Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = upwelling favorable wind events

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3660 KiB  
Article
Biogeochemical Response of the Water Column of Concepción Bay, Chile, to a New Regime of Atmospheric and Oceanographic Variability
by Luis Bustos-Espinoza, Patricio Torres-Ramírez, Sergio Figueroa, Pablo S. González, Marcelo A. Pavez, Rodolfo Jerez, Gonzalo S. Saldías, Claudio Espinoza and Alexander Galán
Geosciences 2024, 14(5), 125; https://doi.org/10.3390/geosciences14050125 - 3 May 2024
Cited by 3 | Viewed by 2279
Abstract
Concepción Bay is a socio-economic and ecologically important embayment whose hydrographic variability has been historically regulated by wind-modulated seasonal upwelling events during spring–summer and by freshwater from precipitation and river discharges during fall–winter. This system is subject to several anthropogenic and environmental strains [...] Read more.
Concepción Bay is a socio-economic and ecologically important embayment whose hydrographic variability has been historically regulated by wind-modulated seasonal upwelling events during spring–summer and by freshwater from precipitation and river discharges during fall–winter. This system is subject to several anthropogenic and environmental strains due to the intense port activity and the increasing occurrence of extreme natural events. This study determines a new hydrographic regime and characterizes and analyzes the biogeochemical response of the water column to changes in rainfall and upwelling patterns. Despite the intrusion of nitrate-rich upwelled waters that enhance biological productivity remains more intense during spring–summer, the system remains fertilized year-long due to the occurrence of persistent upwelling pulses during fall–winter. The hydrographic structure presented a two-layer water column that was stratified thermally in spring–summer and primarily by freshwater inputs in fall–winter. Nevertheless, the regular pattern of the rainfall has changed (a decrease in precipitation and an increased frequency of extreme rainfall events), together with recurrent upwelling-favorable wind pulses during the non-upwelling season. This new regime has altered the seasonality of the physicochemical conditions and the structure of the microplanktonic communities, with productive and sanitary implications affecting the biogeochemical status of CB. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

15 pages, 5525 KiB  
Article
Extreme Positive Indian Ocean Dipole in 2019 and Its Impact on Indonesia
by Iskhaq Iskandar, Deni Okta Lestari, Agus Dwi Saputra, Riza Yuliratno Setiawan, Anindya Wirasatriya, Raden Dwi Susanto, Wijaya Mardiansyah, Muhammad Irfan, Rozirwan, Joga Dharma Setiawan and Kunarso
Sustainability 2022, 14(22), 15155; https://doi.org/10.3390/su142215155 - 16 Nov 2022
Cited by 17 | Viewed by 4382
Abstract
The evolution of an extreme positive Indian Ocean Dipole (pIOD) that took place in the tropical Indian Ocean during the late boreal summer to early winter of 2019 is examined in terms of coupled ocean–atmosphere dynamics. The patterns of anomalous sea-surface temperature (SST) [...] Read more.
The evolution of an extreme positive Indian Ocean Dipole (pIOD) that took place in the tropical Indian Ocean during the late boreal summer to early winter of 2019 is examined in terms of coupled ocean–atmosphere dynamics. The patterns of anomalous sea-surface temperature (SST) revealed a typical pIOD characteristic: cooling (warming) in the southeastern (western) tropical Indian Ocean. Based on the Dipole Mode Index (DMI), the evolution of the event started in mid-July and gradually strengthened with an abrupt weakening in early September before coming to its peak in late October/early November. It quickly weakened in November, and then it terminated in mid-December. During the peak phase of the event, the SST anomaly in the southeastern (western) tropical Indian Ocean reached about −2 °C (+1 °C). The pattern of anomalous SST was followed by an anomalous pattern in precipitation, in which deficit precipitation was observed over the eastern Indian Ocean, particularly over the Indonesia region. Earlier study has shown that dry conditions associated with the pIOD event created a favorable condition for a forest-peat fire in southern Sumatra. The number of fire hotspots has increased significantly during the peak phase of the 2019 pIOD event. In addition, anomalously strong upwelling forced by strong southeasterly wind anomalies along the southern coast of Java and Sumatra had induced a surface chlorophyll-a (Chl-a) bloom in this region. High surface Chl-a concentration was collocated with the negative SST anomalies observed off the southwest Sumatra coast and south Java. Full article
(This article belongs to the Special Issue Impact of Indo-Pacific Climate Variability)
Show Figures

Figure 1

18 pages, 8994 KiB  
Article
Framework to Extract Extreme Phytoplankton Bloom Events with Remote Sensing Datasets: A Case Study
by Wenfang Lu, Xinyu Gao, Zelun Wu, Tianhao Wang, Shaowen Lin, Canbo Xiao and Zhigang Lai
Remote Sens. 2022, 14(15), 3557; https://doi.org/10.3390/rs14153557 - 25 Jul 2022
Cited by 10 | Viewed by 2905
Abstract
The chlorophyll-a concentration (CHL) is an essential climate variable. Extremes of CHL events directly reflect the condition of marine ecosystems. Here, we applied the statistical framework for defining marine heatwaves to study the extremes of winter CHL blooms off the Luzon Strait (termed [...] Read more.
The chlorophyll-a concentration (CHL) is an essential climate variable. Extremes of CHL events directly reflect the condition of marine ecosystems. Here, we applied the statistical framework for defining marine heatwaves to study the extremes of winter CHL blooms off the Luzon Strait (termed as LZB), northeastern South China Sea (SCS), from a set of remote sensing data. The application was enabled by a recent gap-free CHL dataset, the SCSDCT data. We present the basic properties and the long-term trends of these LZB events, which had become fewer but stronger in recent years. We further statistically analyze the LZB events’ controlling factors, including the submesoscale activity quantified by a heterogeneous index or surface temperature gradients. It was revealed that the submesoscale activity was also a vital modulating factor of the bloom events in addition to the well-understood wind and upwelling controls. This modulation can be explained by the stratification introduced by submesoscale mixed-layer instabilities. In the winter, the intensified winter monsoon provides a background front and well-mixed upper layer with replenished nutrients. During the wind relaxation, submesoscale baroclinic instabilities developed, leading to rapid stratification and scattered submesoscale fronts. Such a scenario is favorable for the winter blooms. For the first time, this study identifies the bloom events in a typical marginal sea and highlights the linkage between these events and submesoscale activity. Furthermore, the method used to identify extreme blooms opens up the possibility for understanding trends of multiple marine extreme events under climate change. Full article
Show Figures

Graphical abstract

15 pages, 14850 KiB  
Article
Synoptic Flow Variability in a River-Influenced Inner Shelf off Central Chile
by Marcus Sobarzo, Camila Soto-Riquelme, Raúl P. Flores and Gonzalo S. Saldías
J. Mar. Sci. Eng. 2022, 10(4), 501; https://doi.org/10.3390/jmse10040501 - 5 Apr 2022
Cited by 2 | Viewed by 2578
Abstract
The response of inner shelf circulation and bottom temperature variability to synoptic wind forcing and freshwater outflow is evaluated in an area with a wide continental shelf off central Chile. This forced circulation, with a strong seasonal evolution from upwelling- to downwelling-favorable conditions, [...] Read more.
The response of inner shelf circulation and bottom temperature variability to synoptic wind forcing and freshwater outflow is evaluated in an area with a wide continental shelf off central Chile. This forced circulation, with a strong seasonal evolution from upwelling- to downwelling-favorable conditions, is a key process modulating the exchange of water properties in a coastal zone characterized by multiple river outflows and high biological productivity. Ocean currents on the inner shelf (34 m depth) off the Itata River mouth were obtained and analyzed for a nine-month record (December 2008 to September 2009). The synoptic wind and current variability was defined between 2 and 16 days (0.02 to 0.0026 cph). The subinertial coastal circulation within the inner shelf off Itata River was dominated by the along-shelf flow, while cross-shelf flows driven by along-shelf winds were substantially reduced. The alongshore synoptic currents showed two distinct modal structures: (i) A mean two-layer flow field during upwelling-favorable wind stress with northward (southward) flow at the surface (bottom), and (ii) a mean southward flow through the entire water column during downwelling-favorable wind stress periods, which were intensified during peak river discharge events in winter. Calculations of the wind index clarified the relative importance of wind versus buoyancy forcing on the alongshore flow. The wind forcing dominated during summer when the river discharge was minimum, whereas the relative importance of the freshwater outflow from the Itata River became dominant in winter (May-August) when the buoyancy forcing, in conjunction with southward wind events, modulated strong barotropic southward flows. The change in the long-term regime of coastal winds and river discharges, with a dominance of upwelling winds and reduced river outflows in the last decade, is discussed in the context of observations of thinner river plumes under frequent upwelling conditions off central Chile. Full article
(This article belongs to the Special Issue Frontiers in Physical Oceanography)
Show Figures

Figure 1

22 pages, 4584 KiB  
Article
Machine Learning Classification Algorithms for Predicting Karenia brevis Blooms on the West Florida Shelf
by Marvin F. Li, Patricia M. Glibert and Vyacheslav Lyubchich
J. Mar. Sci. Eng. 2021, 9(9), 999; https://doi.org/10.3390/jmse9090999 - 13 Sep 2021
Cited by 8 | Viewed by 4114
Abstract
Harmful algal blooms (HABs), events that kill fish, impact human health in multiple ways, and contaminate water supplies, have increased in frequency, magnitude, and impacts in numerous marine and freshwaters around the world. Blooms of the toxic dinoflagellate Karenia brevis have resulted in [...] Read more.
Harmful algal blooms (HABs), events that kill fish, impact human health in multiple ways, and contaminate water supplies, have increased in frequency, magnitude, and impacts in numerous marine and freshwaters around the world. Blooms of the toxic dinoflagellate Karenia brevis have resulted in thousands of tons of dead fish, deaths to many other marine organisms, numerous respiratory-related hospitalizations, and tens to hundreds of millions of dollars in economic damage along the West Florida coast in recent years. Four types of machine learning algorithms, Support Vector Machine (SVM), Relevance Vector Machine (RVM), Naïve Bayes classifier (NB), and Artificial Neural Network (ANN), were developed and compared in their ability to predict these blooms. Comparing the 21 year monitoring dataset of K. brevis abundance, RVM and NB were found to have better skills in bloom prediction than the other two approaches. The importance of upwelling-favorable northerly winds in increasing K. brevis probability, and of onshore westerly winds in preventing blooms from dispersing offshore, were quantified using RVM, and all models were used to explore the importance of large river flows and the nutrients they supply in regulating blooms. These models provide new tools for management of these devastating algal blooms. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

19 pages, 6802 KiB  
Article
The Influence of Wind Direction during Storms on Sea Temperature in the Coastal Water of Muping, China
by Xiangyang Zheng, Yana Ding, Yandong Xu, Tao Zou, Chunlei Wang and Qianguo Xing
J. Mar. Sci. Eng. 2021, 9(7), 710; https://doi.org/10.3390/jmse9070710 - 27 Jun 2021
Viewed by 2522
Abstract
Sea temperature structures are important for water stratification and marine ecosystems. In the coastal water of Muping, China, stationary measurements of sea temperature captured temporal temperature changes during two summer storm events. The north component of the wind during the two storms was [...] Read more.
Sea temperature structures are important for water stratification and marine ecosystems. In the coastal water of Muping, China, stationary measurements of sea temperature captured temporal temperature changes during two summer storm events. The north component of the wind during the two storms was opposite. The temperature responded differently to wind directions in the two storm events. A well-validated numerical ocean model was used to investigate the mechanism of sea temperature variation of the coast of Muping. The model revealed that the southerly and easterly wind was upwelling-favorable in the study area. They generated the shoreward transport of bottom cold water, which induced bottom water cooling, enhanced stratification, and weakened vertical mixing. On the other hand, the northerly and westerly wind was downwelling-favorable and enhanced turbulent mixing. The alongshore upwelling-favorable wind caused more cross-shore transport than cross-shore upwelling-favorable wind, which resulted in stronger bottom cooling. Similarly, alongshore downwelling-favorable wind generated lower temperature than cross-shore wind. A surface cold-water band was formed in the second storm. Although it was formed during upwelling-favorable wind, the temperature balance analysis indicated that vertical mixing and westward horizontal advection were the two dominant processes compared to upwelling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

19 pages, 4836 KiB  
Article
Recent Changes in the Low-Level Jet along the Subtropical West Coast of South America
by Catalina Aguirre, Valentina Flores-Aqueveque, Pablo Vilches, Alicia Vásquez, José A. Rutllant and René Garreaud
Atmosphere 2021, 12(4), 465; https://doi.org/10.3390/atmos12040465 - 8 Apr 2021
Cited by 18 | Viewed by 4765
Abstract
Surface winds along the subtropical west coast of South America are characterized by the quasi-weekly occurrences of low-level jet events. These short lived but intense wind events impact the coastal ocean environment. Hence, identifying long-term trends in the coastal low-level jet (CLLJ) is [...] Read more.
Surface winds along the subtropical west coast of South America are characterized by the quasi-weekly occurrences of low-level jet events. These short lived but intense wind events impact the coastal ocean environment. Hence, identifying long-term trends in the coastal low-level jet (CLLJ) is essential for understanding changes in marine ecosystems. Here we use ERA5 reanalysis (1979–2019) and an objective algorithm to track anticyclones to investigate recent changes in CLLJ events off central Chile (25–43 °S). Results present evidence that the number of days with intense wind (≥10 ms−1), and the number and duration of CLLJ events have significantly changed off central Chile in recent decades. There is an increase in the number of CLLJ events in the whole study area during winter (June-July-August; JJA), while during summer (December–January–February; DJF) a decrease is observed at lower latitudes (29–34 °S), and an increase is found at the southern boundary of the Humboldt system. We suggest that changes in the central pressures and frequency of extratropical, migratory anticyclones that reach the coast of South America, which force CLLJs, have played an important role in the recent CLLJ changes observed in this region. Full article
(This article belongs to the Special Issue Characteristics of Coastal Low Level Wind Jet)
Show Figures

Figure 1

16 pages, 2564 KiB  
Article
Responses of Summer Upwelling to Recent Climate Changes in the Taiwan Strait
by Caiyun Zhang
Remote Sens. 2021, 13(7), 1386; https://doi.org/10.3390/rs13071386 - 3 Apr 2021
Cited by 8 | Viewed by 4106
Abstract
The response of a summer upwelling system to recent climate change in the Taiwan Strait has been investigated using a time series of sea surface temperature and wind data over the period 1982–2019. Our results revealed that summer upwelling intensities of the Taiwan [...] Read more.
The response of a summer upwelling system to recent climate change in the Taiwan Strait has been investigated using a time series of sea surface temperature and wind data over the period 1982–2019. Our results revealed that summer upwelling intensities of the Taiwan Strait decreased with a nonlinear fluctuation over the past four decades. The average upwelling intensity after 2000 was 35% lower than that before 2000. The long-term changes in upwelling intensities show strong correlations with offshore Ekman transport, which experienced a decreasing trend after 2000. Unlike the delay effect of canonical ENSO events on changes in summer upwelling, ENSO Modoki events had a significant negative influence on upwelling intensity. Strong El Niño Modoki events were not favorable for the development of upwelling. This study also suggested that decreased upwelling could not slow down the warming rate of the sea surface temperature and would probably cause the decline of chlorophyll a in the coastal upwelling system of the Taiwan Strait. These results will contribute to a better understanding of the dynamic process of summer upwelling in the Taiwan Strait, and provide a sound scientific basis for evaluating future trends in coastal upwelling and their potential ecological effects. Full article
Show Figures

Graphical abstract

16 pages, 5056 KiB  
Article
Abnormal Strong Upwelling off the Coast of Southeast Vietnam in the Late Summer of 2016: A Comparison with the Case in 1998
by Fuan Xiao, Zhifeng Wu, Yushan Lyu and Yicen Zhang
Atmosphere 2020, 11(9), 940; https://doi.org/10.3390/atmos11090940 - 3 Sep 2020
Cited by 11 | Viewed by 3144
Abstract
The traditional view holds that a weakened upwelling has often been observed off the coast of southeast Vietnam during the post-El Niño summer. This study investigated a strong upwelling and concurrent phytoplankton bloom off the coast of southeast Vietnam in August 2016 by [...] Read more.
The traditional view holds that a weakened upwelling has often been observed off the coast of southeast Vietnam during the post-El Niño summer. This study investigated a strong upwelling and concurrent phytoplankton bloom off the coast of southeast Vietnam in August 2016 by comparing it with another case in 1998. Analyses of the upwelling structure and formation mechanisms indicated that the abnormal strong upwelling in August 2016 was attributable to strong wind-driven offshore Ekman transport and Ekman pumping, which were caused by the accompanying southwesterly anomalies south of the anomalous cyclone (AC) over the western North Pacific (WNP), and vice versa in August 1998. This anomalous southwesterly wind associated with the AC over the WNP could not be explained by La Niña, the negative Indian ocean dipole, or the positive Pacific meridional mode events. Further analyses showed that the Madden–Julian oscillation (MJO)-induced westerly winds could have contributed more than 75% of the original zonal winds. Nine tropical cyclones generated over the WNP were favorable for excessive precipitation. The opposite configurations of precipitation patterns over the WNP and the Maritime Continent could have further strengthened the AC via a Gill response. Full article
(This article belongs to the Special Issue Air-Sea Interaction)
Show Figures

Figure 1

32 pages, 5499 KiB  
Article
Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach
by Pablo Lorente, Silvia Piedracoba, Pedro Montero, Marcos G. Sotillo, María Isabel Ruiz and Enrique Álvarez-Fanjul
Remote Sens. 2020, 12(17), 2762; https://doi.org/10.3390/rs12172762 - 26 Aug 2020
Cited by 5 | Viewed by 4904
Abstract
Upwelling and downwelling processes play a critical role in the connectivity between offshore waters and coastal ecosystems, having relevant implications in terms of intense biogeochemical activity and global fisheries production. A variety of in situ and remote-sensing networks were used in concert with [...] Read more.
Upwelling and downwelling processes play a critical role in the connectivity between offshore waters and coastal ecosystems, having relevant implications in terms of intense biogeochemical activity and global fisheries production. A variety of in situ and remote-sensing networks were used in concert with the Iberia–Biscay–Ireland (IBI) circulation forecast system, in order to investigate two persistent upwelling and downwelling events that occurred in the Northwestern (NW) Iberian coastal system during summer 2014. Special emphasis was placed on quality-controlled surface currents provided by a high-frequency radar (HFR), since this land-based technology can effectively monitor the upper layer flow over broad coastal areas in near-real time. The low-frequency spatiotemporal response of the ocean was explored in terms of wind-induced currents’ structures and immediacy of reaction. Mean kinetic energy, divergence and vorticity maps were also calculated for upwelling and downwelling favorable events, in order to verify HFR and IBI capabilities, to accurately resolve the prevailing surface circulation features, such as the locus of a persistent upwelling maximum in the vicinity of Cape Finisterre. This integrated approach proved to be well-founded to efficiently portray the three-dimensional characteristics of the NW Iberian coastal upwelling system regardless of few shortcomings detected in IBI performance, such as the misrepresentation of the most energetic surface dynamics or the overestimation of the cooling and warming associated with upwelling and downwelling conditions, respectively. Finally, the variability of the NW Iberian upwelling system was characterized by means of the development of a novel ocean-based coastal upwelling index (UI), constructed from HFR-derived hourly surface current observations (UIHFR). The proposed UIHFR was validated against two traditional UIs for 2014, to assess its credibility. Results suggest that UIHFR was able to adequately categorize and characterize a wealth of summer upwelling and downwelling events of diverse length and strength, paving the way for future investigations of the subsequent biophysical implications. Full article
(This article belongs to the Special Issue Synergy of Remote Sensing and Modelling Techniques for Ocean Studies)
Show Figures

Graphical abstract

Back to TopTop