Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams
Abstract
:1. Introduction
2. Engineering Background
2.1. Geological and Engineering Conditions
2.2. Project Overview
3. Study of Surface Subsidence and Rock Mass Movement Above the Gasification Cavities: Materials and Methods
3.1. Numerical Model at First Simulation Stage
3.2. Simulation Results of the First Simulation Stage
3.2.1. Pessimistic Scenario
3.2.2. Scenario #1 and Scenario #2
3.3. Simulation Discussion of the First Simulation Stage
4. Analysis of Safety Pillar Stability
4.1. Numerical Model at the Second Simulation Stage
4.2. Simulation Results of the Second Simulation Stage
4.2.1. Stress Analysis in the Heat-Affected Zone of the UCG Reactor
4.2.2. Stress Analysis Outside the Heat-Affected Zone of the UCG Reactor
- -
- Stress relief is observed at the edge of the pillar, which indicates the post-elastic stage of coal deformation;
- -
- Beyond the relief zone, the highest stresses are concentrated near the edge of the pillar;
- -
- The stress in the pillar gradually decreases to its center.
4.3. Simulation Discussion
5. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Adoption of the Paris Agreement. Proposal by the President. United Nations Framework Convention on Climate Change. In Proceedings of the Conference of the Parties (COP21), Paris, France, 30 November–11 December 2015; pp. 1–31. [Google Scholar]
- UNFCCC. Glasgow Climate Pact. In Proceedings of the Conference of the Parties Serving as the Meeting of the Parties to the Paris Agreement, Glasgow, UK, 31 October–13 November 2021; pp. 1–10. Available online: https://unfccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf (accessed on 1 July 2024).
- Allam, Z.; Bibri, S.E.; Sharpe, S.A. The Rising Impacts of the COVID-19 Pandemic and the Russia–Ukraine War: Energy Transition, Climate Justice, Global Inequality, and Supply Chain Disruption. Resources 2022, 11, 99. [Google Scholar] [CrossRef]
- BGR. Reserves, Resources and Availability of Energy Resources. Federal Institute for Geosciences and Natural Resources (BGR), Energy Study 2015. Available online: https://www.bgr.bund.de/EN/Themen/Energie/Downloads/energiestudie_2015_en.html (accessed on 10 December 2024).
- Schiffer, H.-W.; Thielemann, T. Why there will be no peak coal in the foreseeable future. Open J. Geol. 2012, 2, 57–64. [Google Scholar] [CrossRef]
- Tracking Coal-fired Electricity Generation. Available online: https://www.iea.org/energy-system/fossil-fuels/coal (accessed on 1 July 2024).
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Underground coal gasification: From fundamentals to applications. Prog. Energy Combust. Sci. 2013, 39, 189–214. [Google Scholar] [CrossRef]
- Burton, E.; Friedmann, J.; Upadhye, R. Best Practices in Underground Coal Gasification; Contract No. W-7405-Eng-48; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2006. [Google Scholar]
- Kempka, T.; Plötz, M.-L.; Schlüter, R.; Hamann, J.; Deowan, S.A.; Azzam, R. Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 2011, 4, 2200–2205. [Google Scholar] [CrossRef]
- Nakaten, N.; Kötting, P.; Azzam, R.; Kempka, T. Underground Coal Gasification and CO2 Storage Support Bulgaria’s Low Carbon Energy Supply. Energy Procedia 2013, 40, 212–221. [Google Scholar] [CrossRef]
- Lawrence Livermore National Laboratory (LLNL); Livermore, CA (United States). Final Geometry and Dimensions of UCG Field Test Cavities; Original Report Date: September 2012; Released as a Technical Report: 2017; USDOE National Nuclear Security Administration (NNSA): Kansas City, MI, USA, 2017. [Google Scholar]
- Younger, P.L. Hydrogeological and Geomechanical Aspects of Underground Coal Gasification and its Direct Coupling to Carbon Capture and Storage. Mine Water Environ. 2011, 30, 127–140. [Google Scholar] [CrossRef]
- Luo, Y.; Coertzen, M.; Dumble, S. Comparison of UCG Cavity Growth with CFD Model Predictions. In Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 9–11 December 2009; pp. 1–5. [Google Scholar]
- Elahi, S.M.; Chen, Z.; Nassir, M. Geomechanical Simulation of Underground Coal Gasification. In Proceedings of the 50th U.S. Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, 26–29 June 2016; Volume 16, pp. 1–13. [Google Scholar]
- Mostade, M. Underground Coal Gasification (UCG)—The Path to Commercialization. CPSI J. 2014, 6, 18–37. [Google Scholar]
- Tian, H.; Kempka, T.; Xu, N.-X.; Ziegler, M. Physical Properties of Sandstones After High Temperature Treatment. Rock Mech. Rock Eng. 2012, 45, 1113–1117. [Google Scholar] [CrossRef]
- Li, H.; Guo, G.; Zha, J.; Yuan, Y.; Zhao, B. Research on the surface movement rules and prediction method of underground coal gasification. Bull. Eng. Geol. Environ. 2016, 75, 1133–1142. [Google Scholar] [CrossRef]
- Najafi, M.; Jalali, S.M.E.; KhaloKakaie, R. Thermal–mechanical–numerical analysis of stress distribution in the vicinity of underground coal gasification (UCG) panels. Int. J. Coal Geol. 2014, 134–135, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Guo, G.; Zheng, N. Influence of coal types on overlying strata movement and deformation in underground coal gasification without shaft and prediction method of surface subsidence. Process. Saf. Environ. Prot. 2018, 120, 302–312. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Viete, D.R.; Chen, B.J.; Samintha, M.; Perera, A. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Eng. Geol. 2012, 151, 120–127. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Q.; Hao, S.; Geng, J.; Lv, C. Experimental study on the variation of physicaland mechanical properties of rock after high temperature treatment. Appl. Therm. Eng. 2016, 98, 1297–1304. [Google Scholar] [CrossRef]
- Wang, S.; Liao, H.; Chen, Y.; Fernández-Steeger, T.M.; Du, X.; Xiong, M.; Liao, S. Damage Evolution Constitutive Behavior of Rock in Thermo-Mechanical Coupling Processes. Materials 2021, 14, 7840. [Google Scholar] [CrossRef]
- Ekneligoda, T.; Marshall, A. A coupled thermal-mechanical numerical model of underground coal gasification (UCG) including spontaneous coal combustion and its effects. Int. J. Coal Geol. 2018, 199, 31–38. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Yuan, L. A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis. Energy 2024, 130614. [Google Scholar] [CrossRef]
- Yang, D.; Sarhosis, V.; Sheng, Y. Thermal–mechanical modelling around the cavities of underground coal gasification. J. Energy Inst. 2014, 87, 321–329. [Google Scholar] [CrossRef]
- Zha, X.X.; Wang, H.Y.; Cheng, S.S. Finite element analysis of the subsidence of cap rocks during underground coal gasification process. Adv. Mater. Res. 2014, 859, 91–94. [Google Scholar] [CrossRef]
- Lee, K.; Nam, J.; Park, J.; Hong, G. Numerical Analysis of Factors Influencing the Ground Surface Settlement Above a Cavity. Materials 2022, 15, 8301. [Google Scholar] [CrossRef]
- Liu, X.; Xu, L.; Zhang, K. Strata movement characteristics in underground coal gasification (UCG) under thermal coupling and surface subsidence prediction methods. Appl. Sci. 2023, 13, 5192. [Google Scholar] [CrossRef]
- Rezaei, M.; Rajabi, M. Vertical displacement estimation in roof and floor of an underground powerhouse cavern. Eng. Fail. Anal. 2018, 90, 290–309. [Google Scholar] [CrossRef]
- Elahi, S.; Nassir, M.; Chen, Z. Effect of various coal constitutive models on coupled thermo-mechanical modeling of underground coal gasification. J. Pet. Sci. Eng. 2017, 154, 469–478. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, B.; Teng, L.; Wang, Y.; Xiong, F. Surface Subsidence Modelling Induced by Formation of Cavities in Underground Coal Gasification. Appl. Sci. 2024, 14, 5733. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Li, H.Z.; Guo, G.L.; Liu, X.P. Stability analysis of hyperbolic coal pillars with peeling and high temperature effects. Energy Explor. Exploit. 2020, 38, 1574–1588. [Google Scholar] [CrossRef]
- Li, H.; Guo, G.; Zha, J.; He, Y.; Wang, Z.; Qin, S. Stability evaluation method for hyperbolic coal pillars under the coupling effects of high temperature and ground stress. Environ. Earth Sci. 2017, 76, 704–714. [Google Scholar] [CrossRef]
- Saik, P.; Dychkovskyi, R.; Lozynskyi, V.; Falshtynskyi, V.; Ovcharenko, A. Achieving climate neutrality in coal mining regions through the underground coal gasification. E3S Web Conf. 2024, 526, 01004. [Google Scholar] [CrossRef]
- Saik, P.B.; Dychkovskyi, R.O.; Lozynskyi, V.H.; Malanchuk, Z.R.; Malanchuk, Y.Z. Revisiting the underground gasification of coal reserves from contiguous seams. Nauk. Visn. NHU 2016, 6, 60–66. [Google Scholar]
- Seifi, M.; Chen, Z.; Abedi, J. Large scale simulation of UCG process applying porous medium approach. Can. J. Chem. Eng. 2015, 93, 1311–1325. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Falshtynskyi, V.; Kozhantov, A.; Kieush, L.; Saik, P. Increasing the underground coal gasification efficiency using preliminary electromagnetic coal mass heating. IOP Conf. Ser. Earth Environ. Sci. 2024, 1348, 012045. [Google Scholar] [CrossRef]
- Sakhno, I.; Sakhno, S.; Petrenko, A.; Barkova, O.; Kobylianskyi, B. Numerical simulation of the surface subsidence evolution caused by the flooding of the longwall goaf during excavation of thin coal seams. IOP Conf. Ser. Earth Environ. Sci. 2023, 1254, 012057. [Google Scholar] [CrossRef]
- Zhang, C.; Tu, S.; Zhao, Y. Compaction characteristics of the caving zone in a longwall goaf: A review. Environ. Earth Sci. 2019, 78, 27. [Google Scholar] [CrossRef]
- Barla, G. Rock Anisotropy: Theory and Laboratory Testing (Chapter). In Rock Mechanics; Müller, L., Ed.; Springer: New York, NY, USA, 1972; pp. 131–169. [Google Scholar]
- Cazacu, O.; Cristescu, N.D.; Shao, J.F.; Henry, J.P. A new anisotropicfailure criterion for transversely isotropic solids. Mech. Cohesive-Frict. Mater. 1998, 3, 89–103. [Google Scholar] [CrossRef]
- Oka, F.; Kimoto, S.; Kobayashi, H.; Adachi, T. Anisotropic behaviorof soft sedimentary rock and a constitutive model. Soils Found. 2002, 42, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Khanlari, G.; Rafiei, B.; Abdilor, Y. Evaluation of strength anisotropy and failure modes of laminated sandstones. Arab. J. Geosci. 2015, 8, 3089–3102. [Google Scholar] [CrossRef]
- Sakhno, I.G.; Molodetskyi, A.V.; Sakhno, S.V. Identification of material parameters for numerical simulation of the behavior ofrocks under true triaxial conditions. Nauk. Visnyk NHU 2018, 5, 48–53. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Zhai, W.; Li, Y.; Ouyang, S.; Gao, H.; Li, W.; Ma, K.; Wu, L. Experimental study on acoustic emission of confined compression of crushed gangue under different loading rates: Disposal of gangue solid waste. Sustainability 2020, 12, 3911. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion—2002 edition. In Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference, NARMS-TAC, Toronto, ON, Canada, 7–10 July 2002; pp. 267–271. [Google Scholar]
- Hoek, E.; Diederichs, M. Empirical estimates of rock mass modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Sakhno, I.; Sakhno, S.; Skrzypkowski, K.; Isaienkov, O.; Zagórski, K.; Zagórska, A. Floor Heave Control in Gob-Side Entry Retaining by Pillarless Coal Mining with Anti-Shear Pile Technology. Appl. Sci. 2024, 14, 4992. [Google Scholar] [CrossRef]
- Tian, H.; Kempka, T.; Yu, S.; Ziegler, M. Mechanical Properties of Sandstones Exposed to High Temperature. Rock Mech. Rock Eng. 2015, 49, 321–327. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Wu, P.; Guo, X.; Li, M.; Zhu, F. Physical and Mechanical Properties and Damage Mechanism of Sandstone at High Temperatures. Appl. Sci. 2024, 14, 444. [Google Scholar] [CrossRef]
- Xin, M.; Li, L.; Liu, C.; Xu, W.; Xie, M.; Han, J.; An, L. Change of sandstone microstructure and mineral transformation nearby UCG channel. Fuel Process. Technol. 2021, 211, 106575. [Google Scholar] [CrossRef]
- Wang, G.; Yang, D.; Liu, S.; Fu, M.; Wang, L. Experimental Study on the Anisotropic Mechanical Properties of Oil Shales Under Real-Time High-Temperature Conditions. Rock Mech. Rock Eng. 2021, 54, 6565–6583. [Google Scholar] [CrossRef]
- Otto, C.; Kempka, T. Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes. Energies 2015, 8, 5800–5827. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, X.; Liu, R.; Guo, X.; Ma, D. The Mechanical Properties of Mudstone at High Temperatures: An Experimental Study. Rock Mech. Rock Eng. 2014, 47, 1479–1484. [Google Scholar] [CrossRef]
- Wu, G.; Wang, Y.; Swift, G.; Chen, J. Laboratory Investigation of the Effects of Temperature on the Mechanical Properties of Sandstone. Geotech. Geol. Eng. 2013, 31, 809–816. [Google Scholar] [CrossRef]
- Sygała, A.; Bukowska, M.; Janoszek, T. High temperature versus geomechanical parameters of selected rocks–the present state of research. J. Sustain. Min. 2013, 12, 45–51. [Google Scholar] [CrossRef]
- Wang, P.; Deng, J.; Liu, W.; Xiao, Q.; Lv, Q.; Zhang, Y.; Hou, Y. Thermo-Mechanical Numerical Analysis of Stress and Damage Distribution within the Surrounding Rock of Underground Coal Gasification Panels. Processes 2023, 11, 2521. [Google Scholar] [CrossRef]
- Xin, L.; Wang, B.; Li, J.; Niu, M.; Shang, Z.; Xu, W.; Wang, X.; Li, H. Modeling Test of Combustion Cavity Growth during Underground Coal Gasification in the Early Stage of Ignition. ACS Omega 2024, 9, 3691–3700. [Google Scholar] [CrossRef]
- Sarhosis, V.; Yang, D.; Sheng, Y.; Kempka, T. Coupled hydro-thermal analysis of underground coal gasification reactor cool downfor subsequent CO2 storage. Energy Procedia 2013, 40, 428–436. [Google Scholar] [CrossRef]
- Yin, T.; Li, X.; Bin, W.; Yin, Z.; Jin, J. Mechanical properties of sandstones after high temperature under dynamic loading. Chin. J. Geotech. Eng. 2011, 33, 777–784. [Google Scholar]
- Liu, S.; Bai, J.; Wang, X.; Wang, G.; Wu, B.; Li, Y.; Zhao, J. Study on the Stability of Coal Pillars Under the Disturbance of Repeated Mining in a Double-Roadway Layout System. Front. Earth Sci. 2021, 9, 754747. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, P.; Chen, L.; Hao, Z.; Sainoki, A.; Mitri, H.S.; Wang, Q. Numerical Approach for Goaf-Side Entry Layout and Yield Pillar Design in Fractured Ground Conditions. Rock Mech. Rock Eng. 2017, 50, 3049–3071. [Google Scholar] [CrossRef]
- Tang, C.; Li, H.; Guo, G.; Huang, W.; Chen, Y.; Huang, J.; Tang, L.; Yuan, Y.; Sun, J. Stability evaluation method of gasification coal pillar under thermal coupling condition for prevention of environment secondary pollution. Sci. Total Environ. 2024, 954, 176265. [Google Scholar] [CrossRef] [PubMed]
- Krukovskyi, O.; Kurnosov, S.; Bulich, Y.; Yanzhula, O.; Demin, V. Substantiating the parameters for selecting a pillar width to protect permanent mine workings at great depths. Essays of Mining Science and Practice. IOP Conf. Ser. Earth Environ. Sci. 2022, 970, 012049. [Google Scholar] [CrossRef]
- Chen, Q.; Ge, Y.; Tang, H. Rock Discontinuities Characterization from Large-Scale Point Clouds Using a Point-Based DeepLearning Method. Eng. Geol. 2024, 337, 107585. [Google Scholar] [CrossRef]
, (GPa) | , (GPa) | , (GPa) | , (GPa) | , (GPa) | , (GPa) | Density, kg/m3 | |||
---|---|---|---|---|---|---|---|---|---|
Quaternary sediments | |||||||||
1.5 | 6.5 | 1.5 | 0.27 | 0.1 | 0.25 | 0.59 | 2.95 | 0.60 | 2100 |
Rock strata group #1 | |||||||||
2.2 | 20.1 | 2.2 | 0.23 | 0.12 | 0.22 | 0.89 | 8.97 | 0.90 | 2450 |
Rock strata group #2 | |||||||||
2.9 | 23.8 | 2.9 | 0.23 | 0.12 | 0.22 | 1.18 | 10.63 | 1.19 | 2500 |
Rock strata group #3 | |||||||||
2.4 | 19 | 2.4 | 0.23 | 0.12 | 0.22 | 0.98 | 8.48 | 0.98 | 2500 |
Rock strata group #4 | |||||||||
2.7 | 22.7 | 2.7 | 0.23 | 0.12 | 0.22 | 1.10 | 10.13 | 1.11 | 2500 |
Rock strata group #5 | |||||||||
2.2 | 20.1 | 2.2 | 0.23 | 0.12 | 0.22 | 0.89 | 8.97 | 0.90 | 2500 |
Rock strata group #6 | |||||||||
2.4 | 19 | 2.4 | 0.23 | 0.12 | 0.22 | 0.98 | 8.48 | 0.98 | 2500 |
Scheme | Length of Gasification Panel (m) | Length of Reactor Cavity (m) | Number of Reactor Cavities | Width of Safety Pillar (m) | Number of Safety Pillars |
---|---|---|---|---|---|
I | 300 | 30 | 5 | 37.5 | 4 |
II | 300 | 30 | 6 | 24 | 5 |
III | 300 | 30 | 7 | 15 | 6 |
IV | 300 | 30 | 8 | 8.5 | 7 |
V | 300 | 30 | 9 | 3.75 | 8 |
GSI | D | Deformation Modulus (GPa) | Poisson’s Ratio | Cohesion Value, (MPa) | Angle of Internal Friction (deg) | Dilatancy Angle (deg) |
---|---|---|---|---|---|---|
Main roof (sandy mudstone) | ||||||
52 | 0.5 | 1.19 | 0.3 | 2.83 | 24 | 24 |
Main roof (sandstone) | ||||||
55 | 0.5 | 1.80 | 0.3 | 3.90 | 34 | 34 |
Immediate roof (mudstone) | ||||||
52 | 0.5 | 0.50 | 0.3 | 1.61 | 22 | 22 |
Coal seam | ||||||
35 | 0 | 0.22 | 0.3 | 1.13 | 20 | 20 |
Immediate floor (mudstone) | ||||||
47 | 0.5 | 0.50 | 0.3 | 1.61 | 22 | 22 |
Main floor (sandstone) | ||||||
55 | 0.5 | 1.80 | 0.3 | 3.90 | 34 | 34 |
Goaf (rubble pyrometamorphic rock) | ||||||
0.06 | 0.45 | - | - | - |
Linear Thermal Expansion Coefficient (α) (K−1) | Specific Heat Capacity (CP) (J/kg K) | Thermal Conductivity (λ) (W·m−1·K−1) | Tensile Strength (MPa) | Deformation Modulus (GPa) | Poisson’s Ratio | Cohesion Value, (MPa) | Angle of Internal Friction (deg) |
---|---|---|---|---|---|---|---|
Main roof (sandstone) | |||||||
1.6 × 10−5 | 1363 | 2.3 | 1.2 | 2.45 | 0.3 | 6.5 | 32 |
Immediate roof (mudstone) | |||||||
1.0 × 10−5 | 1363 | 1.67 | 0.36 | 1.17 | 0.3 | 2.7 | 27 |
Coal seam | |||||||
5 × 10−6 | 2000 | 0.23 | 0.27 | 0.5 | 0.4 | 1.13 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakhno, I.; Sakhno, S.; Vovna, O. Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams. Sustainability 2025, 17, 2533. https://doi.org/10.3390/su17062533
Sakhno I, Sakhno S, Vovna O. Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams. Sustainability. 2025; 17(6):2533. https://doi.org/10.3390/su17062533
Chicago/Turabian StyleSakhno, Ivan, Svitlana Sakhno, and Oleksandr Vovna. 2025. "Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams" Sustainability 17, no. 6: 2533. https://doi.org/10.3390/su17062533
APA StyleSakhno, I., Sakhno, S., & Vovna, O. (2025). Surface Subsidence Response to Safety Pillar Width Between Reactor Cavities in the Underground Gasification of Thin Coal Seams. Sustainability, 17(6), 2533. https://doi.org/10.3390/su17062533