Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Gas Formation and Maximum DNAPL Volume
3. Results and Discussion
3.1. Visualization of Gas Production and Migration during TCE-Water Co-Boiling
3.2. Estimates of Relative DNAPL Volume
3.3. Conceptual Model and ISTT Implications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kueper, B.H.; Stroo, H.F.; Vogel, C.M.; Ward, C.H. (Eds.) Source Zone Remediation: The State of the Practice. In Chlorinated Solvent Source Zone Remediation; Springer: New York, NY, USA, 2014; pp. 1–27. [Google Scholar]
- Head, N.A.; Gerhard, J.I.; Inglis, A.M.; Nunez Garcia, A.; Chowdhury, A.I.A.; Reynolds, D.A.; de Boer, C.V.; Sidebottom, A.; Austrins, L.M.; Eimers, J.; et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay. Water Res. 2020, 183, 116061. [Google Scholar] [CrossRef]
- Inglis, A.M.; Head, N.A.; Chowdhury, A.I.A.; Nunez Garcia, A.; Reynolds, D.A.; Hogberg, D.; Edwards, E.; Lomheim, L.; Weber, K.; Wallace, S.J.; et al. Electrokinetically-enhanced emplacement of lactate in a chlorinated solvent contaminated clay site to promote bioremediation. Water Res. 2021, 201, 117305. [Google Scholar] [CrossRef]
- Saenton, S.; Illangasekare, T.H.; Soga, K.; Saba, T.A. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. J. Contam. Hydrol. 2002, 59, 27–44. [Google Scholar] [CrossRef]
- Siegrist, R.L.; Crimi, M.; Simpkin, T.J. In Situ Chemical Oxidation for Groundwater Remediation; Springer Science & Business Media: New York, NY, USA, 2011; Volume 3. [Google Scholar]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbaek, H.; Siegrist, R.L.; Bjerg, P.L. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Triplett Kingston, J.L.T.; Johnson, P.C.; Kueper, B.H.; Mumford, K.G. In Situ Thermal Treatment of Chlorinated Solvent Source Zones. In Chlorinated Solvent Source Zone Remediation; Kueper, B.H., Stroo, H.F., Vogel, C.M., Ward, C.H., Eds.; Springer: New York, NY, USA, 2014; pp. 509–557. [Google Scholar]
- Ding, D.; Song, X.; Wei, C.; LaChance, J. A review on the sustainability of thermal treatment for contaminated soils. Environ. Pollut. 2019, 253, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Qin, X.; Yang, X.; Zhao, Y. Study on the heat transfer in different aquifer media with different groundwater velocities during thermal conductive heating. Environ. Sci. Pollut. Res. 2020, 27, 36316–36329. [Google Scholar] [CrossRef]
- Hegele, P.R.; Mumford, K.G. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene. J. Contam. Hydrol. 2014, 165, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Dahmani, A.; Ahlfeld, D.P.; Lin, J.D.; Hill, E., III. Laboratory Study of Air Sparging: Air Flow Visualization. Groundw. Monit. Remediat. 1993, 13, 115–126. [Google Scholar] [CrossRef]
- Krol, M.M.; Mumford, K.G.; Johnson, R.L.; Sleep, B.E. Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones. Adv. Water Resour. 2011, 34, 537–549. [Google Scholar] [CrossRef]
- Mumford, K.G.; Martin, E.J.; Kueper, B.H. Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation. J. Contam. Hydrol. 2021, 243, 103892. [Google Scholar] [CrossRef]
- Xie, Q.; Mumford, K.G.; Kueper, B.H. Simulating field-scale thermal conductive heating with the potential for the migration and condensation of vapors. J. Hazard. Mater. 2023, 453, 131439. [Google Scholar] [CrossRef] [PubMed]
- Hicknell, B.N.; Mumford, K.G.; Kueper, B.H. Laboratory study of creosote removal from sand at elevated temperatures. J. Contam. Hydrol. 2018, 219, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Mumford, K.G.; Kueper, B.H. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment. J. Contam. Hydrol. 2014, 164, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Heron, G.; Van Zutphen, M.; Christensen, T.H.; Enfield, C.G. Soil Heating for Enhanced Remediation of Chlorinated Solvents: A Laboratory Study on Resistive Heating and Vapor Extraction in a Silty, Low-Permeable Soil Contaminated with Trichloroethylene. Environ. Sci. Technol. 1998, 32, 1474–1481. [Google Scholar] [CrossRef]
- Heron, G.; Lachance, J.; Baker, R. Removal of PCE DNAPL from Tight Clays Using In Situ Thermal Desorption. Groundw. Monit. Remediat. 2013, 33, 31–43. [Google Scholar] [CrossRef]
- Liu, X.; Murdoch, L.C.; Falta, R.W.; Tan, T. Experimental characterization of CVOC removal from fractured clay during boiling. Int. J. Heat Mass Transf. 2014, 70, 764–778. [Google Scholar] [CrossRef]
- Liu, X.; Tan, T.; Falta, R.W.; Murdoch, L.C. Experimental method for characterizing CVOC removal from fractured clays during boiling. J. Contam. Hydrol. 2013, 152, 44–59. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Falta, R.W.; Murdoch, L.C. Experimental Demonstration of Contaminant Removal from Fractured Rock by Boiling. Environ. Sci. Technol. 2010, 44, 6437–6442. [Google Scholar] [CrossRef]
- Triplett Kingston, J.L.; Dahlen, P.R.; Johnson, P.C. State-of-the-Practice Review of In Situ Thermal Technologies. Groundw. Monit. Remediat. 2010, 30, 64–72. [Google Scholar] [CrossRef]
- Martin, E.J.; Kueper, B.H. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions. J. Contam. Hydrol. 2011, 126, 291–300. [Google Scholar] [CrossRef]
- Martin, E.J.; Mumford, K.G.; Kueper, B.H. Electrical Resistance Heating of Clay Layers in Water-Saturated Sand. Groundw. Monit. Remediat. 2016, 36, 54–61. [Google Scholar] [CrossRef]
- Martin, E.J.; Mumford, K.G.; Kueper, B.H.; Siemens, G.A. Gas formation in sand and clay during electrical resistance heating. Int. J. Heat Mass Transf. 2017, 110, 855–862. [Google Scholar] [CrossRef]
- Munholland, J.L.; Mumford, K.G.; Kueper, B.H. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. J. Contam. Hydrol. 2016, 184, 14–24. [Google Scholar] [CrossRef]
- Hegele, P.R.; McGee, B.C.W. Managing the negative impacts of groundwater flow on electrothermal remediation. Remediat. J. 2017, 27, 29–38. [Google Scholar] [CrossRef]
- Baker, R.S.; Hiester, U. Large-Scale Physical Models of Thermal Remediation of DNAPL Source Zones in Aquitards; SERDP # ER-1423; Terratherm Inc.: Fitchburg, MA, USA, 2009. [Google Scholar]
- Schroth, M.H.; Ahearn, S.J.; Selker, J.S.; Istok, J.D. Characterization of Miller-similar silica sands for laboratory hydrologic studies. Soil Sci. Soc. Am. J. 1996, 60, 1331–1339. [Google Scholar] [CrossRef][Green Version]
- Geng, Z.; Liu, B.; Li, G.; Zhang, F. Enhancing DNAPL removal from low permeability zone using electrical resistance heating with pulsed direct current. J. Hazard. Mater. 2021, 413, 125455. [Google Scholar] [CrossRef]
- Jones, S.F.; Evans, G.M.; Galvin, K.P. Bubble nucleation from gas cavities—A review. Adv. Colloid Interface Sci. 1999, 80, 27–50. [Google Scholar] [CrossRef]
- Yaws, C.L.; Narasimhan, P.K.; Gabbula, C. Yaws’ Handbook of Antoine Coefficients for Vapor Pressure; Knovel: Norwich, NY, USA, 2005. [Google Scholar]
- Brooks, R.H.; Corey, A.T. Properties of Porous Media Affecting Fluid Flow. J. Irrig. Drain. Div. 1966, 92, 61–88. [Google Scholar] [CrossRef]
- Van Geel, P.J.; Roy, S.D. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure–saturation relationship. J. Contam. Hydrol. 2002, 58, 79–110. [Google Scholar] [CrossRef]
- Lenhard, R.J.; Oostrom, M.; Dane, J.H. A constitutive model for air–NAPL–water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media. J. Contam. Hydrol. 2004, 71, 261–282. [Google Scholar] [CrossRef]
- Heron, G.; Baker, R.; Bierschenk, J.; LaChance, J. Use of Thermal Conduction Heating for the Remediation of DNAPL in Fractured Bedrock. In Proceedings of the Remediation of Chlorinated and Recalcitrant Compounds: Proceedings of the Sixth International Conference, Columbus, OH, USA, 19–22 May 2008. [Google Scholar]
- Horst, J.; Munholland, J.; Hegele, P.; Klemmer, M.; Gattenby, J. In Situ Thermal Remediation for Source Areas: Technology Advances and a Review of the Market From 1988–2020. Groundw. Monit. Remediat. 2021, 41, 17–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunez Garcia, A.; Wang, P.; Hegele, P.R.; Mumford, K.G. Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers. Water 2023, 15, 1976. https://doi.org/10.3390/w15111976
Nunez Garcia A, Wang P, Hegele PR, Mumford KG. Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers. Water. 2023; 15(11):1976. https://doi.org/10.3390/w15111976
Chicago/Turabian StyleNunez Garcia, Ariel, Pengjie Wang, Paul R. Hegele, and Kevin G. Mumford. 2023. "Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers" Water 15, no. 11: 1976. https://doi.org/10.3390/w15111976
APA StyleNunez Garcia, A., Wang, P., Hegele, P. R., & Mumford, K. G. (2023). Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers. Water, 15(11), 1976. https://doi.org/10.3390/w15111976