | 5NI | Antibiotic |
| P2 | Poly(ethylene terephthalate) | 25038-59-9 | PET | 5-Nitroisatin | 0611-09-06 | 5NI | Antibiotic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Santos, Y.T.d.C.; Ferreira, A.T.d.S.; Martins, L.D.; Sousa, H.d.S.; Faustino, F.W.; Ribeiro, M.C.H.; Kuznetsova, M.; Freitas, A.Z.d.; Wetter, N.U. Urban River Microplastics as Vectors for Pharmaceutical Contaminants in a Savannah Region (Caatinga Biome). Microplastics 2026, 5, 13. https://doi.org/10.3390/microplastics5010013
Santos YTdC, Ferreira ATdS, Martins LD, Sousa HdS, Faustino FW, Ribeiro MCH, Kuznetsova M, Freitas AZd, Wetter NU. Urban River Microplastics as Vectors for Pharmaceutical Contaminants in a Savannah Region (Caatinga Biome). Microplastics. 2026; 5(1):13. https://doi.org/10.3390/microplastics5010013
Chicago/Turabian StyleSantos, Yannice Tatiane da Costa, Anderson Targino da Silva Ferreira, Lyndyanne Dias Martins, Hellen da Silva Sousa, Francisco Wedson Faustino, Maria Carolina Hernandez Ribeiro, Maria Kuznetsova, Anderson Zanardi de Freitas, and Niklaus Ursus Wetter. 2026. "Urban River Microplastics as Vectors for Pharmaceutical Contaminants in a Savannah Region (Caatinga Biome)" Microplastics 5, no. 1: 13. https://doi.org/10.3390/microplastics5010013
APA StyleSantos, Y. T. d. C., Ferreira, A. T. d. S., Martins, L. D., Sousa, H. d. S., Faustino, F. W., Ribeiro, M. C. H., Kuznetsova, M., Freitas, A. Z. d., & Wetter, N. U. (2026). Urban River Microplastics as Vectors for Pharmaceutical Contaminants in a Savannah Region (Caatinga Biome). Microplastics, 5(1), 13. https://doi.org/10.3390/microplastics5010013

