Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (741)

Search Parameters:
Keywords = underwater positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 (registering DOI) - 1 Aug 2025
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4517 KiB  
Article
A Method Integrating the Matching Field Algorithm for the Three-Dimensional Positioning and Search of Underwater Wrecked Targets
by Huapeng Cao, Tingting Yang and Ka-Fai Cedric Yiu
Sensors 2025, 25(15), 4762; https://doi.org/10.3390/s25154762 (registering DOI) - 1 Aug 2025
Abstract
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching [...] Read more.
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching field quadratic joint Algorithm was proposed. Secondly, an MVDR beamforming method based on pre-Kalman filtering is designed to refine the real-time DOA estimation of the desired signal and the interference source, and the sound source azimuth is determined for prepositioning. The antenna array weights are dynamically adjusted according to the filtered DOA information. Finally, the Adaptive Matching Field Algorithm (AMFP) used the DOA information to calculate the range and depth of the lost target, and obtained the range and depth estimates. Thus, the 3D position of the lost underwater target is jointly estimated. This method alleviates the angle ambiguity problem and does not require a computationally intensive 2D spectral search. The simulation results show that the proposed method can better realise underwater three-dimensional positioning under certain signal-to-noise ratio conditions. When there is no error in the sensor coordinates, the positioning error is smaller than that of the baseline method as the SNR increases. When the SNR is 0 dB, with the increase in the sensor coordinate error, the target location error increases but is smaller than the error amplitude of the benchmark Algorithm. The experimental results verify the robustness of the proposed framework in the hierarchical ocean environment, which provides a practical basis for the deployment of rapid response underwater positioning systems in maritime search and rescue scenarios. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Viewed by 28
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 (registering DOI) - 1 Aug 2025
Viewed by 42
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

21 pages, 16422 KiB  
Article
DCE-Net: An Improved Method for Sonar Small-Target Detection Based on YOLOv8
by Lijun Cao, Zhiyuan Ma, Qiuyue Hu, Zhongya Xia and Meng Zhao
J. Mar. Sci. Eng. 2025, 13(8), 1478; https://doi.org/10.3390/jmse13081478 - 31 Jul 2025
Viewed by 57
Abstract
Sonar is the primary tool used for detecting small targets at long distances underwater. Due to the influence of the underwater environment and imaging mechanisms, sonar images face challenges such as a small number of target pixels, insufficient data samples, and uneven category [...] Read more.
Sonar is the primary tool used for detecting small targets at long distances underwater. Due to the influence of the underwater environment and imaging mechanisms, sonar images face challenges such as a small number of target pixels, insufficient data samples, and uneven category distribution. Existing target detection methods are unable to effectively extract features from sonar images, leading to high false positive rates and affecting the accuracy of target detection models. To counter these challenges, this paper presents a novel sonar small-target detection framework named DCE-Net that refines the YOLOv8 architecture. The Detail Enhancement Attention Block (DEAB) utilizes multi-scale residual structures and channel attention mechanism (AM) to achieve image defogging and small-target structure completion. The lightweight spatial variation convolution module (CoordGate) reduces false detections in complex backgrounds through dynamic position-aware convolution kernels. The improved efficient multi-scale AM (MH-EMA) performs scale-adaptive feature reweighting and combines cross-dimensional interaction strategies to enhance pixel-level feature representation. Experiments on a self-built sonar small-target detection dataset show that DCE-Net achieves an mAP@0.5 of 87.3% and an mAP@0.5:0.95 of 41.6%, representing improvements of 5.5% and 7.7%, respectively, over the baseline YOLOv8. This demonstrates that DCE-Net provides an efficient solution for underwater detection tasks. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Underwater Sonar Images)
Show Figures

Graphical abstract

29 pages, 6079 KiB  
Article
A Highly Robust Terrain-Aided Navigation Framework Based on an Improved Marine Predators Algorithm and Depth-First Search
by Tian Lan, Ding Li, Qixin Lou, Chao Liu, Huiping Li, Yi Zhang and Xudong Yu
Drones 2025, 9(8), 543; https://doi.org/10.3390/drones9080543 (registering DOI) - 31 Jul 2025
Viewed by 169
Abstract
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. [...] Read more.
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. To overcome these challenges, we propose a novel terrain-aided navigation framework integrating an Improved Marine Predators Algorithm with Depth-First Search optimization (DFS-IMPA-TAN). This framework maintains positioning precision in partially self-similar terrains through two synergistic mechanisms: (1) IMPA-driven optimization based on the hunger-inspired adaptive exploitation to determine optimal trajectory transformations, cascaded with Kalman filtering for navigation state correction; (2) a Robust Tree (RT) hypothesis manager that maintains potential trajectory candidates in graph-structured memory, employing Depth-First Search for ambiguity resolution in feature matching. Experimental validation through simulations and in-vehicle testing demonstrates the framework’s distinctive advantages: (1) consistent terrain association in partially self-similar topographies; (2) inherent error resilience against ambiguous feature measurements; and (3) long-term navigation stability. In all experimental groups, the root mean squared error of the framework remained around 60 m. Under adverse conditions, its navigation accuracy improved by over 30% compared to other traditional batch processing TAN methods. Comparative analysis confirms superior performance over conventional methods under challenging conditions, establishing DFS-IMPA-TAN as a robust navigation solution for AUVs in complex underwater environments. Full article
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 183
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

20 pages, 2108 KiB  
Review
Underwater Polarized Light Navigation: Current Progress, Key Challenges, and Future Perspectives
by Mingzhi Chen, Yuan Liu, Daqi Zhu, Wen Pang and Jianmin Zhu
Robotics 2025, 14(8), 104; https://doi.org/10.3390/robotics14080104 - 29 Jul 2025
Viewed by 342
Abstract
Underwater navigation remains constrained by technological limitations, driving the exploration of alternative approaches such as polarized light-based systems. This review systematically examines advances in polarized navigation from three perspectives. First, the principles of atmospheric polarization navigation are analyzed, with their operational mechanisms, advantages, [...] Read more.
Underwater navigation remains constrained by technological limitations, driving the exploration of alternative approaches such as polarized light-based systems. This review systematically examines advances in polarized navigation from three perspectives. First, the principles of atmospheric polarization navigation are analyzed, with their operational mechanisms, advantages, and inherent constraints dissected. Second, innovations in bionic polarization multi-sensor fusion positioning are consolidated, highlighting progress beyond conventional heading-direction extraction. Third, emerging underwater polarization navigation techniques are critically evaluated, revealing that current methods predominantly adapt atmospheric frameworks enhanced by advanced filtering to mitigate underwater interference. A comprehensive synthesis of underwater polarization modeling methodologies is provided, categorizing physical, data-driven, and hybrid approaches. Through rigorous analysis of studies, three persistent barriers are identified: (1) inadequate polarization pattern modeling under dynamic cross-media conditions; (2) insufficient robustness against turbidity-induced noise; (3) immature integration of polarization vision with sonar/IMU (Inertial Measurement Unit) sensing. Targeted research directions are proposed, including adaptive deep learning models, multi-spectral polarization sensing, and bio-inspired sensor fusion architectures. These insights establish a roadmap for developing reliable underwater navigation systems that transcend current technological boundaries. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

19 pages, 18196 KiB  
Article
A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks
by Yuqi Zhu, Binjian Shen, Biyuan Yao and Wei Wu
J. Mar. Sci. Eng. 2025, 13(8), 1422; https://doi.org/10.3390/jmse13081422 - 25 Jul 2025
Viewed by 195
Abstract
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies [...] Read more.
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies in sound speed modeling. This study proposes and validates a three-tier calibration framework consisting of a Dynamic Single-Difference (DSD) solver, a geometrically optimized reference buoy selection algorithm, and a Virtual Beacon (VB) depth inversion method based on sound speed profiles. Through simulations under varying noise conditions, the DSD method effectively mitigates common ranging and clock errors. The geometric reference optimization algorithm enhances the selection of optimal buoy layouts and reference points. At a depth of 4 km, the VB method improves vertical positioning accuracy by 15% compared to the DSD method alone, and nearly doubles vertical accuracy compared to traditional non-differential approaches. This research demonstrates that deep-sea underwater target calibration can be achieved without high-precision time synchronization and in the presence of fixed ranging errors. The proposed framework has the potential to lower technological barriers for large-scale deep-sea network deployments and provides a robust foundation for autonomous deep-sea exploration. Full article
Show Figures

Figure 1

32 pages, 9845 KiB  
Article
Real-Time Analysis of Millidecade Spectra for Ocean Sound Identification and Wind Speed Quantification
by Mojgan Mirzaei Hotkani, Bruce Martin, Jean Francois Bousquet and Julien Delarue
Acoustics 2025, 7(3), 44; https://doi.org/10.3390/acoustics7030044 - 24 Jul 2025
Viewed by 307
Abstract
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, [...] Read more.
This study introduces an algorithm for quantifying oceanic wind speed and identifying sound sources in the local underwater soundscape. Utilizing low-complexity metrics like one-minute spectral kurtosis and power spectral density levels, the algorithm categorizes different soundscapes and estimates wind speed. It detects rain, vessels, fin and blue whales, as well as clicks and whistles from dolphins. Positioned as a foundational tool for implementing the Ocean Sound Essential Ocean Variable (EOV), it contributes to understanding long-term trends in climate change for sustainable ocean health and predicting threats through forecasts. The proposed soundscape classification algorithm, validated using extensive acoustic recordings (≥32 kHz) collected at various depths and latitudes, demonstrates high performance, achieving an average precision of 89% and an average recall of 86.59% through optimized parameter tuning via a genetic algorithm. Here, wind speed is determined using a cubic function with power spectral density (PSD) at 6 kHz and the MASLUW method, exhibiting strong agreement with satellite data below 15 m/s. Designed for compatibility with low-power electronics, the algorithm can be applied to both archival datasets and real-time data streams. It provides a straightforward metric for ocean monitoring and sound source identification. Full article
Show Figures

Figure 1

33 pages, 6970 KiB  
Article
Wake Characteristics and Thermal Properties of Underwater Vehicle Based on DDES Numerical Simulation
by Yu Lu, Jiacheng Cui, Bing Liu, Shuai Shi and Wu Shao
J. Mar. Sci. Eng. 2025, 13(7), 1371; https://doi.org/10.3390/jmse13071371 - 18 Jul 2025
Viewed by 244
Abstract
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; [...] Read more.
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; and both with and without thermal discharge—using Delayed Detached Eddy Simulation (DDES) coupled with the Volume of Fluid (VOF) method. Results indicate that, under heat emission conditions, higher speeds accelerate wake temperature decay, making the thermal wake difficult to detect downstream; without heat emission, turbulent mixing dominates the temperature field, and speed effects are minor. With increased speed, wake vorticity at a fixed location grows by about 30%, free-surface wave height rises from 0.05 to 0.15 m, and wavelength remains around 1.8 m, all positively correlated with speed. Dive depth is negatively correlated with wave height, decreasing from 0.15 to 0.04 m as depth increases from 5 to 20 m, while wavelength remains largely unchanged. At a 10 m submergence depth, the thermal wake is clearly detectable on the surface but becomes hard to detect beyond 20 m, indicating a pronounced depth effect on its visibility. These results not only confirm the positive correlation between vessel speed and wake vorticity reported in earlier studies but also extend those findings by providing the first quantitative evaluation of how submergence depth critically limits thermal wake visibility beyond 20 m. This research provides quantitative evaluations of wake characteristics under varying speeds, depths, and heat emissions, offering valuable insights for stealth navigation and detection technologies. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

18 pages, 9419 KiB  
Article
STNet: Prediction of Underwater Sound Speed Profiles with an Advanced Semi-Transformer Neural Network
by Wei Huang, Junpeng Lu, Jiajun Lu, Yanan Wu, Hao Zhang and Tianhe Xu
J. Mar. Sci. Eng. 2025, 13(7), 1370; https://doi.org/10.3390/jmse13071370 - 18 Jul 2025
Viewed by 238
Abstract
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound [...] Read more.
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound field data. Although measurement techniques provide a good accuracy, they are constrained by limited spatial coverage and require a substantial time investment. The inversion method based on the real-time measurement of acoustic field data improves operational efficiency but loses the accuracy of SSP estimation and suffers from limited spatial applicability due to its stringent requirements for ocean observation infrastructures. To achieve accurate long-term ocean SSP estimation independent of real-time underwater data measurements, we propose a semi-transformer neural network (STNet) specifically designed for simulating sound velocity distribution patterns from the perspective of time series prediction. The proposed network architecture incorporates an optimized self-attention mechanism to effectively capture long-range temporal dependencies within historical sound velocity time-series data, facilitating an accurate estimation of current SSPs or prediction of future SSPs. Through the architectural optimization of the transformer framework and integration of a time encoding mechanism, STNet could effectively improve computational efficiency. For long-term forecasting (using the Pacific Ocean as a case study), STNet achieved an annual average RMSE of 0.5811 m/s, outperforming the best baseline model, H-LSTM, by 26%. In short-term forecasting for the South China Sea, STNet further reduced the RMSE to 0.1385 m/s, demonstrating a 51% improvement over H-LSTM. Comparative experimental results revealed that STNet outperformed state-of-the-art models in predictive accuracy and maintained good computational efficiency, demonstrating its potential for enabling accurate long-term full-depth ocean SSP forecasting. Full article
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 280
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2226 KiB  
Article
Dynamic Stochastic Model Optimization for Underwater Acoustic Navigation via Singular Value Decomposition
by Jialu Li, Junting Wang, Tianhe Xu, Jianxu Shu, Yangfan Liu, Yueyuan Ma and Yangyin Xu
J. Mar. Sci. Eng. 2025, 13(7), 1329; https://doi.org/10.3390/jmse13071329 - 11 Jul 2025
Viewed by 242
Abstract
The geometric distribution of seabed beacons significantly impacts the positioning accuracy of underwater acoustic navigation systems. To address this challenge, we propose a depth-constrained adaptive stochastic model optimization method based on singular value decomposition (SVD). The method quantifies the contribution weights of each [...] Read more.
The geometric distribution of seabed beacons significantly impacts the positioning accuracy of underwater acoustic navigation systems. To address this challenge, we propose a depth-constrained adaptive stochastic model optimization method based on singular value decomposition (SVD). The method quantifies the contribution weights of each beacon to the dominant navigation direction by performing SVD on the acoustic observation matrix. The acoustic ranging covariance matrix can be dynamically adjusted based on these weights to suppress error propagation. At the same time, the prior depth with centimeter-level accuracy provided by the pressure sensor is used to establish strong constraints in the vertical direction. The experimental results demonstrate that the depth-constrained adaptive stochastic model optimization method reduces three-dimensional RMS errors by 66.65% (300 m depth) and 77.25% (2000 m depth) compared to conventional equal-weight models. Notably, the depth constraint alone achieves 95% vertical error suppression, while combined SVD optimization further enhances horizontal accuracy by 34.2–53.5%. These findings validate that coupling depth constraints with stochastic optimization effectively improves navigation accuracy in complex underwater environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 2292 KiB  
Article
Passive Synthetic Aperture for Direction-of-Arrival Estimation Using an Underwater Glider with a Single Hydrophone
by Yueming Ma, Jie Sun, Shuo Li, Tianze Hu, Shilong Li and Yuexing Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1322; https://doi.org/10.3390/jmse13071322 - 10 Jul 2025
Viewed by 262
Abstract
This paper addresses the aperture limitation problem faced by array-equipped underwater gliders (UGs) in direction-of-arrival (DOA) estimation. A passive synthetic aperture (PSA) method for DOA estimation using a single hydrophone mounted on a UG is proposed. This method uses the motion of the [...] Read more.
This paper addresses the aperture limitation problem faced by array-equipped underwater gliders (UGs) in direction-of-arrival (DOA) estimation. A passive synthetic aperture (PSA) method for DOA estimation using a single hydrophone mounted on a UG is proposed. This method uses the motion of the UG to synthesize a linear array whose elements are positioned to acquire the target signal, thereby increasing the array aperture. The dead-reckoning method is used to determine the underwater trajectory of the UG, and the UG’s trajectory was corrected by the UG motion parameters, from which the array shape was adjusted accordingly and the position of the array elements was corrected. Additionally, array distortion caused by movement offsets due to ocean currents underwent linearization, reducing computational complexity. To validate the proposed method, a sea trial was conducted in the South China Sea using the Haiyi 1000 UG equipped with a hydrophone, and its effectiveness was demonstrated through the processing of the collected data. The performance of DOA estimation prior to and following UG trajectory correction was compared to evaluate the impact of ocean currents on target DOA estimation accuracy. Full article
Show Figures

Figure 1

Back to TopTop