Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = underwater electrical discharges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1904 KiB  
Article
Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat
by Tzenko Vatchev, Ivo Todorov Yanashkov, Plamena Marinova and Evgenia Benova
Processes 2025, 13(3), 632; https://doi.org/10.3390/pr13030632 - 23 Feb 2025
Viewed by 1132
Abstract
A wide range of seed-borne and soil-borne plant pathogens belonging to various fungal and fungal-like species cause pre-emergence seed decay and post-emergence seedling blights of wheat and other small-grain cereal crops. To prevent the death of the seedlings, poor establishment and reduced stand [...] Read more.
A wide range of seed-borne and soil-borne plant pathogens belonging to various fungal and fungal-like species cause pre-emergence seed decay and post-emergence seedling blights of wheat and other small-grain cereal crops. To prevent the death of the seedlings, poor establishment and reduced stand of the crops, extensive crop rotations, planting good-quality seeds and seed treatments with fungicides are used on regular basis. This study is aimed at assessing the efficacy of pre-sowing seed treatments with cold atmospheric plasma for the disinfestation of winter wheat seed from economically important fungal and fungal-like pathogens. Uninoculated or surface-inoculated with Fusarium culmorum, Bipolaris sorokiniana or Pythium ultimum wheat seeds, the cultivar Madara was treated by cold plasma produced either by microwave torch (MW) or underwater diaphragm discharge (UW) with low power at very short treatment times, or remained untreated controls. As per the treatments, the seeds were sown in a ready-to-use growing medium comprising a mixture of light and dark moss peat (w:w) 90–95%, 5–10% perlite and 3–5 kg/m3 CaCO3, having an electrical conductivity of 40 mS/m, pH (H2O) of 5.5–6.5 and moisture content of 60–70%, filling in 250 × 250 × 70 mm aluminum flat seed trays (40 grains per tray, four trays per treatment). The plants were cultivated for 45 days in a growth chamber held at (20 ± 2) °C, set to a cycle of 8 h/night and 16 h/day under fluorescent light of 2000–3000 lux intensity. For each replicate, disease incidence (DI) was determined as the total percentage of missing, dead and apparently symptomatic plants. Seed treatment with a microwave plasma torch with a power of 16 W for 40 s significantly (p < 0.001) reduced seedling blights caused by F. culmorum, B. sorokiniana and P. ultimum by 46.8%, 51.0% and 77.3%, respectively, but limited the emergence of wheat seedlings by 15.9% on average. Simultaneously, the effectiveness of underwater discharge seed treatments reached an average of about a 60% reduction of seedling blight caused by F. culmorum and B. sorokiniana and about 37% of the disease caused by P. ultimum. Pre-sowing treatments with a MW plasma torch with an input power of 11 W and treatment time of 60, 90 or 120 s exposure also showed significant (p < 0.001) effects in controlling winter wheat seedling blights caused by the three pathogens. The effectiveness of the treatment increased with increasing the time period of exposure and reached full disease control (>80% reduction) for B. sorokiniana and P. ultimum seedling blights. This study demonstrated that pre-sowing treatment with a microwave plasma torch and underwater diaphragm discharge at a relatively low input power and short exposure time can be used for disinfestation and the effective control of seedling blights in winter wheat caused by seed-borne fungal pathogens, such as Fusarium culmorum and Bipolaris sorokiniana, and fungal-like oomycetes, such as Pythium ultimum. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 712 KiB  
Article
Hybrid Water Disinfection Process Using Electrical Discharges
by Antonina P. Malyushevskaya, Piotr Koszelnik, Olena Mitryasova, Anna Yushchishina, Andrii Mats, Dorota Papciak and Monika Magdalena Zdeb
Processes 2024, 12(9), 1846; https://doi.org/10.3390/pr12091846 - 29 Aug 2024
Cited by 1 | Viewed by 1072
Abstract
An analysis of the physical and chemical phenomena accompanying electrical discharges is carried out, and the main factors influencing microorganisms’ abatement are studied. The similarity of the cavitation processes in water systems induced by underwater electric discharges and ultrasound is experimentally demonstrated. The [...] Read more.
An analysis of the physical and chemical phenomena accompanying electrical discharges is carried out, and the main factors influencing microorganisms’ abatement are studied. The similarity of the cavitation processes in water systems induced by underwater electric discharges and ultrasound is experimentally demonstrated. The characteristic features of electrical discharge in the cavitation mode, providing effective water disinfection with electric discharges with a significantly reduced amount of active chlorine, are identified in order of importance. The inactivation of microorganisms is intensified, firstly, by the generation of chemically active particles from the water medium itself, due to the integral action of the electro-discharge cavitation of the whole treated volume, and by local shock waves, acoustic flows, and ultraviolet radiation in the area near the cavitating bubbles. The main advantages of electric discharge cavitation over ultrasonic range are the wider range of high-frequency acoustic radiation inherent in an electric discharge, the high intensity and power of the cavitation processes, and the possibility of a significant increase in the volume of disinfected liquid. This study allows for a better understanding and prediction of the bacterial effects that occur during a high-voltage underwater electrical discharge. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 1229 KiB  
Article
Advanced Capacitor-Based Battery Equalizer for Underwater Vehicles
by Kun-Che Ho
J. Mar. Sci. Eng. 2024, 12(8), 1357; https://doi.org/10.3390/jmse12081357 - 9 Aug 2024
Cited by 1 | Viewed by 1240
Abstract
As maritime technology advances, exploration of the oceans has progressively moved from surface exploration to underwater ventures. Unmanned underwater vehicles (UUVs), now prevalent for such exploration, effectively reduce human labor and lower operational costs. These vehicles rely on an internal Battery Storage System [...] Read more.
As maritime technology advances, exploration of the oceans has progressively moved from surface exploration to underwater ventures. Unmanned underwater vehicles (UUVs), now prevalent for such exploration, effectively reduce human labor and lower operational costs. These vehicles rely on an internal Battery Storage System (BSS) that sustains device operation by extending operational duration and providing stable voltage. Typically arranged in series, BSSs face challenges due to differences in the chemical characteristics of individual batteries, which lead to discrepancies in battery voltages and cause imbalances during charge and discharge cycles. This results in varied utilization rates among the batteries and uneven aging of the battery pack, potentially decreasing operational efficiency and increasing failure rates, thus reducing reliability and safety. Considering the harsh environmental conditions and maintenance difficulties associated with underwater operations, this paper proposes a robust solution: a balancing system featuring a modular switch with electrical isolation. Through theoretical analysis and circuit simulation, this study constructs and tests a novel prototype of a capacitor-based equalizer circuit with electrical isolation, verifying its feasibility. Full article
(This article belongs to the Special Issue Ocean Observations)
Show Figures

Figure 1

12 pages, 5470 KiB  
Article
Experimental Study of Energy Design Optimization for Underwater Electrical Shockwave for Fracturing Applications
by Mohamed M. Awad, Ibrahim Eltaleb and Mohamed Y. Soliman
Geosciences 2024, 14(1), 24; https://doi.org/10.3390/geosciences14010024 - 17 Jan 2024
Cited by 1 | Viewed by 2067
Abstract
Underwater electrical shockwave can be used as a waterless, chemical-free, and environmentally friendly fracturing technique. A detailed experimental study was performed to develop a correlation between the optimum energy required to generate a shockwave that could be used in fracturing rock samples with [...] Read more.
Underwater electrical shockwave can be used as a waterless, chemical-free, and environmentally friendly fracturing technique. A detailed experimental study was performed to develop a correlation between the optimum energy required to generate a shockwave that could be used in fracturing rock samples with the wire weight and diameter as independent factors. In addition, the effect of the water volume on the Underwater Electrical Wire Explosion (UEWE) was investigated to quantify the effect of the wellbore fluid volume in the fracturing process. The effect of increasing the discharge energy on the current waveform rising rate, peak amplitude, and fracturing geometry was investigated. A baseline for implementing the shockwave fracturing method on cement and limestone samples was defined to be used in future work. The results show that the water volume has a significant effect on the results of the experiment. A correlation was developed that defined the optimum minimum energy required to burn a certain wire weight with consideration to the wire diameter. Using the optimum required energy or higher will increases the current peak amplitude with the same current waveform rise rate, which leads to higher energy deposition into the wire and prevents the premature breakdown of the wire. The generated shockwave was used to successfully fracture cement and limestone cubic samples. Full article
Show Figures

Figure 1

15 pages, 2704 KiB  
Article
Influence of Plasma-Activated Water on Foliar and Fruit Micronutrient Content and Plant Protection Efficiency
by Andrei I. Kuzin, Natalia Ya. Kashirskaya, Alexei E. Solovchenko, Anna M. Kochkina, Ludmila V. Stepantsowa, Vyacheslav N. Krasin, Evgeny M. Konchekov, Vladimir I. Lukanin, Konstantin F. Sergeichev, Victoria V. Gudkova, Dmitry O. Khort and Igor G. Smirnov
Horticulturae 2024, 10(1), 55; https://doi.org/10.3390/horticulturae10010055 - 5 Jan 2024
Cited by 2 | Viewed by 2355
Abstract
Foliar fertilizing is very important to supply apple plants with calcium and micronutrients. The most cost-effective approach to this is the application of the fertilizers in tank mixtures with plant protection chemicals. Plasma-activated water (PAW) has great potential for the use in the [...] Read more.
Foliar fertilizing is very important to supply apple plants with calcium and micronutrients. The most cost-effective approach to this is the application of the fertilizers in tank mixtures with plant protection chemicals. Plasma-activated water (PAW) has great potential for the use in the agriculture. We used two type of PAWs, PAW1 (made using underwater electrical discharge in an aqueous KNO3 solution and includes reactive nitrogen species and platinum nanoparticles) and PAW2 (made using a plasma torch with nitrogen gas makeup and contains reactive nitrogen species but not metals). We studied the impact of two PAW types on the contents of Ca, B, Mn, Fe, and Co in leaves and Ca, Mn, Fe, Zn, and Mo in fruits sprayed with tank mixtures containing the fertilizers. We also tested the efficiency of PAW in the control of apple scab when applied as tank mixtures with plant protection chemicals. The application of the PAWs significantly increased foliar Ca when the PAW was mixed with Ca-containing formulations (spraying PAW1 containing Ca increased leaf Ca by up to 21%, and PAW2 up by to 9% compared to Ca spraying without PAW). The largest fruit Ca increase was in the variant treated with PAW1 with a micronutrient spraying program (up to 143%). The PAW treatments enhanced the baseline mineral contents of the plants even when they were not sprayed with the nutrients. PAW1 mainly increased the nutrient contents of the apple fruits. PAWs have proven to be efficient for the control of apple scab, thereby reducing the demand for fungicides. The scab damage to the leaves and fruits was similar in plants treated with PAWs without fungicides (1.7–1.9% on the leaves and 1.6–1.8% on the fruits) compared to the conventional chemical scab control (0.9% leaves and 0.6% fruits) and was significantly lower than in the untreated control (9.3% on leaves and 11.9 on fruits). Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

17 pages, 11195 KiB  
Article
Renewable Electric Energy Storage Systems by Storage Spheres on the Seabed of Deep Lakes or Oceans
by Horst Werner Schmidt-Böcking, Gerhard Luther, Michael Düren, Matthias Puchta, Tom Bender, Andreas Garg, Bernhard Ernst and Heinz Frobeen
Energies 2024, 17(1), 73; https://doi.org/10.3390/en17010073 - 22 Dec 2023
Cited by 6 | Viewed by 3492
Abstract
This paper describes a new underwater pumped storage hydropower concept (U.PSH) that can store electric energy by using the high water pressure on the seabed or in deep lakes to accomplish the energy transition from fossil to renewable sources. Conventional PSH basically consists [...] Read more.
This paper describes a new underwater pumped storage hydropower concept (U.PSH) that can store electric energy by using the high water pressure on the seabed or in deep lakes to accomplish the energy transition from fossil to renewable sources. Conventional PSH basically consists of two storage reservoirs (upper and lower lake) at different topographical heights. It needs special topographic conditions, which are only limitedly available in mountain regions. Furthermore, due to the lack of acceptance and the environmental impact, new conventional PSH projects are very unlikely to be built in larger numbers in Europe in the near future. The presented solution solves these issues by placing the storage system on the seabed, thus having other geographical requirements. It operates as follows: in contrast to well-known conventional PSH plants, which use two separated water reservoirs of different heights, the U.PSH concept uses the static pressure of the water column in deep waters by installing a hollow concrete sphere in deep water. Storage of electricity is achieved by using a reversible pump in the hollow sphere. Upon opening a valve, water flows into the sphere, driving a turbine/generator, thereby discharging the storage device. In order to re-charge, the water is pumped out of the sphere against the pressure of the surrounding water. The power and energy, respectively, are proportional to the surrounding water pressure at the seabed. The amount of energy stored depends on the water depth and the volume of the spheres. The spheres need a cable connection to the shore or to a close-by floating transformer station (e.g., an offshore wind plant). No other connections such as pipes are needed. The functional principle of this energy storage technology, its state of the art, its storage capacity and the shape and size of the required spheres are discussed in this paper. Full article
(This article belongs to the Special Issue Sustainable/Renewable Energy Systems Analysis and Optimization)
Show Figures

Figure 1

17 pages, 4259 KiB  
Article
Efficiency-Driven Iterative Model for Underwater Compressed Air Energy Storage (UW-CAES)
by Luca Cacciali, Lorenzo Battisti and Davide Occello
Energies 2023, 16(24), 8013; https://doi.org/10.3390/en16248013 - 11 Dec 2023
Cited by 3 | Viewed by 1977
Abstract
The competitiveness of large-scale offshore wind parks is influenced by the intermittent power generation of wind turbines, which impacts network service costs such as reserve requirements, capacity credit, and system inertia. Buffer power plants smooth the peaks in power generation, distribute electric power [...] Read more.
The competitiveness of large-scale offshore wind parks is influenced by the intermittent power generation of wind turbines, which impacts network service costs such as reserve requirements, capacity credit, and system inertia. Buffer power plants smooth the peaks in power generation, distribute electric power when the wind is absent or insufficient, and improve the capacity factor of wind parks and their profitability. By substituting the variable pressure storage with an underwater variable volume air reservoir and reducing the wastage of compression heat using liquid Thermal Energy Storage (TES), which eliminates the combustor, the plant design allows overcoming the most common drawbacks of CAES plants. Underwater Compressed Air Energy Storage (UW-CAES) plants are investigated with a thermodynamic model to drive the power plant design toward efficiency maximization. Functional maps, constrained on the plant pressure ratio and the number of compressor/turbine phases with inter-refrigerated/inter-heating phases, are drawn by solving the model iteratively for the heat exchangers’ effectiveness to meet the target turbine discharge temperature, selected in advance to avoid unfeasible mathematical solutions. Full article
(This article belongs to the Special Issue Sustainable Energy and Power Systems)
Show Figures

Figure 1

24 pages, 15240 KiB  
Review
A Complex of Marine Geophysical Methods for Studying Gas Emission Process on the Arctic Shelf
by Artem A. Krylov, Roman A. Ananiev, Denis V. Chernykh, Dmitry A. Alekseev, Ermolay I. Balikhin, Nikolay N. Dmitrevsky, Mikhail A. Novikov, Elena A. Radiuk, Anna V. Domaniuk, Sergey A. Kovachev, Georgy K. Timashkevich, Vladimir N. Ivanov, Dmitry A. Ilinsky, Oleg Yu. Ganzha, Alexey Yu. Gunar, Pavel Yu. Pushkarev, Andrey V. Koshurnikov, Leopold I. Lobkovsky and Igor P. Semiletov
Sensors 2023, 23(8), 3872; https://doi.org/10.3390/s23083872 - 10 Apr 2023
Cited by 10 | Viewed by 3894
Abstract
The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires [...] Read more.
The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires an extensive complex of geological, biological, geophysical, and chemical studies. This article is devoted to aspects of the use of a complex of marine geophysical equipment applied in the Russian sector of the arctic shelf for the detection and study of areas of the water and sedimentary strata with increased saturation with natural gases, as well as a description of some of the results obtained. This complex contains a single-beam scientific high-frequency echo sounder and multibeam system, a sub-bottom profiler, ocean-bottom seismographs, and equipment for continuous seismoacoustic profiling and electrical exploration. The experience of using the above equipment and the examples of the results obtained in the Laptev Sea have shown that these marine geophysical methods are effective and of particular importance for solving most problems related to the detection, mapping, quantification, and monitoring of underwater gas release from the bottom sediments of the shelf zone of the arctic seas, as well as the study of upper and deeper geological roots of gas emission and their relationship with tectonic processes. Geophysical surveys have a significant performance advantage compared to any contact methods. The large-scale application of a wide range of marine geophysical methods is essential for a comprehensive study of the geohazards of vast shelf zones, which have significant potential for economic use. Full article
(This article belongs to the Special Issue Marine Sensors: Recent Advances and Challenges, Volume II)
Show Figures

Figure 1

15 pages, 8100 KiB  
Article
Study on High-Strain-Rate Deformation of Magnesium Alloy Using Underwater Shock Waves Generated by High-Voltage Electric Discharge of Thin Wire
by Hirofumi Iyama, Hayato Yamaguchi, Masatoshi Nishi and Yoshikazu Higa
Metals 2022, 12(11), 1939; https://doi.org/10.3390/met12111939 - 12 Nov 2022
Cited by 2 | Viewed by 1729
Abstract
Magnesium is an abundant material with high specific strength, and its use as a structural metal is increasing. However, its properties cause difficulty in its formation at room temperature. Therefore, the objective of this study was to form a magnesium alloy at room [...] Read more.
Magnesium is an abundant material with high specific strength, and its use as a structural metal is increasing. However, its properties cause difficulty in its formation at room temperature. Therefore, the objective of this study was to form a magnesium alloy at room temperature using an underwater shock wave generated by the discharge of an aluminum wire. Forming was conducted using an auxiliary plate composed of aluminum instead of magnesium alloy alone. In addition, hyperbolic and parabolic pressure vessels were employed. Numerical simulations were performed to measure the pressure values, propagation of underwater shock waves, and deformation of the magnesium alloy. Large deformation was observed when an auxiliary aluminum plate was placed on the upper surface of an AZ31 magnesium alloy plate inside the hyperbolic pressure vessel. Full article
(This article belongs to the Special Issue Explosive Welding and Impact Mechanics of Metal and Alloys)
Show Figures

Figure 1

15 pages, 3157 KiB  
Article
Microsecond Discharge Produced in Aqueous Solution for Pollutant Cr(VI) Reduction
by Son Truong Nguyen, Nicolas Fagnon, Arlette Vega, Xavier Duten, Sébastien Forget, Arnaud Brugier, Hervé Rabat and Cathy Rond
Plasma 2022, 5(4), 408-422; https://doi.org/10.3390/plasma5040030 - 29 Sep 2022
Viewed by 1744
Abstract
This paper presents a detailed analysis of underwater electrical discharge parameters in the treatment of chromium (VI) used as a model pollutant to analyze the reduction process by plasma liquid interaction (PLI). Pin-to-pin microsecond discharges were performed in an aqueous Cr(VI) solution and [...] Read more.
This paper presents a detailed analysis of underwater electrical discharge parameters in the treatment of chromium (VI) used as a model pollutant to analyze the reduction process by plasma liquid interaction (PLI). Pin-to-pin microsecond discharges were performed in an aqueous Cr(VI) solution and the processes were characterized using electrical measurements, optical imaging and UV-Vis absorption measurements for [Cr(VI)] estimation. For the first time, the total reduction of Cr(VI) was successfully achieved by PLI process and a maximum energy yield of 4.7 × 10−4 g/kJ was obtained. Parametric studies on electrode geometry, applied voltage, electrodes gap and pulse duration are presented in detail. Finally, an analysis of the process is proposed by comparing our results of the energy yield calculation based on the injected energy with those of the literature and by providing an estimation of the global energy efficiency of the process. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

8 pages, 1926 KiB  
Article
Optical Emission Spectroscopy of Underwater Spark Generated by Pulse High-Voltage Discharge with Gas Bubble Assistant
by Vitaliy Stelmashuk, Vaclav Prukner, Karel Kolacek, Andrii Tuholukov, Petr Hoffer, Jaroslav Straus, Oleksandr Frolov and Vit Jirasek
Processes 2022, 10(8), 1474; https://doi.org/10.3390/pr10081474 - 27 Jul 2022
Cited by 8 | Viewed by 2929
Abstract
This paper is aimed at the investigation of the acoustic and spectral characteristics of underwater electric sparks generated between two plate electrodes, using synchronized gas bubble injection. There are two purposes served by discharge initiation in the bubble. Firstly, it creates a favorable [...] Read more.
This paper is aimed at the investigation of the acoustic and spectral characteristics of underwater electric sparks generated between two plate electrodes, using synchronized gas bubble injection. There are two purposes served by discharge initiation in the bubble. Firstly, it creates a favorable condition for electrical breakdown. Secondly, the gas bubble provides an opportunity for the direct spectroscopy of plasma light emission, avoiding water absorption. The effect of water absorption on captured spectra was studied. It was observed that the emission intensity of the Ha line and a shockwave amplitude generated by discharge strongly depend on the size of the gas bubble in the moment of the discharge initiation. It was found that the plasma in the underwater spark channel does not correspond to a source of black-body radiation. This study can be also very useful for understanding the difference between discharges produced directly in a liquid and discharges produced in gas/vapor bubbles surrounded by a liquid. Full article
(This article belongs to the Special Issue Nanosecond Discharge Processes in Liquid Water)
Show Figures

Figure 1

26 pages, 9002 KiB  
Article
Investigation of the Spatio-Temporal Behaviour of Submarine Groundwater Discharge Using a Low-Cost Multi-Sensor-Platform
by Christoph Tholen, Iain Parnum, Robin Rofallski, Lars Nolle and Oliver Zielinski
J. Mar. Sci. Eng. 2021, 9(8), 802; https://doi.org/10.3390/jmse9080802 - 26 Jul 2021
Cited by 6 | Viewed by 4569
Abstract
Submarine groundwater discharge (SGD) is an important pathway of nutrients into coastal areas. During the last decades, interest of researchers in SGDs has grown continuously. However, methods applied for SGD research usually focus on the aquifer or on the mixing processes on larger [...] Read more.
Submarine groundwater discharge (SGD) is an important pathway of nutrients into coastal areas. During the last decades, interest of researchers in SGDs has grown continuously. However, methods applied for SGD research usually focus on the aquifer or on the mixing processes on larger scales. The distribution of discharged water within the water column is not well investigated. Small remotely operated vehicles (ROV) equipped with environmental sensors can be used to investigate the spatial distribution of environmental parameters in the water column. Herein, a low-cost multi-sensor platform designed to investigate the spatial distribution of water quality properties is presented. The platform is based on an off-the-shelf underwater vehicle carrying various environmental sensors and a short-baseline localisation system. This contribution presents the results of SGD investigations in the area of Woodman Point (Western Australia). Various potential SGD plumes were detected using a skiff equipped with a recreational echo sounder. It was demonstrated that this inexpensive equipment could be used to detect and investigate SGDs in coastal areas. In addition, the low-cost multi-sensor platform was deployed to investigate the spatial distribution of environmental parameters including temperature (T), electric conductivity (EC), dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and dissolved organic matter fluorescence (FDOM). Three ROV surveys were conducted from different skiff locations. Analyses of the spatial distribution of the environmental parameters allowed the identification of nine potential SGD plumes. At the same locations, plumes were identified during the sonar surveys. In addition, fuzzy logic was used for the fusion of salinity, DO, and FDOM readings in order to enhance SGD detection capability of the designed multi-sensor system. The fuzzy logic approach identified 293 data points as potential within a SGD plume. Average minimum-distance between these points and the identified SGD plumes was 0.5 m and 0.42 m smaller than the minimum-distance average of the remaining data points of survey one and three respectively. It was shown that low-cost ROVs, equipped with environmental sensors, could be an important tool for the investigation of the spatio-temporal behaviour of SGD sites. This method allows continuous mapping of environmental parameters with a high spatial and temporal resolution. However, to obtain deeper insights into the influence of SGDs on the nearshore areas, this method should be combined with other well-established methods for SGD investigation, such as pore water sampling, remote sensing, or groundwater monitoring. Full article
(This article belongs to the Special Issue Application of Coastal/Ocean Sensors and Systems)
Show Figures

Figure 1

20 pages, 30584 KiB  
Article
Reduction of Inrush Current in a Shockwave Non-Thermal Food Processing System Using an Exponential Clock Pulse Generator
by Kei Eguchi, Farzin Asadi, Akira Shibata, Hiroto Abe and Ichirou Oota
Sustainability 2020, 12(15), 6095; https://doi.org/10.3390/su12156095 - 29 Jul 2020
Cited by 15 | Viewed by 3021
Abstract
Recently, shockwave food processing is drawing much attention as a low-cost non-thermal food process technique. In shockwave non-thermal food processing, underwater shockwaves are generated by a high voltage generator. Therefore, high inrush currents and high voltage stress on circuit components significantly reduce the [...] Read more.
Recently, shockwave food processing is drawing much attention as a low-cost non-thermal food process technique. In shockwave non-thermal food processing, underwater shockwaves are generated by a high voltage generator. Therefore, high inrush currents and high voltage stress on circuit components significantly reduce the reliability and life expectancy of the circuit. However, to the best of our knowledge, stress reduction techniques and their experimental verification have not been studied yet in the shockwave non-thermal food processing system. In this paper, we propose a stress reduction technique for the shockwave non-thermal food processing system and investigate the effectiveness of the proposed technique experimentally. To achieve high reliability and life expectancy, a new high voltage multiplier with an exponential clock pulse generator is proposed for the shockwave non-thermal food processing system. By slowing down the rate at which the capacitors charge in the high voltage multiplier, the exponential clock pulse generator significantly reduces the inrush current. Furthermore, to perform shockwave non-thermal food processing continuously at a lower voltage level, we present a new electrode with a reset mechanism for wire electric discharge (WED), where a square-shaped metal wire swings on a hinge in the proposed electrode. The proposed electrode enables not only shockwave generation at a lower voltage level but also continuous non-thermal food processing, because the square-shaped metal wire is not melted in the WED process. To confirm the validity of the proposed techniques, some experiments are performed regarding the laboratory prototype of the shockwave non-thermal food processing system. In the performed experiments, reduction of inrush currents and effective food processing are confirmed. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

17 pages, 2517 KiB  
Article
High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada
by Yuehua Lin and David B. Fissel
J. Mar. Sci. Eng. 2014, 2(1), 209-225; https://doi.org/10.3390/jmse2010209 - 19 Mar 2014
Cited by 7 | Viewed by 7293
Abstract
The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM) was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows) [...] Read more.
The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM) was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows) and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results. Full article
Show Figures

Figure 1

Back to TopTop