Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = urban encroachment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1022 KiB  
Review
Leishmania in Texas: A Contemporary One Health Scoping Review of Vectors, Reservoirs, and Human Health
by Morgan H. Jibowu, Richard Chung, Nina L. Tang, Sarah Guo, Leigh-Anne Lawton, Brendan J. Sullivan, Dawn M. Wetzel and Sarah M. Gunter
Biology 2025, 14(8), 999; https://doi.org/10.3390/biology14080999 (registering DOI) - 5 Aug 2025
Abstract
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to [...] Read more.
Leishmaniasis, a vector-borne neglected tropical disease, affects over 6.2 million people globally. Case acquisition is increasingly recognized in the United States, and in Texas, most reported cases are locally acquired and speciated to Leishmania mexicana. We conducted a scoping literature review to systematically assess contemporary research on Leishmania in humans, animals, reservoir hosts, or vectors in Texas after 2000. Out of 22 eligible studies, the most prevalent themes were case reports, followed by studies on domestic animals, reservoirs, and vectors, with several studies bridging multiple disciplines. Climate change, urbanization, and habitat encroachment appear to be driving the northward expansion of L. mexicana, which is primarily attributed to shifts in the habitats of key vectors (Lutzomyia anthophora) and reservoirs (Neotoma spp.). Leishmania appears to be expanding into new areas, with potential for further spread. As ecological conditions evolve, strengthening surveillance and clinician awareness is crucial to understanding disease risk and improving early detection and treatment in affected communities. Full article
Show Figures

Figure 1

23 pages, 5058 KiB  
Article
Integrated Assessment of Lake Degradation and Revitalization Pathways: A Case Study of Phewa Lake, Nepal
by Avimanyu Lal Singh, Bharat Raj Pahari and Narendra Man Shakya
Sustainability 2025, 17(14), 6572; https://doi.org/10.3390/su17146572 - 18 Jul 2025
Viewed by 310
Abstract
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from [...] Read more.
Phewa Lake, Nepal’s second-largest natural lake, is under increasing ecological stress due to sedimentation, shoreline encroachment, and water quality decline driven by rapid urban growth, fragile mountainous catchments, and changing climate patterns. This study employs an integrated approach combining sediment yield estimation from its catchment using RUSLE, shoreline encroachment analysis via satellite imagery and historical records, and identification of pollution sources and socio-economic factors through field surveys and community consultations. The results show that steep, sparsely vegetated slopes are the primary sediment sources, with Harpan Khola (a tributary of Phewa Lake) contributing over 80% of the estimated 339,118 tons of annual sediment inflow. From 1962 to 2024, the lake has lost approximately 5.62 sq. km of surface area, primarily due to a combination of sediment deposition and human encroachment. Pollution from untreated sewage, urban runoff, and invasive aquatic weeds further degrades water quality and threatens biodiversity. Based on the findings, this study proposes a way forward to mitigate sedimentation, encroachment, and pollution, along with a sustainable revitalization plan. The approach of this study, along with the proposed sustainability measures, can be replicated in other lake systems within Nepal and in similar watersheds elsewhere. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

33 pages, 12632 KiB  
Article
Analysis of LULC and Urban Thermal Variations in Industrial Cities Using Earth Observation Indices and Machine Learning: A Case Study of Gujranwala, Pakistan
by Zabih Ullah, Muhammad Sajid Mehmood, Shiyan Zhai and Yaochen Qin
Remote Sens. 2025, 17(14), 2474; https://doi.org/10.3390/rs17142474 - 16 Jul 2025
Viewed by 404
Abstract
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and [...] Read more.
Rapid urbanization and industrial development have significantly altered land use and cover across the globe, intensifying urban thermal environments and exacerbating the urban heat island (UHI) effect. Gujranwala, Pakistan, represents an industrial growth that has driven substantial land use/land cover (LULC) changes and temperature increases; however, the directional and distance-based patterns of these changes remain unquantified. Therefore, this study is conducted to examine spatiotemporal changes in LULC and variations in the Urban Thermal Field Variation Index (UTFVI) between 2001 and 2021 and to project future scenarios for 2031 and 2041 using (1) Earth Observation Indices (EOIs) with machine learning (ML) classifiers (Random Forest) for precise LULC mapping through the Google Earth Engine (GEE) platform, (2) Cellular Automata–Artificial Neural Networks (CA-ANNs) for future scenario projection, and (3) Gradient Directional Analysis (GDA) to quantify directional (16-axis) and distance-based (concentric zones) patterns of urban expansion and thermal variation from 2001–2021. The study revealed significant LULC changes, with built-up areas expanding by 7.5% from 2001 to 2021, especially in the east, northeast, and southeast directions within a 20 km radius. Due to urban encroachment, vegetation and cropland decreased by 1.47% and 1.83%, respectively. The urban thermal environment worsened, with the highest land surface temperature (LST) rising from 41 °C in 2001 to 55 °C in 2021. Additionally, the UTFVI showed expanding areas under the ‘strong’ and ‘strongest’ categories, increasing from 30.58% in 2001 to 33.42% in 2041. Directional analysis highlighted severe thermal stress in the southern and southwestern areas linked to industrial activities and urban sprawl. This integrated approach provides a template for analyzing urban thermal environments in developing cities, supporting targeted mitigation strategies through direction- and distance-specific planning interventions to mitigate UHI impacts. Full article
Show Figures

Figure 1

21 pages, 9658 KiB  
Article
Analysis of Ecosystem Pattern Evolution and Driving Forces in the Qin River Basin in the Middle Reaches of the Yellow River
by Yi Liu, Mingdong Zang, Jianbing Peng, Yuze Bai, Siyuan Wang, Zibin Wang, Peidong Shi, Miao Liu, Kairan Xu and Ning Zhang
Sustainability 2025, 17(13), 6199; https://doi.org/10.3390/su17136199 - 7 Jul 2025
Viewed by 380
Abstract
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and [...] Read more.
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and temporal patterns of ecosystems are evolving. Exploring its dynamics and driving mechanisms is crucial to the ecological protection and sustainable development of watersheds. This research systematically examines the spatiotemporal dynamics and driving mechanisms of ecosystem patterns in the middle Yellow River’s Qin River Basin (1990–2020). Quantitative assessments integrating ecosystem transition metrics and redundancy analysis reveal three critical insights: (1) dominance of agricultural land and woodland (74.81% combined coverage), with grassland (18.58%) and other land types (6.61%) constituting secondary components; (2) dynamic interconversion between woodland and grassland accompanied by urban encroachment on agricultural land, manifesting as net reductions in woodland (−13.74%), farmland (−6.60%), and wetland (−38.64%) contrasting with grassland (+43.34%) and built-up area (+116.63%) expansion; (3) quantified anthropogenic drivers showing agricultural intensification (45.03%) and ecological protection measures (36.50%) as primary forces, while urbanization account for 18.47% of observed changes. The first two RDA ordination axes significantly (p < 0.01) explain 68.3% of the variance in ecosystem evolution, particularly linking land-use changes to socioeconomic indicators. Based on these findings, the study proposes integrated watershed management strategies emphasizing scientific land-use optimization, controlled urban expansion, and systematic ecological rehabilitation to enhance landscape stability in this ecologically sensitive region. The conclusions of this study have important reference value for other ecologically sensitive watersheds in land use planning, ecological protection policy making, and ecological restoration practice, which can provide a theoretical basis and practical guidance. Full article
Show Figures

Figure 1

29 pages, 6937 KiB  
Article
Dual-Dimensional Management for Human–Environment Coordination in Lake-Ring Urban Agglomerations: A Spatiotemporal Interaction Perspective of Human Footprint and Ecological Quality
by Suwen Xiong and Fan Yang
Appl. Sci. 2025, 15(13), 7444; https://doi.org/10.3390/app15137444 - 2 Jul 2025
Viewed by 326
Abstract
As human activities increasingly encroach on ecologically sensitive lake zones, China’s lake-ring urban agglomerations struggle to balance the intensifying human footprint (HF) and declining habitat quality (EQ). Addressing the spatiotemporal interactions between HF and EQ is essential for achieving human–environment coordination. This study [...] Read more.
As human activities increasingly encroach on ecologically sensitive lake zones, China’s lake-ring urban agglomerations struggle to balance the intensifying human footprint (HF) and declining habitat quality (EQ). Addressing the spatiotemporal interactions between HF and EQ is essential for achieving human–environment coordination. This study examined five major freshwater lake-ring urban agglomerations in China during the period from 2000 to 2020 and developed an HF–EQ assessment framework. First, the coupling coordination degree (CCD) model quantified the spatiotemporal coupling between HF and EQ. Second, GeoDetector identified how HF and EQ interact to influence CCD. Finally, the four-quadrant static model and CCD change rate index formed a dual-dimensional management framework. The results indicate that the spatiotemporal evolution patterns of HF and EQ are highly complementary, exhibiting a significant coupling interaction. High-CCD zones expanded from lakeside urban areas and transport corridors, while low-CCD zones remained in remote, forested areas. HF factors such as GDP, land use intensity, and nighttime lights dominated CCD dynamics, while EQ-related factors showed increasing interaction effects. Five human–environment coordination zones were identified based on the static and dynamic characteristics of HF and EQ. Synergy efficiency zones had the highest coordination with diverse land use. Ecological conservation potential zones were found in low-disturbance hilly regions. Synergy restoration zones were concentrated in croplands and urban–rural fringe areas. Imbalance regulation zones were in forest areas under development pressure. Conflict alert zones were concentrated in urban cores, transport corridors, and lakeshore belts. These findings offer insights for global human–environment coordination in lake regions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

39 pages, 95245 KiB  
Article
Expanding Sustainable Land Governance: A Geospatial Framework for Incorporating Natural Parks into Urban Cadastres—Lessons from Darke de Mattos Park, Rio de Janeiro
by Auzenan Pereira de Sá, Andrew Santana da Silva, Leonardo Vieira Barbalho, Jorge Luís Nunes e Silva Brito, Andrea Galudht Santacruz Jaramillo, Sonia Maria Lima Silva and Luiz Carlos Teixeira Coelho
Land 2025, 14(6), 1220; https://doi.org/10.3390/land14061220 - 5 Jun 2025
Viewed by 1226
Abstract
Contemporary metropolises, particularly those in the Global South, grapple with the complex challenge of balancing urban development with environmental conservation. In such contexts, forest remnants often face constant threats from illegal urban encroachment and insufficiently defined boundaries, which undermine conservation efforts and hinder [...] Read more.
Contemporary metropolises, particularly those in the Global South, grapple with the complex challenge of balancing urban development with environmental conservation. In such contexts, forest remnants often face constant threats from illegal urban encroachment and insufficiently defined boundaries, which undermine conservation efforts and hinder effective legal enforcement. This study explores cost-efficient, geographic-information-technology-driven solutions to improve the management of conservation units and incorporate them into cities’ multipurpose land cadastres. By employing tools such as a remotely piloted aircraft, total stations, and GNSS receivers, this work highlights the pivotal role of geotechnologies in safeguarding the urban natural heritage. These technologies not only address the pressures of urban expansion but also enable continuous monitoring and impact assessment through geographical information systems (GISs). To illustrate these applications, this study examines a case study from Rio de Janeiro, Brazil, the Darke de Mattos Municipal Park, to demonstrate how accurate geographic data can significantly enhance planning and management efforts while maintaining cost-effectiveness. Full article
(This article belongs to the Special Issue Geospatial Technologies for Land Governance)
Show Figures

Figure 1

27 pages, 9112 KiB  
Article
Impact of Urban Green Spaces on the Livelihoods of Residents in Bulawayo and Johannesburg Cities
by Shepard Nyamambi Maphosa, Sellina Ennie Nkosi and Yingisani Chabalala
Urban Sci. 2025, 9(6), 194; https://doi.org/10.3390/urbansci9060194 - 28 May 2025
Viewed by 1241
Abstract
Urban green spaces (UGSs) play a pivotal role in sustaining the livelihoods of urban dwellers. This study sought to explore the impact of UGSs on livelihoods in Bulawayo and Johannesburg cities. A mixed-methods approach was used to develop a nuanced understanding of the [...] Read more.
Urban green spaces (UGSs) play a pivotal role in sustaining the livelihoods of urban dwellers. This study sought to explore the impact of UGSs on livelihoods in Bulawayo and Johannesburg cities. A mixed-methods approach was used to develop a nuanced understanding of the nexus between UGSs and the livelihoods of the residents. A questionnaire survey (n = 658) with 329 participants from each city and 20 interviews were used to gather and generate data. Twelve types of UGSs were identified, with a relatively large proportion of the participants recognizing informal recreational areas as the common type of urban green space (UGS) in both cities. Domestic gardens, cemeteries, parks, woodlands, institutional green spaces, street trees, wastelands, commonages, and green roofs were other green spaces in both cities. Economically, job opportunities emerged in areas such as selling wares, photography, and the collection of firewood and wild fruits for sale. Likewise, farming activities and property values increased. Socially, they were valuable recreation and leisure spots for picnicking, dog walking, dating escapades, mental and spiritual wellness as well as education. Environmentally, UGSs were special in terms of medicinal provisions and aesthetics. However, urbanization and encroachment are undermining the extent of livelihood benefits. Therefore, it is imperative to revitalize UGSs by instituting robust partnerships and collaboration between government agencies, mobilize resources and expertise, value addition to existing UGSs, rigorous education to promote better appreciation, inclusion of the locals in the design process so that green spaces meet their needs and priorities, and establishing effective maintenance and management systems that ensure sustainability of UGSs. Full article
Show Figures

Figure 1

32 pages, 23000 KiB  
Article
Land Use and Land Cover Change Assessment and Predictions in Flood Detention Areas of Yangtze River Basin Based on AIF-HOM-PLUS Model
by Siyuan Liao, Wei Wang, Chao Wang, Renke Ji, Aoxue Cui, Dong Chen, Xiang Zhang and Nengcheng Chen
Remote Sens. 2025, 17(11), 1857; https://doi.org/10.3390/rs17111857 - 26 May 2025
Viewed by 554
Abstract
As global urbanization accelerates and economic development progresses rapidly, a series of ecological and environmental challenges have emerged. In certain countries, particularly in developing nations such as China, India, and Bangladesh, flood detention areas (FDAs) have been increasingly encroached upon by urbanization, resulting [...] Read more.
As global urbanization accelerates and economic development progresses rapidly, a series of ecological and environmental challenges have emerged. In certain countries, particularly in developing nations such as China, India, and Bangladesh, flood detention areas (FDAs) have been increasingly encroached upon by urbanization, resulting in growing conflicts between flood control functions and economic development. Therefore, accurately predicting urban expansion trends in these regions is considered essential for providing scientific guidance for sustainable regional development. In this study, the PLUS model was selected as the baseline based on comparative experiments. On this foundation, a novel AIF-HOM-PLUS framework was developed. In this framework, a new method, Adjacent Image Fusion (AIF), was proposed to reduce local temporal noise by utilizing adjacent multi-temporal data. Subsequently, Higher-Order Markov chains (HOM) were incorporated to capture complex temporal dependencies and long-term transition patterns. The Middle-Reach Yangtze River urban agglomeration (MRYRUA), including FDAs in the Yangtze River Basin (YRB), was selected as the study area, and LULCCs in 2035 and 2050 were predicted. The results showed the following: (1) among the basic models, the PLUS model exhibited the best performance, while the AIF method significantly improved its overall accuracy (OA) by 2%; (2) the area of impervious surfaces within the FDAs of the YRB will increase at an average annual rate of 1.29%, which pertains to the conflict between the United Nations Sustainable Development Goals (SDGs) 9.1 and SDG 11.a, which has become a critical issue that needs urgent attention; (3) the area of impervious surfaces in the MRYRUA will increase at an average annual rate of 1.3%, primarily at the expense of cropland and water bodies. Full article
Show Figures

Figure 1

22 pages, 13999 KiB  
Article
Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China
by Yuzhou Zhang, Jianxin Yang, Weilong Wu and Diwei Tang
Sustainability 2025, 17(10), 4699; https://doi.org/10.3390/su17104699 - 20 May 2025
Viewed by 368
Abstract
As a pivotal ecological–economic nexus in China, the Yangtze River Basin (YRB)’s spatiotemporal evolution of habitat quality (HQ) profoundly influences regional sustainable development. This study establishes a tripartite analytical framework integrating remote sensing big data, socioeconomic datasets, and ecological modeling. By coupling the [...] Read more.
As a pivotal ecological–economic nexus in China, the Yangtze River Basin (YRB)’s spatiotemporal evolution of habitat quality (HQ) profoundly influences regional sustainable development. This study establishes a tripartite analytical framework integrating remote sensing big data, socioeconomic datasets, and ecological modeling. By coupling the InVEST and PLUS models with Theil–Sen median trend analysis and Mann–Kendall tests, we systematically assessed HQ spatial heterogeneity across the basin during 2000–2020 and projected trends under 2030 scenarios (natural development (S1), cropland protection (S2), and ecological conservation (S3)). Key findings reveal that basin-wide HQ remained stable (0.599–0.606) but exhibited marked spatial disparities, demonstrating a “high-middle reach (0.636–0.649), low upper/lower reach” pattern. Urbanized downstream areas recorded the minimum HQ (0.478–0.515), primarily due to landscape fragmentation from peri-urban expansion and transportation infrastructure. Trend analysis showed that coefficient of variation (CV) values ranged from 0.350 to 2.72 (mean = 0.768), indicating relative stability but significant spatial variability. While 76.98% of areas showed no significant HQ changes, 15.83% experienced declines (3.56% with significant degradation, p < 0.05) concentrated in urban agglomerations (e.g., the Wuhan Metropolitan Area, the Yangtze River Delta). Only 7.18% exhibited an HQ improvement, predominantly in snowmelt-affected Qinghai–Tibet Plateau regions, with merely 0.95% showing a significant enhancement. Multi-scenario projections align with Theil–Sen trends, predicting HQ declines across all scenarios. S3 curbs decline to 0.33% (HQ = 0.597), outperforming S1 (1.07%) and S2 (1.15%). Nevertheless, downstream areas remain high-risk (S3 HQ = 0.476). This study elucidated compound drivers of urbanization, agricultural encroachment, and climate change, proposing a synergistic “zoning regulation–corridor restoration–cross-regional compensation” pathway. These findings provide scientific support for balancing ecological protection and high-quality development in the Yangtze Economic Belt, while offering systematic solutions for the sustainable governance of global mega-basins. Full article
Show Figures

Graphical abstract

24 pages, 15849 KiB  
Article
The Influence of Green Infrastructure on the Acoustic Environment: A Conceptual and Methodological Basis for Quiet Area Assessment in Urban Regions
by Bryce T. Lawrence, Damian Heying and Dietwald Gruehn
Conservation 2025, 5(2), 22; https://doi.org/10.3390/conservation5020022 - 9 May 2025
Viewed by 1397
Abstract
Urban regions represent complex acoustic environments with few respites from noise other than small or remote patches of green infrastructure (GI). Recent noise action planning in the German Ruhr region indicates that urban expansion is fueling encroachment upon GI and subsequently the loss [...] Read more.
Urban regions represent complex acoustic environments with few respites from noise other than small or remote patches of green infrastructure (GI). Recent noise action planning in the German Ruhr region indicates that urban expansion is fueling encroachment upon GI and subsequently the loss of quiet areas. A systematic exploration of this loss in Germany is needed. An explorative systematic review on Scopus with snowballing supports the synthesis of a conceptual framework linking acoustically relevant ecosystem services with GI. Our review identifies natural quietness, abatement, connection to nature, positive soundscape perception, fidelity, and bird sound presence as sound-related ecosystem functions or services. Empirical case studies justify the need to better understand the link between GI, ecosystem services, and the acoustic environment. Guidance for quiet area assessments in the EU to address this research gap in noise action planning is an emerging topic and needs further study. To address the knowledge gap and provide quiet area assessment guidance, we present a stratified habitat-based acoustic study design for a multi-community area in the middle of the German Ruhr region. A multi-tier sample of 120 locations across eleven habitat and land use strata in the Ruhr is presented, pointing out the scarcity of protected biotopes and large biotope complexes in the study area. This work is a contribution towards a conceptual and methodological basis for quiet area assessment, especially in German and EU noise action planning. Full article
Show Figures

Figure 1

17 pages, 4690 KiB  
Article
Pedestrian Perceived Risk of Construction Obstructions and Barriers Identified via Image Segmentation
by Taegwan Yoon, Minji Choi and Seulbi Lee
Appl. Sci. 2025, 15(10), 5261; https://doi.org/10.3390/app15105261 - 8 May 2025
Viewed by 605
Abstract
Pedestrian safety near construction sites is increasingly threatened by sidewalk obstructions such as materials and equipment. Despite growing attention to pedestrian-friendly environments, few studies have quantified how such visual encroachments affect the perceived risk. This study introduces a novel image-based framework that integrates [...] Read more.
Pedestrian safety near construction sites is increasingly threatened by sidewalk obstructions such as materials and equipment. Despite growing attention to pedestrian-friendly environments, few studies have quantified how such visual encroachments affect the perceived risk. This study introduces a novel image-based framework that integrates the Segment Anything Model (SAM) for the object-level segmentation of sidewalks, obstructions, and barriers in 61 real-world street images. The results revealed significant differences in the perceived risk across four sidewalk environment types, defined by the presence or absence of obstructions and barriers. In addition, the proportion of sidewalk occupied by obstructions was strongly correlated with the perceived risk, whereas the relative size of barriers had no significant effect. This study provides a practical understanding of how temporary obstructions and barriers affect pedestrians’ perceived risk, supporting more effective safety management in urban construction environments. It also contributes to advances in research by providing an objective method for assessing visible hazards using advanced image segmentation techniques. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 27039 KiB  
Article
Deep Learning-Based Urban Tree Species Mapping with High-Resolution Pléiades Imagery in Nanjing, China
by Xiaolei Cui, Min Sun, Zhili Chen, Mingshi Li and Xiaowei Zhang
Forests 2025, 16(5), 783; https://doi.org/10.3390/f16050783 - 7 May 2025
Cited by 1 | Viewed by 681
Abstract
In rapidly urbanizing regions, encroachment on native green spaces has exacerbated ecological issues such as urban heat islands and flooding. Accurate mapping of tree species distribution is therefore vital for sustainable urban management. However, the high heterogeneity of urban landscapes, resulting from the [...] Read more.
In rapidly urbanizing regions, encroachment on native green spaces has exacerbated ecological issues such as urban heat islands and flooding. Accurate mapping of tree species distribution is therefore vital for sustainable urban management. However, the high heterogeneity of urban landscapes, resulting from the coexistence of diverse land covers, built infrastructure, and anthropogenic activities, often leads to reduced robustness and transferability of remote sensing classification methods across different images and regions. In this study, we used very high–resolution Pléiades imagery and field-verified samples of eight common urban trees and background land covers. By employing transfer learning with advanced segmentation networks, we evaluated each model’s accuracy, robustness, and efficiency. The best-performing network delivered markedly superior classification consistency and required substantially less training time than a model trained from scratch. These findings offer concise, practical guidance for selecting and deploying deep learning methods in urban tree species mapping, supporting improved ecological monitoring and planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

25 pages, 14174 KiB  
Article
Multi-Scenario Simulation of Land Use Change Along with Ecosystem Service Value for the Lanzhou–Xining Urban Agglomeration
by Jing Bai, Zhuo Jia, Yufan Sun, Chengyi Zheng and Mingxing Wen
Land 2025, 14(4), 860; https://doi.org/10.3390/land14040860 - 14 Apr 2025
Cited by 1 | Viewed by 475
Abstract
Research on the characteristics of land use change in urban agglomerations and its influences on ecosystem service value has important theoretical significance and practical value for supporting spatial development and guaranteeing ecological security. Located in the upper reaches of China’s Yellow River, the [...] Read more.
Research on the characteristics of land use change in urban agglomerations and its influences on ecosystem service value has important theoretical significance and practical value for supporting spatial development and guaranteeing ecological security. Located in the upper reaches of China’s Yellow River, the Lanzhou–Xining urban agglomeration is situated in the mosaic of the transition from the Qinghai–Tibet Plateau to the Loess Plateau. It is a substantial industrial base and economic region of western China. It is also the essence of a relatively concentrated population and dense cities. It is not only a key development area but also an essential ecological barrier in western China, shouldering the important responsibility of ensuring a win-win situation for both economic and social development and ecological and environmental protection. This research takes the Lanzhou–Xining urban agglomeration as a case region, investigates the characteristics of changes in land use and ecosystem service value from 2000 to 2020, and applies the PLUS model to emulate land use changes and ecosystem service value in 2030 in three scenarios: the natural development scenario, cultivated land protection scenario, and ecological conservation scenario. The results indicate that: (1) The land use type of the Lanzhou–Xining urban agglomeration from 2000 to 2020 was dominated by grassland, accounting for 60.32~61.25% of the gross area. The reciprocal transfer between cultivated land and grassland was the most significant, and the expansion of construction land mainly took over cultivated land and grassland, accounting for 58.23% and 34.84%. (2) As a result of ecological rehabilitation projects and the continuous increase of water areas, the ecosystem service value of Lanzhou–Xining urban agglomeration continued to increase between 2000 and 2020, with a cumulative total of 56.84 × 108 yuan and a growth rate of 2.67%. Grassland donated the most to the ecosystem service value, constituting 52.56~53.44%. Among the individual ecosystem service values, hydrological regulation and climate regulation contributed the most, and together accounted for 50.86~51.69% of the ecosystem service value. (3) Under the natural development scenario, unrestricted urban sprawl has taken possession of cultivated land and grassland. Under the cultivated land protection scenario, cultivated land has maintained a relatively stable level while construction has been subject to certain constraints. Under the ecological conservation scenario, ecological land has been largely protected and the encroachment of construction onto ecological land has been curbed. (4) Of the three scenarios, only the ecological conservation scenario saw an increase in the ecosystem service values compared to 2020. The reduction in grassland and water area was the main cause for the decrease of the ecosystem service values in the natural development scenario and cultivated land protection scenario. The results can supply a solid foundation for decision-making for future development of the Lanzhou–Xining urban agglomeration and the rational use of land, as well as offer references for the ecological conservation and high-quality development of urban agglomerations in the upper reaches of the Yellow River. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

25 pages, 10825 KiB  
Article
Long-Term Subsidence Assessment by LiCSBAS and Emerging Hot Spot Analysis in Kathmandu Valley
by Sagar Rawal and Guoquan Wang
Land 2025, 14(4), 700; https://doi.org/10.3390/land14040700 - 26 Mar 2025
Viewed by 2653
Abstract
Rapid urbanization in Kathmandu Valley has strained its aquifer system, causing significant land subsidence. This study employs LiCSBAS for InSAR processing of Sentinel-1 data (2017–2024) to map subsidence-prone areas. The significant subsidence was found in northwest (Baluwatar, Samakhusi, and Manmaiju), southern (Gwarko, Patan, [...] Read more.
Rapid urbanization in Kathmandu Valley has strained its aquifer system, causing significant land subsidence. This study employs LiCSBAS for InSAR processing of Sentinel-1 data (2017–2024) to map subsidence-prone areas. The significant subsidence was found in northwest (Baluwatar, Samakhusi, and Manmaiju), southern (Gwarko, Patan, and Koteshwor), and northeast (Madhapur Thimi and Gathhaghar) regions with a maximum subsidence rate ~21 cm/yr. Subsidence has also expanded towards the outskirts and open areas in the eastern and southern parts of Lalitpur and Bhaktapur districts. Emerging hot spot analysis reveals a slowing subsidence trend in high-risk zones, possibly linked to the MWSP project reducing groundwater extraction from 58 MLD (2021) to 26 MLD (2024). Many subsidence-affected areas are located over the Kalimati and Gokarna Formations in highly urbanized areas. The key contributing factors to subsidence are soil compaction, excessive groundwater use, and urban sprawl encroaching open areas and recharge zones. These findings underscore the urgent need for sustainable groundwater management and land-use planning to promote urban resilience. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

20 pages, 41056 KiB  
Article
Assessing Pedestrian Network Continuity: Insights from Panama City’s Context
by Jorge Quijada-Alarcón, Roberto Rodríguez-Rodríguez, Anshell Maylin, Marcelo Adames, Jaffet Zeballos, Analissa Icaza and Angelino Harris
Urban Sci. 2025, 9(3), 58; https://doi.org/10.3390/urbansci9030058 - 23 Feb 2025
Cited by 1 | Viewed by 1081
Abstract
This study evaluates pedestrian continuity in Panama City, analyzing disruptions and the spatial relationship between crossings and transit stations. Using GIS and field validation, pedestrian networks were assessed based on their continuity, defined by well-maintained sidewalks and marked crossings, and discontinuities, caused by [...] Read more.
This study evaluates pedestrian continuity in Panama City, analyzing disruptions and the spatial relationship between crossings and transit stations. Using GIS and field validation, pedestrian networks were assessed based on their continuity, defined by well-maintained sidewalks and marked crossings, and discontinuities, caused by absent sidewalks, commercial infrastructure, service stations, and unmarked crossings. Two urban zones with contrasting layouts were analyzed: Zone A, characterized by a regular grid structure, and Zone B, marked by irregular planning. Results indicate that 67.55% of the study network maintains pedestrian continuity. Additionally, 46.79% of the measured distances between bus stops and formal pedestrian crossings exceed 100 m. The average length of continuous paths is 73.37 m in Zone A and 45.60 m in Zone B. Encroachments by businesses are the primary cause of fragmentation, and the study reflects an important impact of car-oriented urban infrastructures on discontinuities, such as service stations. These stations cause average disruptions of 34.69 m per station in Zone B and 27.56 m in Zone A. The research highlights the need for urban planning strategies to ensure pedestrian continuity, particularly in fragmented urban grids, and underscores the importance of an in-depth consideration of continuity in pedestrian network characterization studies. Full article
(This article belongs to the Special Issue The Study of Urban Geography and City Planning)
Show Figures

Figure 1

Back to TopTop