Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = unbalanced three-phase system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8078 KB  
Article
Robust Sensorless Predictive Power Control of PWM Converters Using Adaptive Neural Network-Based Virtual Flux Estimation
by Noumidia Amoura, Adel Rahoui, Boussad Boukais, Koussaila Mesbah, Abdelhakim Saim and Azeddine Houari
Electronics 2025, 14(18), 3620; https://doi.org/10.3390/electronics14183620 - 12 Sep 2025
Viewed by 334
Abstract
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) [...] Read more.
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) converters must now ensure resilient and efficient operation under increasingly adverse and dynamic grid conditions. This paper proposes an adaptive neural network-based virtual flux (VF) estimator for sensorless predictive direct power control (PDPC) of PWM converters under nonideal grid voltage conditions. The proposed estimator is realized using an adaptive linear neuron (ADALINE) configured as a quadrature signal generator, offering robustness against grid voltage disturbances such as voltage unbalance, DC offset and harmonic distortion. In parallel, a PDPC scheme based on the extended pq theory is developed to reject active-power oscillations and to maintain near-sinusoidal grid currents under unbalanced conditions. The resulting VF-based PDPC (VF-PDPC) strategy is validated via real-time simulations on the OPAL-RT platform. Comparative analysis confirms that the ADALINE-based estimator surpasses conventional VF estimation techniques. Moreover, the VF-PDPC achieves superior performance over conventional PDPC and extended pq theory-based PDPC strategies, both of which rely on physical voltage sensors, confirming its robustness and effectiveness under non-ideal grid conditions. Full article
Show Figures

Figure 1

39 pages, 1281 KB  
Article
Sustainable Metaheuristic-Based Planning of Rural Medium- Voltage Grids: A Comparative Study of Spanning and Steiner Tree Topologies for Cost-Efficient Electrification
by Lina María Riaño-Enciso, Brandon Cortés-Caicedo, Oscar Danilo Montoya, Luis Fernando Grisales-Noreña and Jesús C. Hernández
Sustainability 2025, 17(18), 8145; https://doi.org/10.3390/su17188145 - 10 Sep 2025
Viewed by 252
Abstract
This paper presents a heuristic methodology for the optimal expansion of unbalanced three-phase distribution systems in rural areas, simultaneously addressing feeder routing and conductor sizing to minimize the total annualized cost—defined as the sum of investments in conductors and operational energy losses. The [...] Read more.
This paper presents a heuristic methodology for the optimal expansion of unbalanced three-phase distribution systems in rural areas, simultaneously addressing feeder routing and conductor sizing to minimize the total annualized cost—defined as the sum of investments in conductors and operational energy losses. The planning strategy explores two radial topological models: the Minimum Spanning Tree (MST) and the Steiner Tree (ST). The latter incorporates auxiliary nodes to reduce the total line length. For each topology, an initial conductor sizing is performed based on three-phase power flow calculations using Broyden’s method, capturing the unbalanced nature of the rural networks. These initial solutions are refined via four metaheuristic algorithms—the Chu–Beasley Genetic Algorithm (CBGA), Particle Swarm Optimization (PSO), the Sine–Cosine Algorithm (SCA), and the Grey Wolf Optimizer (GWO)—under a master–slave optimization framework. Numerical experiments on 15-, 25- and 50-node rural test systems show that the ST combined with GWO consistently achieves the lowest total costs—reducing expenditures by up to 70.63% compared to MST configurations—and exhibits superior robustness across all performance metrics, including best-, average-, and worst-case solutions, as well as standard deviation. Beyond its technical contributions, the proposed methodology supports the United Nations Sustainable Development Goals by promoting universal energy access (SDG 7), fostering cost-effective rural infrastructure (SDG 9), and contributing to reductions in urban–rural inequalities in electricity access (SDG 10). All simulations were implemented in MATLAB 2024a, demonstrating the practical viability and scalability of the method for planning rural distribution networks under unbalanced load conditions. Full article
Show Figures

Figure 1

16 pages, 1551 KB  
Article
Probabilistic Estimation of During-Fault Voltages of Unbalanced Active Distribution: Methods and Tools
by Matteo Bartolomeo, Pietro Varilone and Paola Verde
Energies 2025, 18(18), 4791; https://doi.org/10.3390/en18184791 - 9 Sep 2025
Viewed by 371
Abstract
In low-voltage (LV) distribution networks, system operating conditions are always unbalanced due to the unpredictability of the load demand in each phase, coupled with a potentially asymmetrical network structure due to different phase conductors’ sizes and lengths. The widespread diffusion of distributed generators [...] Read more.
In low-voltage (LV) distribution networks, system operating conditions are always unbalanced due to the unpredictability of the load demand in each phase, coupled with a potentially asymmetrical network structure due to different phase conductors’ sizes and lengths. The widespread diffusion of distributed generators (DGs) among network users has significantly contributed to reducing the overall load of the electrical system, but at the cost of making voltages slightly more unbalanced. In this article, an LV distribution test network equipped with several single-phase DGs has been considered, and all During-Fault Voltages (DFVs) have been studied, according to each possible type of short circuit. To provide a measure of the asymmetry of unsymmetrical voltage dips, three different indices based on the symmetrical components of the voltages have been considered; moreover, the Monte Carlo simulation (MCS) method has allowed for studying faults and asymmetries in a probabilistic manner. Through the probability density functions (pdfs) of the DFVs, it has been possible to assess the impact of single-phase DGs on the asymmetry of bus voltages due to short-circuits. Full article
Show Figures

Figure 1

70 pages, 62945 KB  
Article
Control for a DC Microgrid for Photovoltaic–Wind Generation with a Solid Oxide Fuel Cell, Battery Storage, Dump Load (Aqua-Electrolyzer) and Three-Phase Four-Leg Inverter (4L4W)
by Krakdia Mohamed Taieb and Lassaad Sbita
Clean Technol. 2025, 7(3), 79; https://doi.org/10.3390/cleantechnol7030079 - 4 Sep 2025
Viewed by 664
Abstract
This paper proposes a nonlinear control strategy for a microgrid, comprising a PV generator, wind turbine, battery, solid oxide fuel cell (SOFC), electrolyzer, and a three-phase four-leg voltage source inverter (VSI) with an LC filter. The microgrid is designed to supply unbalanced AC [...] Read more.
This paper proposes a nonlinear control strategy for a microgrid, comprising a PV generator, wind turbine, battery, solid oxide fuel cell (SOFC), electrolyzer, and a three-phase four-leg voltage source inverter (VSI) with an LC filter. The microgrid is designed to supply unbalanced AC loads while maintaining high power quality. To address chattering and enhance control precision, a super-twisting algorithm (STA) is integrated, outperforming traditional PI, IP, and classical SMC methods. The four-leg VSI enables independent control of each phase using a dual-loop strategy (inner voltage, outer current loop). Stability is ensured through Lyapunov-based analysis. Scalar PWM is used for inverter switching. The battery, SOFC, and electrolyzer are controlled using integral backstepping, while the SOFC and electrolyzer also use Lyapunov-based voltage control. A hybrid integral backstepping–STA strategy enhances PV performance; the wind turbine is managed via integral backstepping for power tracking. The system achieves voltage and current THD below 0.40%. An energy management algorithm maintains power balance under variable generation and load conditions. Simulation results confirm the control scheme’s robustness, stability, and dynamic performance. Full article
Show Figures

Figure 1

22 pages, 3301 KB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 - 2 Aug 2025
Viewed by 373
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

23 pages, 20707 KB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 404
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

16 pages, 2159 KB  
Article
A General Model Construction and Operating State Determination Method for Harmonic Source Loads
by Zonghua Zheng, Yanyi Kang and Yi Zhang
Symmetry 2025, 17(7), 1123; https://doi.org/10.3390/sym17071123 - 14 Jul 2025
Viewed by 397
Abstract
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and [...] Read more.
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and asymmetric characteristics increasingly compromise power quality. To enhance power quality management, this paper proposes a universal harmonic source modeling and operational state identification methodology integrating physical mechanisms with data-driven algorithms. The approach establishes an RL-series equivalent impedance model as its physical foundation, employing singular value decomposition and Z-score criteria to accurately characterize asymmetric load dynamics; subsequently applies Variational Mode Decomposition (VMD) to extract time-frequency features from equivalent impedance parameters while utilizing Density-Based Spatial Clustering (DBSCAN) for the high-precision identification of operational states in asymmetric loads; and ultimately constructs state-specific harmonic source models by partitioning historical datasets into subsets, substantially improving model generalizability. Simulation and experimental validations demonstrate that the synergistic integration of physical impedance modeling and machine learning methods precisely captures dynamic harmonic characteristics of asymmetric loads, significantly enhancing modeling accuracy, dynamic robustness, and engineering practicality to provide an effective assessment framework for power quality issues caused by harmonic source integration in distribution networks. Full article
Show Figures

Figure 1

28 pages, 445 KB  
Article
Integration of Distributed Energy Resources in Unbalanced Networks Using a Generalized Normal Distribution Optimizer
by Laura Sofía Avellaneda-Gómez, Brandon Cortés-Caicedo, Oscar Danilo Montoya and Jesús M. López-Lezama
Computation 2025, 13(6), 146; https://doi.org/10.3390/computation13060146 - 12 Jun 2025
Cited by 1 | Viewed by 553
Abstract
This article proposes an optimization methodology to address the joint placement as well as the capacity design of PV units and D-STATCOMs within unbalanced three-phase distribution systems. The proposed model adopts a mixed-integer nonlinear programming structure using complex-valued variables, with the objective of [...] Read more.
This article proposes an optimization methodology to address the joint placement as well as the capacity design of PV units and D-STATCOMs within unbalanced three-phase distribution systems. The proposed model adopts a mixed-integer nonlinear programming structure using complex-valued variables, with the objective of minimizing the total annual cost—including investment, maintenance, and energy purchases. A leader–followeroptimization framework is adopted, where the leader stage utilizes the Generalized Normal Distribution Optimization (GNDO) algorithm to generate candidate solutions, while the follower stage conducts power flow calculations through successive approximation to assess the objective value. The proposed approach is tested on 25- and 37-node feeders and benchmarked against three widely used metaheuristic algorithms: the Chu and Beasley Genetic Algorithm, Particle Swarm Optimization, and Vortex Search Algorithm. The results indicate that the proposed strategy consistently achieves highly cost-efficient outcomes. For the 25-node system, the cost is reduced from USD 2,715,619.98 to USD 2,221,831.66 (18.18%), and for the 37-node system, from USD 2,927,715.61 to USD 2,385,465.29 (18.52%). GNDO also surpassed the alternative algorithms in terms of solution precision, robustness, and statistical dispersion across 100 runs. All numerical simulations were executed using MATLAB R2024a. These findings confirm the scalability and reliability of the proposed method, positioning it as an effective tool for planning distributed energy integration in practical unbalanced networks. Full article
Show Figures

Figure 1

21 pages, 4354 KB  
Article
Design and Validation of a SiC-Based Single-to-Three-Phase Converter for Low-Voltage Distribution Systems
by Boohyun Shin, Changhwan Kim, Hyeseon Lee and Sungyun Choi
Appl. Sci. 2025, 15(10), 5590; https://doi.org/10.3390/app15105590 - 16 May 2025
Cited by 1 | Viewed by 640
Abstract
In areas such as remote, rural, and mountainous regions, supplying low-voltage three-phase power has traditionally required distribution line extension and transformer installation. However, these areas often yield low electricity revenues, making cost recovery difficult for utilities. To address this challenge, this paper proposes [...] Read more.
In areas such as remote, rural, and mountainous regions, supplying low-voltage three-phase power has traditionally required distribution line extension and transformer installation. However, these areas often yield low electricity revenues, making cost recovery difficult for utilities. To address this challenge, this paper proposes a Single-to-Three-Phase Converter (STPC) capable of converting single-phase low-voltage input into three-phase output for use in low-voltage distribution systems. The STPC topology employs a single-phase half-bridge AC–DC stage and a three-phase full-bridge inverter stage using SiC-MOSFETs. To validate the system, simulations and experiments were conducted under various load conditions, including unbalanced, nonlinear, and motor loads. The results show that STPC maintains output stability while minimizing impact on the existing grid. The findings demonstrate STPC’s feasibility as an alternative to conventional line extension and transformer installation, with potential for application in grid-forming and low-voltage distribution current (LVDC) systems. Full article
(This article belongs to the Special Issue Current Research and Future Trends in Power Electronics Applications)
Show Figures

Figure 1

19 pages, 8000 KB  
Article
Improved Bipolar Coordinate Control Strategy for 400 Hz Inverter in Aviation Ground Power Supply
by Xinwen Bi, Shuairan Yu, Pengfei Liu and Yanming Cheng
Symmetry 2025, 17(5), 716; https://doi.org/10.3390/sym17050716 - 7 May 2025
Viewed by 455
Abstract
This paper presents an enhanced bipolar control strategy for 400 Hz three-phase inverters in aviation ground power supplies, with a focus on maintaining symmetry in power output under unbalanced load conditions. The strategy integrates Linear Active Disturbance Rejection Control (LADRC) for robust positive [...] Read more.
This paper presents an enhanced bipolar control strategy for 400 Hz three-phase inverters in aviation ground power supplies, with a focus on maintaining symmetry in power output under unbalanced load conditions. The strategy integrates Linear Active Disturbance Rejection Control (LADRC) for robust positive sequence voltage regulation, Proportional Integral with repetitive control (PI + RC) for harmonic suppression in positive sequence currents, and a Quasi-Proportional Resonance (QPR) controller for negative sequence components in the static coordinate system. By doing so, it simplifies negative sequence control and combines PI + RC to improve the dynamic response and eliminate periodic errors. In the context of symmetry, the proposed strategy effectively reduces the total harmonic distortion (THD) and the three-phase current imbalance degree. Simulation results show significant improvements: under balanced loads, THD is reduced by 41.5% (from 1.95% to 1.14%) compared to traditional PI control; under single-phase and three-phase unbalanced loads, THD decreases by 52.7% (2.56% to 1.21%) and 48.1% (2.39% to 1.24%), respectively. The system’s settling time during load transients is shortened by over 30%, and the three-phase current imbalance degree is reduced by 60–70%, which validates the strategy’s effectiveness in enhancing power quality and system stability, thus restoring and maintaining the symmetry of the power output. Full article
(This article belongs to the Special Issue Applications of Symmetry Three-Phase Electrical Power Systems)
Show Figures

Figure 1

12 pages, 2713 KB  
Article
A Method to Handle Unbalanced Systems in Branch Current-Based State Estimators
by Andrés Llombart, Luis Parada, Miguel Torres, Noemi Galán and Diego Martinez
Sustainability 2025, 17(3), 942; https://doi.org/10.3390/su17030942 - 24 Jan 2025
Viewed by 830
Abstract
The undergoing energy transition to a sustainable future requires, among other things, the application of demand side management (DSM) techniques to maintain grid stability and allow a smooth performance. To successfully implement DSM strategies, near real-time monitoring of the grid is required. This [...] Read more.
The undergoing energy transition to a sustainable future requires, among other things, the application of demand side management (DSM) techniques to maintain grid stability and allow a smooth performance. To successfully implement DSM strategies, near real-time monitoring of the grid is required. This can be achieved through a distribution system state estimator (DSSE). Conventional approaches to state estimation (SE) typically rely on the assumption of a balanced reference bus, which is reasonable for transmission systems but may not be applicable to low-voltage distribution networks, even more with significant distributed generation (DG) penetration. To address this problem, a branch current-based low-voltage DSSE for unbalanced three-phase systems is developed. The algorithm incorporates a virtual bus to account for highly unbalanced systems, enabling it to obtain a more accurate estimation of the grid state. The proposed method is compared to the conventional balanced reference bus method through multiple simulations under different load conditions in the IEEE European low-voltage test feeder. Full article
Show Figures

Figure 1

17 pages, 9362 KB  
Article
Enhanced Three-Phase Shunt Active Power Filter Utilizing an Adaptive Frequency Proportional-Integral–Resonant Controller and a Sensorless Voltage Method
by Haneen Ghanayem, Mohammad Alathamneh, Xingyu Yang, Sangwon Seo and R. M. Nelms
Energies 2025, 18(1), 116; https://doi.org/10.3390/en18010116 - 30 Dec 2024
Cited by 2 | Viewed by 1384
Abstract
This article introduces a frequency-adaptive control strategy for a three-phase shunt active power filter, aimed at improving energy efficiency and ensuring high power quality in consumer-oriented power systems. The proposed control system utilizes real-time frequency estimation to dynamically adjust the gain of a [...] Read more.
This article introduces a frequency-adaptive control strategy for a three-phase shunt active power filter, aimed at improving energy efficiency and ensuring high power quality in consumer-oriented power systems. The proposed control system utilizes real-time frequency estimation to dynamically adjust the gain of a proportional-integral–resonant (PIR) controller, facilitating precise harmonic compensation under challenging unbalanced grid conditions, such as unbalanced three-phase loads, grid impedance variations, and diverse nonlinear loads like three-phase rectifiers and induction motors. These scenarios often increase total harmonic distortion (THD) at the point of common coupling (PCC), degrading the performance of connected loads and reducing the efficiency of induction motors. The PIR controller integrates both proportional-integral (PI) and proportional-resonant (PR) control features, achieving improved stability and reduced overshoot. A novel voltage sensorless control method is proposed, requiring only current measurements to determine reference currents for the inverter, thereby simplifying the implementation. Validation of the frequency adaptive control scheme through MATLAB/Simulink simulations and real-time experiments on a dSPACE (DS1202) platform demonstrates significant improvements in harmonic compensation, energy efficiency, and system stability across varying grid frequencies. This approach offers a robust consumer-oriented solution for managing power quality, positioning the SAPF as a key technology for advancing sustainable energy management in smart applications. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2024)
Show Figures

Figure 1

30 pages, 2746 KB  
Article
Optimizing Microgrid Performance: Integrating Unscented Transformation and Enhanced Cheetah Optimization for Renewable Energy Management
by Ali S. Alghamdi
Electronics 2024, 13(22), 4563; https://doi.org/10.3390/electronics13224563 - 20 Nov 2024
Cited by 1 | Viewed by 1147
Abstract
The increased integration of renewable energy sources (RESs), such as photovoltaic and wind turbine systems, in microgrids poses significant challenges due to fluctuating weather conditions and load demands. To address these challenges, this study introduces an innovative approach that combines Unscented Transformation (UT) [...] Read more.
The increased integration of renewable energy sources (RESs), such as photovoltaic and wind turbine systems, in microgrids poses significant challenges due to fluctuating weather conditions and load demands. To address these challenges, this study introduces an innovative approach that combines Unscented Transformation (UT) with the Enhanced Cheetah Optimization Algorithm (ECOA) for optimal microgrid management. UT, a robust statistical technique, models nonlinear uncertainties effectively by leveraging sigma points, facilitating accurate decision-making despite variable renewable generation and load conditions. The ECOA, inspired by the adaptive hunting behaviors of cheetahs, is enhanced with stochastic leaps, adaptive chase mechanisms, and cooperative strategies to prevent premature convergence, enabling improved exploration and optimization for unbalanced three-phase distribution networks. This integrated UT-ECOA approach enables simultaneous optimization of continuous and discrete decision variables in the microgrid, efficiently handling uncertainty within RESs and load demands. Results demonstrate that the proposed model significantly improves microgrid performance, achieving a 10% reduction in voltage deviation, a 10.63% decrease in power losses, and an 83.32% reduction in operational costs, especially when demand response (DR) is implemented. These findings validate the model’s efficacy in enhancing microgrid reliability and efficiency, positioning it as a viable solution for optimized performance under uncertain renewable inputs. Full article
Show Figures

Figure 1

15 pages, 1740 KB  
Article
Receiving-End Voltage Compensation Method with NPC-Inverter-Based Active Power Line Conditioner in Three-Phase Four-Wire Distribution Feeder
by Yuka Sabi and Hiroaki Yamada
Electricity 2024, 5(4), 770-784; https://doi.org/10.3390/electricity5040038 - 30 Oct 2024
Viewed by 1280
Abstract
This study proposes a receiving-end voltage compensation method employing a phase-specific reactive power control strategy with a neutral-point-clamped (NPC) inverter in a three-phase four-wire distribution system. The principle of the proposed receiving end voltage compensation method is explained. Further, the proposed control strategy [...] Read more.
This study proposes a receiving-end voltage compensation method employing a phase-specific reactive power control strategy with a neutral-point-clamped (NPC) inverter in a three-phase four-wire distribution system. The principle of the proposed receiving end voltage compensation method is explained. Further, the proposed control strategy can solve the problems of the three-phase, four-wire distribution system, which are an increase in the neutral-line current and the unbalanced voltage. Computer simulation is performed to confirm the validity of the proposed method. The simulation results indicate the receiving-end voltages can be compensated using the proposed method. Full article
Show Figures

Figure 1

20 pages, 1849 KB  
Article
Diffusion Augmented Complex Inverse Square Root for Adaptive Frequency Estimation over Distributed Networks
by Pucha Song, Jinghua Ye, Kang Yan and Zhengyan Luo
Symmetry 2024, 16(10), 1375; https://doi.org/10.3390/sym16101375 - 16 Oct 2024
Cited by 2 | Viewed by 1419
Abstract
Using adaptive filtering to estimate the frequency of power systems has become a popular trend. In recent years, however, few studies have been performed on adaptive frequency estimations in non-stationary noise environments. In this paper, we propose the distributed complex inverse square root [...] Read more.
Using adaptive filtering to estimate the frequency of power systems has become a popular trend. In recent years, however, few studies have been performed on adaptive frequency estimations in non-stationary noise environments. In this paper, we propose the distributed complex inverse square root algorithm and distributed augmented complex inverse square root algorithm for the frequency estimation of power systems based on the widely linear model and the inverse square root cost function, where the function can restrain both positive and negative large errors, based on its symmetry. Moreover, the wireless sensor networks support monitoring and adaptation for the frequency estimation in the distributed networks, and the proposed approach can ensure good robustness of the balanced or unbalanced three-phase power system with the help of a local complex-value voltage signal generated by Clark’s transformation. In addition, the bound of step size is driven by the global vectors, and that low computation complexity do not hinder those performances. The results of several experiments demonstrate that our algorithms can effectively estimate the frequency in impulsive noise environments. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

Back to TopTop