Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = underground gasification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 13022 KiB  
Article
Dynamic Mechanical Characteristics and Fracture Size Effect of Coal Sandstone Under High-Temperature and High-Strain Rate Coupling Action
by Ming Li, Fuqiang Zhu, Yiwen Mao, Fangwei Fan, Boyuan Wu and Jishuo Deng
Fractal Fract. 2025, 9(6), 381; https://doi.org/10.3390/fractalfract9060381 - 15 Jun 2025
Cited by 2 | Viewed by 485
Abstract
The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and [...] Read more.
The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and clay minerals. Its mechanical behavior under high-temperature and dynamic loading is complex and significantly affects rock stability. To investigate the deformation and failure mechanisms under thermal–dynamic coupling, this study conducted uniaxial impact compression tests using a high-temperature split Hopkinson pressure bar (HT-SHPB) system. The focus was on analyzing mechanical response, energy dissipation, and fragmentation characteristics under varying temperature and strain rate conditions. The results show that the dynamic elastic modulus, compressive strength, fractal dimension of fragments, energy dissipation density, and energy consumption rate all increase initially with temperature and then decrease, with inflection points observed at 400 °C. Conversely, dynamic peak strain first decreases and then increases with rising temperature, also showing a turning point at 400 °C. This indicates a shift in the deformation and failure mode of the material. The findings provide critical insights into the thermo-mechanical behavior of coal-bearing sandstone under extreme conditions and offer a theoretical basis for designing effective deformation control strategies in underground coal gasification projects. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

15 pages, 4390 KiB  
Article
Deformation and Pore Structure Characteristics of Lignite Pyrolysis with Temperature Under Triaxial Stress
by Feng Zhang, Shiwei Niu, Jiawei He, Kai Zhang and Zhongcheng Qin
Processes 2025, 13(5), 1444; https://doi.org/10.3390/pr13051444 - 9 May 2025
Viewed by 423
Abstract
As people pay increasing attention to the clean and efficient mining and utilization of coal resources, efforts to improve the utilization rate of coal, modify coal resources, and carry out coal gasification have become more and more important. The deformation characteristics of lignite, [...] Read more.
As people pay increasing attention to the clean and efficient mining and utilization of coal resources, efforts to improve the utilization rate of coal, modify coal resources, and carry out coal gasification have become more and more important. The deformation characteristics of lignite, the most appropriate coal type for underground coal gasification, are intricately linked to its mechanical properties, permeability characteristics, and mining efficiency throughout the extraction process. The deformation and pore structure characteristics of lignite from room temperature to 650 °C have been studied through high-temperature triaxial penetration testing systems, NMR, and X-CT. As the temperature increases, the porosity of lignite rises, its mechanical strength decreases, and significant deformation occurs, and high temperatures promote pore development in lignite. The axial deformation of lignite pyrolysis is divided into three stages: the dehydration and degassing at room temperature to ~200 °C, the slow deformation between 200 °C and 300 °C, and the pyrolysis deformation from 300 °C to 650 °C. Significant deformation occurs during both the dehydration degassing and pyrolysis deformation stages. Between 250 °C and 650 °C, a large number of highly interconnected pore networks form. Investigating the deformation and pore structure characteristics of lignite is crucial for elucidating its mechanical and permeability features under varying temperature and pressure conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Graphical abstract

20 pages, 6178 KiB  
Article
General Evaluation of the Recyclability of Polyester-Glass Laminates Used to Reinforce Steel Tanks
by Sławomir Stelmach, Dawid Gacki, Mateusz Szul, Kamil Słowiński, Tomasz Radko and Małgorzata Wojtaszek-Kalaitzidi
Sustainability 2025, 17(9), 4199; https://doi.org/10.3390/su17094199 - 6 May 2025
Viewed by 393
Abstract
Polyester-glass laminates are widely used to reinforce underground steel fuel tanks due to their excellent corrosion resistance and mechanical performance. However, the management of these composites at the end of their service life poses significant challenges, particularly in terms of material recovery and [...] Read more.
Polyester-glass laminates are widely used to reinforce underground steel fuel tanks due to their excellent corrosion resistance and mechanical performance. However, the management of these composites at the end of their service life poses significant challenges, particularly in terms of material recovery and environmental impact. This study investigates both the structural benefits and recyclability of polyester-glass laminates. Numerical simulations confirmed that reinforcing corroded steel tank shells with a 5 mm GFRP (Glass Fiber Reinforced Polymer) coating reduced the maximum equivalent stress by nearly 50%, significantly improving mechanical integrity. In parallel, thermogravimetric and microscopic analyses were conducted on waste GFRP samples subjected to pyrolysis, gasification, and combustion. Among the methods tested, pyrolysis proved to be the most favorable, allowing substantial organic degradation while preserving the structural integrity of the glass fiber fraction. However, microscopy revealed that the fibers were embedded in a dense char matrix, requiring additional separation processes. Although combustion leaves the fibers physically loose, pyrolysis is favored due to better preservation of fiber mechanical properties. Combustion resulted in loose and morphologically intact fibers but exposed them to high temperatures, which, according to the literature, may reduce their mechanical strength. Gasification showed intermediate performance in terms of energy recovery and fiber preservation. The findings suggest that pyrolysis offers the best trade-off between environmental performance and fiber recovery potential, provided that appropriate post-treatment is applied. This work supports the use of pyrolysis as a technically and environmentally viable strategy for recycling polyester-glass laminates and encourages further development of closed-loop composite waste management. Full article
(This article belongs to the Special Issue Solid Waste Management and Recycling for a Sustainable World)
Show Figures

Figure 1

15 pages, 2290 KiB  
Article
Enhancing Mining Enterprise Energy Resource Extraction Efficiency Through Technology Synthesis and Performance Indicator Development
by Oleksandr Vladyko, Dmytro Maltsev, Łukasz Gliwiński, Roman Dychkovskyi, Kinga Stecuła and Artur Dyczko
Energies 2025, 18(7), 1641; https://doi.org/10.3390/en18071641 - 25 Mar 2025
Cited by 1 | Viewed by 395
Abstract
The extraction of minerals continues to face rising costs, but advancements in engineering and technology help reduce these costs, making efficiency improvement a critical goal for mining enterprises. The integration of additional technologies is one approach to achieving increased efficiency, though it presents [...] Read more.
The extraction of minerals continues to face rising costs, but advancements in engineering and technology help reduce these costs, making efficiency improvement a critical goal for mining enterprises. The integration of additional technologies is one approach to achieving increased efficiency, though it presents challenges in accounting for the parameters of these technologies and determining their influencing factors. This paper proposes a methodical approach to developing performance indicators for mining enterprises under such conditions. Based on previous research, the mining enterprise is divided into subsystems, allowing for detailed analysis and the creation of indicators that represent the overall operations. Scientific studies on the definition and application of indicators in production enterprises are examined and adapted to mining enterprises, where the synthesis of multiple technologies is feasible. The paper introduces a methodology for determining integral performance indicators, which is tested through a case study using the “Heroiv Kosmosu” mine, applying both traditional longwall coal mining and coal seam well gasification technologies. This selection of technologies facilitates a detailed description of the necessary equipment, extraction methods, and organizational measures for safe operations. It also offers insights into the potential for scaling the analysis of multiple technologies operating simultaneously. The integration of a consistency coefficient in the model allows for more accurate final values of the indicators, reflecting their qualitative homogeneity. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

26 pages, 6966 KiB  
Article
Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams
by Ivan Sakhno, Svitlana Sakhno and Oleksandr Vovna
Sustainability 2025, 17(6), 2533; https://doi.org/10.3390/su17062533 - 13 Mar 2025
Cited by 3 | Viewed by 753
Abstract
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability [...] Read more.
Underground coal gasification (UCG) is a clean and automated coal technological process that has great potential. Environmental hazards such as the risk of ground surface subsidence, flooding, and water pollution are among the problems that restrict the application of UCG. Overburden rock stability above UCG cavities plays a key role in the prevention of the mentioned environmental hazards. It is necessary to optimize the safety pillar width to maintain rock stability and ensure minimal coal losses. This study focused on the investigation of the influence of pillar parameters on surface subsidence, taking into account the non-rectangular shape of the pillar and the presence of voids above the UCG reactor in the immediate roof. The main research was carried out using the finite element method in ANSYS 17.2 software. The results of the first simulation stage demonstrated that during underground gasification of a thin coal seam using the Controlled Retraction Injection Points method, with reactor cavities measuring 30 m in length and pillars ranging from 3.75 to 15 m in width, the surface subsidence and rock movement above gasification cavities remain within the pre-peak limits, provided the safety pillar’s bearing capacity is maintained. The probability of crack initiation in the rock mass and subsequent environmental hazards is low. However, in the case of the safety pillars’ destruction, there is a high risk of crack evolution in the overburden rock. In the case of crack formation above the gasification panel, the destruction of aquiferous sandstones and water breakthroughs into the gasification cavities become possible. The surface infrastructure is therefore at risk of destruction. The assessment of the pillars’ stability was carried out at the second stage using numerical simulation. The study of the stress–strain state and temperature distribution in the surrounding rocks near a UCG reactor shows that the size of the heat-affected zone of the UCG reactor is less than the thickness of the coal seam. This shows that there is no significant direct influence of the gasification process on the stability of the surrounding rocks around previously excavated cavities. The coal seam failure in the side walls of the UCG reactor, which occurs during gasification, leads to a reduction in the useful width of the safety pillar. The algorithm applied in this study enables the optimization of pillar width under any mining and geological conditions. This makes it possible to increase the safety and reliability of the UCG process. For the conditions of this research, the failure of coal at the stage of gasification led to a decrease in the useful width of the safety pillar by 0.5 m. The optimal width of the pillar was 15 m. Full article
Show Figures

Figure 1

16 pages, 10230 KiB  
Article
Numerical Simulation of Temperature Field Evolution and Distribution Range During Movement of Underground Coal Gasification Working Face
by Wei Li, Jian Liu, Lin Xin, Wei Li, Jianguo Fan, Xianmin Wang, Yan Ma, Weimin Cheng, Jiancai Sui and Maofei Niu
Energies 2025, 18(4), 931; https://doi.org/10.3390/en18040931 - 14 Feb 2025
Viewed by 513
Abstract
Studying temperature evolution and distribution range during underground coal gasification is essential to optimize process efficiency, ensure safe and stable operation and reduce environmental impact. In this paper, based on the Liyan Coal Mine underground gasification project, the moving grid setting is used [...] Read more.
Studying temperature evolution and distribution range during underground coal gasification is essential to optimize process efficiency, ensure safe and stable operation and reduce environmental impact. In this paper, based on the Liyan Coal Mine underground gasification project, the moving grid setting is used to simulate the moving heat transfer process of the underground coal gasification (UCG) flame working face (FWF). The results showed that the temperature distribution within the coal wall facing the flame is relatively narrow and remains concentrated within a limited range. Temperature distribution curves for T = 100 °C and T = 600 °C initially exhibit a nonlinear increase, reaching a maximum value, followed by a nonlinear decrease, ultimately trending towards a constant value. The maximum temperature influence ranges at ∆T = 10 °C (T = 30 °C) in the roof, left coal pillar, and floor are approximately 13.0 m, 9.0 m, and 10.1 m, respectively. The temperature values at the +1 m and +2 m positions on the roof exhibit a parabolic pattern, with the height and width of the temperature curve gradually increasing. By the end of the operation at t = 190 d, the length range of temperatures exceeding 600 °C at the +1 m position is 73 m, with a maximum temperature of approximately 825 °C, while at the +2 m position it is 31 m, with a maximum temperature of approximately 686 °C. Full article
(This article belongs to the Section H3: Fossil)
Show Figures

Figure 1

16 pages, 4474 KiB  
Article
Enhanced Hydrogen-Rich Syngas Production Through In-Situ Heavy Oil Gasification Process Using Nanoscale Nickel Catalyst
by Tiantian Wang, Renbao Zhao, Ying Yang, Haitao Ren, Wentao Lv, Han Xu and Jiyang Liu
Molecules 2025, 30(4), 809; https://doi.org/10.3390/molecules30040809 - 10 Feb 2025
Cited by 1 | Viewed by 863
Abstract
With the increasing demand for clean energy, in-situ hydrogen production from hydrocarbon reservoirs has attracted increasing attention. In this work, a nanoscale nickel catalyst was prepared using the water-in-oil (w/o) microemulsion method and applied in the in-situ generation of hydrogen-rich syngas from heavy [...] Read more.
With the increasing demand for clean energy, in-situ hydrogen production from hydrocarbon reservoirs has attracted increasing attention. In this work, a nanoscale nickel catalyst was prepared using the water-in-oil (w/o) microemulsion method and applied in the in-situ generation of hydrogen-rich syngas from heavy oil reservoirs. The activation energy (Ea) of the gasification reactions significantly decreased with the addition of the nickel catalyst. The catalytic effect was monitored through remarkable increases in the peak temperature values for both the low-temperature oxidation (LTO) and high-temperature oxidation (HTO) processes, and the two peaks also shifted to lower-temperature regions. Additionally, the catalyst exhibited excellent activity and selectivity during the reaction process, and therefore the highest production rate of hydrogen-rich syngas of 20.07%, combined with the peak hydrogen concentration of 5.00%, was obtained in the presence of the catalyst and water. The substantial rate of hydrogen conversion from heavy oil was calculated to be 397.87 mL/g. The preliminary results obtained in this work show that this method is a significant improvement, and the catalyst-assisted method is believed to have great potential for underground fossil fuel conversion in the future. Full article
Show Figures

Graphical abstract

21 pages, 1583 KiB  
Article
The Efficiency of Chemical and Electrochemical Coagulation Methods for Pretreatment of Wastewater from Underground Coal Gasification
by Mateusz Szul, Katarzyna Rychlewska, Tomasz Iluk and Tomasz Billig
Water 2024, 16(17), 2540; https://doi.org/10.3390/w16172540 - 8 Sep 2024
Cited by 1 | Viewed by 1881
Abstract
This article compares chemical coagulation with electrocoagulation, two popular methods for the primary treatment of wastewater generated in the process of underground coal gasification (UCG). The primary aim was to determine which method is more effective in the removal of cyanide and sulphide [...] Read more.
This article compares chemical coagulation with electrocoagulation, two popular methods for the primary treatment of wastewater generated in the process of underground coal gasification (UCG). The primary aim was to determine which method is more effective in the removal of cyanide and sulphide ions, metals and metalloids, as well as organic compounds. In both cases, experiments were conducted in batch 1 dm3 reactors and using iron ions. Four types of coagulants were tested during the chemical coagulation study: FeCl2, FeSO4, Fe2(SO4)3, and FeCl3. In the electrocoagulation experiments, pure iron Armco steel was used to manufacture the sacrificial iron anode. Both processes were tested under a wide range of operating conditions (pH, time, Fe dose) to determine their maximum efficiency for treating UCG wastewater. It was found that, through electrocoagulation, a dose as low as 60 mg Fe/dm3 leads to >60% cyanide reduction and >98% sulphide removal efficiency, while for chemical coagulation, even a dose of 307 mg Fe/dm3 did not achieve more than 24% cyanide ion removal. Moreover, industrial chemical coagulants, especially when used in very high doses, can be a substantial source of cross-contamination with trace elements. Full article
Show Figures

Figure 1

16 pages, 6625 KiB  
Article
Surface Subsidence Modelling Induced by Formation of Cavities in Underground Coal Gasification
by Yuan Jiang, Bingbing Chen, Lin Teng, Yan Wang and Feng Xiong
Appl. Sci. 2024, 14(13), 5733; https://doi.org/10.3390/app14135733 - 1 Jul 2024
Cited by 5 | Viewed by 1331
Abstract
Underground coal gasification (UCG) is an efficient method for the conversion of deep coal resources into energy. The scope of this work is to model the subsidence of four gasification cavities with a size of 30 m × 30 m × 15 m, [...] Read more.
Underground coal gasification (UCG) is an efficient method for the conversion of deep coal resources into energy. The scope of this work is to model the subsidence of four gasification cavities with a size of 30 m × 30 m × 15 m, separated by 15 m wide pillars. Two scenarios of gasification sequence are modelled, one with the gasification of cavities 1 and 2 followed by 3 and 4, and the other one with the sequence of cavities 1 and 3, followed by 2 and 4. The results show that the final surface subsidence after gasification of four cavities is 9.8 mm and the gasification sequence has an impact only on the subsidence at the intermediate stage but has no impact on the final subsidence after all four cavities are formed, when only the elasticity regime is considered. Additionally, the maximum surface subsidence for the studied cavities of different sizes ranges from 0.016 mm to 7.14 mm, and the relationship between the subsidence and the cavity volume is approximately linear. Finally, a prediction model of surface subsidence deformation is built up using the elastic plate theory, and the formula of surface deformation at a random point is given. The maximum difference between measured and calculated deformation is 4.6%, demonstrating that the proposed method can be used to predict the ground subsidence induced by UCG. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

3 pages, 134 KiB  
Editorial
Porous Flow of Energy and CO2 Transformation and Storage in Deep Formations: An Overview
by Rui Song and Jianjun Liu
Energies 2024, 17(11), 2597; https://doi.org/10.3390/en17112597 - 28 May 2024
Viewed by 1063
Abstract
The transformation and storage of energy and carbon dioxide in deep reservoirs include underground coal gasification, the underground storage of oil and gas, the underground storage of hydrogen, underground compressed air energy storage, the geological utilization and storage of carbon dioxide, etc [...] [...] Read more.
The transformation and storage of energy and carbon dioxide in deep reservoirs include underground coal gasification, the underground storage of oil and gas, the underground storage of hydrogen, underground compressed air energy storage, the geological utilization and storage of carbon dioxide, etc [...] Full article
17 pages, 2961 KiB  
Article
Simulation of Underground Coal-Gasification Process Using Aspen Plus
by Shuxia Yuan, Wanwan Jiao, Chuangye Wang, Song Wu and Qibin Jiang
Energies 2024, 17(7), 1619; https://doi.org/10.3390/en17071619 - 28 Mar 2024
Cited by 2 | Viewed by 2242
Abstract
In order to study the underground coal-gasification process, Aspen Plus software was used to simulate the lignite underground gasification process, and a variety of unit operation modules were selected and combined with the kinetic equations of coal underground gasification. The model can reflect [...] Read more.
In order to study the underground coal-gasification process, Aspen Plus software was used to simulate the lignite underground gasification process, and a variety of unit operation modules were selected and combined with the kinetic equations of coal underground gasification. The model can reflect the complete gasification process of the coal underground gasifier well, and the simulation results are more in line with the experimental results of the lignite underground gasification model test. The changes in the temperature and pressure of oxygen, gasification water, spray water, and syngas in pipelines were studied, and the effects of pipe diameters on pipeline conveying performance were investigated as well. The effects of the oxygen/water ratio, processing capacity, and spray-water volume on the components of syngas and components in different reaction zones were studied. In addition, the change tendency of gasification products under different conditions was researched. The results indicate that: (1) The depth of injection and the formation pressure at that depth need to be taken into account to determine a reasonable injection pressure. (2) The liquid-water injection process should select a lower injection pressure. (3) Increasing the oxygen/water ratio favors H2 production and decreasing the oxygen/water ratio favors CH4 production. (4) The content of CO2 is the highest in the oxidation zone, the lowest in the reduction zone, and then increases a little in the methanation reaction zone for the transform reaction. The content of CO is the lowest in the oxidation zone and the highest in the reduction zone. In the methanation reaction zone, CO partially converts into H2 and CO2, and the content of CO is reduced. (5) The injection of spray water does not affect the components of the gas but will increase the water vapor content in the gas; thus, this changes the molar fraction of the wet gas. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

23 pages, 43088 KiB  
Article
Physical and Mechanical Properties and Damage Mechanism of Sandstone at High Temperatures
by Yadong Zheng, Lianying Zhang, Peng Wu, Xiaoqian Guo, Ming Li and Fuqiang Zhu
Appl. Sci. 2024, 14(1), 444; https://doi.org/10.3390/app14010444 - 3 Jan 2024
Cited by 10 | Viewed by 2537
Abstract
The physical and mechanical properties of rocks change significantly after being subjected to high temperatures, which poses safety hazards to underground projects such as coal underground gasification. In order to investigate the effect of temperature on the macroscopic and microscopic properties of rocks, [...] Read more.
The physical and mechanical properties of rocks change significantly after being subjected to high temperatures, which poses safety hazards to underground projects such as coal underground gasification. In order to investigate the effect of temperature on the macroscopic and microscopic properties of rocks, this paper has taken sandstone as the research object and conducted uniaxial compression tests on sandstone specimens at different temperatures (20–1000 °C) and different heating rates (5–30 °C/min). At the same time, the acoustic emission (AE) test system was used to observe the acoustic emission characteristics of the rock damage process, and the microstructural changes after high temperature were analyzed with the help of a scanning electron microscope (SEM). The test results show that the effect of temperature on sandstone is mainly divided into three stages: Stage I (20–500 °C) is the strengthening zone, the evaporation of water and the contraction of primary fissures, and sandstone densification is enhanced. In particular, the compressive strength and elastic modulus increase, the macroscopic damage mode is dominated by shear damage, and the fracture micromorphology is mainly brittle fracture. Stage II (500–600 °C) is the transition zone, 500 °C is the threshold temperature for the compressive strength and modulus of elasticity, and the damage mode changes from shear to cleavage damage, and the sandstone undergoes brittle–ductile transition in this temperature interval. Stage III is the physicochemical deterioration stage. The changes in the physical and chemical properties make the sandstone compressive strength and modulus of elasticity continue to decline, the macroscopic damage mode is mainly dominated by cleavage damage, and the fracture microscopic morphology is of a more toughness fracture. The effect of different heating rates on the mechanical properties of sandstone was further studied, and it was found that the mechanical properties of the rock further deteriorated under higher heating rates. Full article
Show Figures

Figure 1

12 pages, 3110 KiB  
Article
Study on Erosion Wear of Single- and Double-Orifice Throttling Tools for Underground Coal Gasification
by Jianjun Wang, Bingchao Zhou, Jianglong Fu, Siqi Yang, Chao Wang and Xiangyi Ren
Processes 2024, 12(1), 120; https://doi.org/10.3390/pr12010120 - 2 Jan 2024
Cited by 1 | Viewed by 1539
Abstract
In underground coal gasification, as a choke regulating the formation gas lift pressure, the throttling tool can effectively reduce the production cost, the number of ground heating and insertion equipment, and gas consumption. Because in this process, the coal is transformed into composite [...] Read more.
In underground coal gasification, as a choke regulating the formation gas lift pressure, the throttling tool can effectively reduce the production cost, the number of ground heating and insertion equipment, and gas consumption. Because in this process, the coal is transformed into composite synthetic gas through a series of technical treatments, the throttling tool is in a working environment with high temperature and pressure. In the process of transportation of combined synthetic gas, the pulverized coal parts produced by incomplete coal combination move with the gas in the throttling tool. The high temperature and high-pressure gas carrying large-diameter pressed coal parts will cause serial erosion and wear to the throttling device, resulting in failure and well-controlled safety risks. Therefore, according to the Joule–Thomson effect, this paper independently designs downhole throttling tools with single- and double-hole structures. According to actual field conditions, the erosion wear of throttling tools with different systems in high-temperature gas–solid two-phase flow was simulated and predicted, and the internal flow field characteristics of throttling means were analyzed. The difference between the wall wear distribution, wall collision position, and wall erosion effect of different structure throttling mechanisms with the change in gas velocity was investigated, which guides the practical use of the subsequent throttling tools. Full article
(This article belongs to the Special Issue Risk Assessment and Reliability Engineering of Process Operations)
Show Figures

Figure 1

18 pages, 10872 KiB  
Article
Visualization of Movement and Expansion of Coal Reaction Zone by Acoustic Emission Monitoring in Underground Coal Gasification System
by Rika Iriguchi, Yuma Ishii, Akihiro Hamanaka, Faqiang Su, Ken-ichi Itakura, Jun-ichi Kodama, Takashi Sasaoka, Hideki Shimada and Gota Deguchi
Eng 2023, 4(4), 2960-2977; https://doi.org/10.3390/eng4040166 - 30 Nov 2023
Cited by 1 | Viewed by 1344
Abstract
Underground coal gasification (UCG) is the process of directly recovering energy as combustible gases such as hydrogen and carbon monoxide by combusting unmined coal resources in situ. The UCG process is an invisible phenomenon, in which fracturing activity at high temperature (>1000 °C) [...] Read more.
Underground coal gasification (UCG) is the process of directly recovering energy as combustible gases such as hydrogen and carbon monoxide by combusting unmined coal resources in situ. The UCG process is an invisible phenomenon, in which fracturing activity at high temperature (>1000 °C) in coal seams expands the gasification zone and increases the combustible components of the product gas. However, excessive expansion of the gasification zone may cause environmental problems such as gas leakage, deformation of the surrounding ground, and groundwater pollution. Therefore, visualization of the gasification zone of UCG is required for both improving gasification efficiency and developing UCG systems with low environmental impact. In this study, the large-scale model UCG experiments conducted on a laboratory scale (size: 625 mm × 650 mm × 2792 mm (H × W × L)) were carried out to discuss the visualization of the gasification reaction zone of coal in UCG by Acoustic Emission (AE) technique with uniaxial and triaxial acceleration transducers. As the results of temperature monitoring and AE source location analysis show, AE sources are located near the high-temperature zone (>1000 °C). In addition, the located AE sources move and expand with the movement and expansion of the high-temperature zone. AE measurement can be a useful technique for monitoring the progress of the UCG reaction zone. AE measurement with triaxial sensors is also useful to predict a high-temperature zone though the measurable range, which has to be considered. Full article
Show Figures

Figure 1

15 pages, 5991 KiB  
Article
A Preliminary Study on the Improvement of Gangue/Tailing Cemented Fill by Bentonite: Flow Properties, Mechanical Properties and Permeability
by Hongsheng Wang, Dengfeng Chen, Ruihong Guo, Jiahao Tian and Bin Li
Materials 2023, 16(20), 6802; https://doi.org/10.3390/ma16206802 - 22 Oct 2023
Cited by 8 | Viewed by 1675
Abstract
Backfill mining has significant advantages in safe mining, solid waste utilization and ecological environmental protection, but solid waste materials (tailings, gangue and coal gasification slag, etc.), as derivative residues of the chemical and metallurgical industries, contain a large number of heavy metal elements, [...] Read more.
Backfill mining has significant advantages in safe mining, solid waste utilization and ecological environmental protection, but solid waste materials (tailings, gangue and coal gasification slag, etc.), as derivative residues of the chemical and metallurgical industries, contain a large number of heavy metal elements, which is posing great challenges to the underground environment after backfill. In order to study the feasibility of bentonite for reducing the permeability of gangue/tailing sand cemented backfill body, relevant tests were carried out from the basic performance index, flow performance and mechanical properties of paste backfill materials. The test results show that bentonite has a significant effect on the water secretion rate of cemented fillers, and also promotes the improvement of slump and diffusion diameter of backfill slurry. The enhancement effect of mechanical properties in the early stage is not obvious, mainly concentrated in the middle and late stages of specimen curing. With the increase of bentonite content, the 28-day uniaxial compressive strength increased from 7.1 MPa and 7.9 MPa to 8.7 MPa and 9.0 MPa, respectively. Bentonite is filled between the pores of the cemented backfill with its fine particles and water swelling, which can reduce the porosity and permeability of the gangue and tailings cemented backfill. Therefore, on the premise of satisfying the flow and mechanical properties of paste backfill, bentonite can be used to improve the permeability of cemented backfill and reduce the leaching and migration of heavy metal ions. Full article
Show Figures

Figure 1

Back to TopTop