Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = ultrasonic sound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3467 KB  
Article
Combined Use of Vibrational Spectroscopy, Ultrasonic Echography, and Numerical Simulations for the Non-Destructive Evaluation of 3D-Printed Materials for Defense Applications
by Dimitra Apostolidou, Afrodite Tryfon, Dionysios E. Mouzakis, Nektarios K. Nasikas and Angelos G. Kalampounias
Polymers 2026, 18(1), 104; https://doi.org/10.3390/polym18010104 - 30 Dec 2025
Abstract
This paper describes how the thermal treatment of 3D-printed PLA samples, fabricated by Fused Deposition Modeling (FDM), affects elastic properties by means of vibrational spectroscopy and ultrasonic echography. Longitudinal and shear sound velocities were measured experimentally to determine Young’s, bulk, shear, and longitudinal [...] Read more.
This paper describes how the thermal treatment of 3D-printed PLA samples, fabricated by Fused Deposition Modeling (FDM), affects elastic properties by means of vibrational spectroscopy and ultrasonic echography. Longitudinal and shear sound velocities were measured experimentally to determine Young’s, bulk, shear, and longitudinal moduli, as well as Poisson’s ratio. The results were complemented with two different simulation approaches—the elastodynamic finite integration technique (EFIT) and the equivalent electric analog technique implemented with LPSpice—whose predictive performance was assessed using statistical performance metrics. The circuit-based simulation method demonstrated superior agreement with experimental behavior compared to EFIT. Both measured and simulated data reveal that PLA chains undergo overall structural strengthening and enhanced packing up to 2 h of heating, followed by a clear reduction in these enhancements as thermal degradation emerges with further heating. Poisson’s ratio remained relatively stable throughout, indicating minimal impact on strain distribution characteristics despite observable stiffening and subsequent softening. Vibrational ATR (Attenuated Total Reflection) spectra corroborated these findings through systemic shifts in C-COO, C-O-C, and C-O stretching modes associated with the same structural modifications. Overall, this combined experimental–simulation framework provides an integrated understanding of thermally induced mechanical and molecular evolution in 3D-printed PLA relevant to defense applications. Full article
Show Figures

Graphical abstract

19 pages, 585 KB  
Article
Cross-Sectional Study of Bone Mineral Density in Chronic Stroke According to Walking Speed
by Maria-Arantzazu Ruescas-Nicolau, M. Luz Sánchez-Sánchez, Mónica Ahulló, Carmen Ballester-Estevan and Marco Iosa
J. Clin. Med. 2025, 14(23), 8426; https://doi.org/10.3390/jcm14238426 - 27 Nov 2025
Viewed by 345
Abstract
Background/Objectives: Bone mineral density (BMD) assessments are uncommon in people with chronic stroke, and the relationship between BMD and gait speed remains poorly understood. This study examined between-limb differences in BMD of individuals with chronic stroke and limited versus non-limited community ambulation [...] Read more.
Background/Objectives: Bone mineral density (BMD) assessments are uncommon in people with chronic stroke, and the relationship between BMD and gait speed remains poorly understood. This study examined between-limb differences in BMD of individuals with chronic stroke and limited versus non-limited community ambulation and analyzed the relationship between BMD and gait speed. Methods: This cross-sectional study included people with chronic stroke divided into two groups by walking speed (slow group [SG], <0.8 m/s, n = 38, and fast group [FG], ≥0.8 m/s, n = 46) and age- and sex-matched healthy individuals (control group [CG], n = 35). All participants underwent calcaneal ultrasound densitometry. Results: All the BMD parameters differed significantly between limbs in the SG, with the affected side demonstrating inferior outcomes. The FG only exhibited a significant difference in the broadband ultrasonic attenuation, with lower values on the affected side. Among groups, the SG demonstrated lower values in the affected leg for all parameters compared with the corresponding limb of both the FG and the CG. Furthermore, the SG demonstrated reduced speed of sound (SOS) in the non-affected limb compared with the FG’s in theirs. Multiple regression analysis revealed that the ambulation ability, the affected gastrocnemius spasticity, disability, and SOS of the affected limb together explained 71.9% of the gait speed variance. Conclusions: Among stroke survivors, a slower gait speed is associated with greater between-limb differences in BMD. SOS in the affected limb emerged as a key predictor of gait speed. This highlights the need for more thorough BMD evaluations for stroke patients. Full article
Show Figures

Figure 1

20 pages, 5569 KB  
Article
Investigation of Acoustic Agglomeration of Solid Particles in a Chamber with Three Overlapping Ultrasonic Acoustic Fields
by Andrius Čeponis, Darius Vainorius, Kristina Kilikevičienė and Artūras Kilikevičius
Actuators 2025, 14(11), 559; https://doi.org/10.3390/act14110559 - 14 Nov 2025
Viewed by 498
Abstract
This paper presents numerical and experimental investigations of acoustic agglomeration of solid particles in a chamber with three overlapping ultrasonic fields. The simultaneous generation of these fields produces an interference pattern with a greater number of pressure nodes, more evenly distributed across the [...] Read more.
This paper presents numerical and experimental investigations of acoustic agglomeration of solid particles in a chamber with three overlapping ultrasonic fields. The simultaneous generation of these fields produces an interference pattern with a greater number of pressure nodes, more evenly distributed across the chamber cross section. The chamber design is based on three piezoelectric transducers equipped with disc-shaped acoustic radiators and a cylindrical body. The transducers are evenly positioned around the cylinder’s horizontal axis of symmetry. Numerical simulations of their acoustic characteristics showed that, at a resonance frequency of 49.71 kHz and with a 125 Vp-p excitation, the system can generate up to 146 dB sound pressure level. The predicted interference field pattern indicated a high density of alternating pressure nodes across the chamber. Experimental results confirmed that, at a resonance frequency of 48.85 kHz and with the same excitation signal, the sound pressure in the chamber reached 144.8 dB. Particle agglomeration tests demonstrated effective performance: ultrafine particles in the 191–294 nm range decreased by 31.2%, while particles in the 0.75–1 µm range increased by up to 52.9%. These findings confirm the strong potential of interference acoustic fields for enhancing particle agglomeration and supporting air purification applications. Full article
(This article belongs to the Special Issue Advances in Piezoelectric Actuators and Materials)
Show Figures

Figure 1

15 pages, 4653 KB  
Article
Design, Fabrication, and Characterization of a Piezoelectric Micromachined Ultrasonic Transducer with a Suspended Cantilever Beam-like Structure with Enhanced SPL for Air Detection Applications
by Yanyuan Ba, Yiming Li and Yuanhang Zhou
Micromachines 2025, 16(11), 1280; https://doi.org/10.3390/mi16111280 - 13 Nov 2025
Cited by 1 | Viewed by 1869
Abstract
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that [...] Read more.
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that relieves residual stress, relaxes edge constraints, increases the mechanical degrees of freedom, and enables larger vibration amplitudes. Additionally, this work develops an accurate air-coupling model to predict device performance and a streamlined micro-nanofabrication process for device realization. Experimental results show that under a 1 Vpp (−5 Voffset) drive, the device achieves a peak acoustic pressure of 4.004 Pa at 69.3 kHz, measured at 10 cm distance in air, corresponding to a maximum sound pressure level of 106.02 dB (re 2 × 10−5 Pa). Compared to a traditional PMUT at 98.45 dB, this represents a 7.57 dB improvement and, to our knowledge, the highest reported sound pressure level at 10 cm for a single PMUT operating near 70 kHz under a 1 Vpp excitation. These results validate the significant enhancement in transmission performance achieved by the proposed topological structure, offering a solution to overcome the common bottleneck of insufficient output in PMUTs, and indicate strong potential for broader air-coupled sensing applications. Full article
Show Figures

Figure 1

17 pages, 3801 KB  
Article
Temporal Change Rate in Sound Velocity Caused by Ultrasonic Heating for Evaluation of Steatotic Liver
by Machi Itsubo, Yume Kobayashi, Masaki Yamamoto, Shinji Takayanagi and Iwaki Akiyama
Biology 2025, 14(11), 1585; https://doi.org/10.3390/biology14111585 - 13 Nov 2025
Viewed by 367
Abstract
Steatotic liver diseases are increasing globally, with metabolic dysfunction-associated steatohepatitis potentially causing irreversible fibrosis progression. This study focuses on an ultrasonic diagnostic method for steatotic liver disease based on temperature dependence of sound velocity for tissue characterization. Since the temperature coefficient of sound [...] Read more.
Steatotic liver diseases are increasing globally, with metabolic dysfunction-associated steatohepatitis potentially causing irreversible fibrosis progression. This study focuses on an ultrasonic diagnostic method for steatotic liver disease based on temperature dependence of sound velocity for tissue characterization. Since the temperature coefficient of sound velocity in liver is expected to decrease with increasing lipid accumulation, the temperature coefficient of sound velocity in tissue-mimicking material as a function of glycerol concentration was measured. It decreased as glycerol concentration increased, changing from positive to negative value at 37.5% glycerol concentration. Change rates in sound velocity by ultrasonic heating were then measured in vitro on liver left lobes of mice with steatotic liver induced by choline-deficient, L-amino acid-defined, and high-fat diet. There were positive values in the control group, whereas there were negative values in the steatotic liver group. In vivo measurements of mouse livers using an electrocardiogram-synchronized system showed similar results, with positive values in the control group and negative values in the steatotic liver group. Thermophysical properties can determine whether the liver is normal or steatotic. However, to estimate the lipid accumulation rate from the change rate in sound velocity, it is necessary to reduce the measurement variation. Full article
(This article belongs to the Section Biophysics)
Show Figures

Figure 1

22 pages, 4342 KB  
Article
Differential Single-Crystal Waveguide Ultrasonic Temperature Measurements Based on Magnetostriction
by Yanlong Wei, Gang Yang, Gao Wang, Haijian Liang, Hui Qi, Xiaofang Mu, Zhen Tian, Fujiang Yuan and Qianxiang Zhang
Micromachines 2025, 16(11), 1274; https://doi.org/10.3390/mi16111274 - 13 Nov 2025
Viewed by 422
Abstract
In extremely harsh high-temperature environments in aerospace, industrial manufacturing and other fields, traditional ultrasonic temperature measurement technology has certain limitations. This paper proposes a differential single crystal sapphire ultrasonic temperature measurement method based on the magnetostrictive effect. This method abandons the traditional sensitive [...] Read more.
In extremely harsh high-temperature environments in aerospace, industrial manufacturing and other fields, traditional ultrasonic temperature measurement technology has certain limitations. This paper proposes a differential single crystal sapphire ultrasonic temperature measurement method based on the magnetostrictive effect. This method abandons the traditional sensitive flexural structure and uses two single-crystal sapphire waveguides of the same material, same diameter, and slightly different lengths as sensing elements. By measuring the time delay difference between their end-face echoes, the sound velocity is inverted and the temperature is measured. COMSOL multi-physics v6.1 simulation was used to optimize the bias magnetic field design of the magnetostrictive transducer, which improved the system’s energy conversion efficiency and high-temperature stability. Experimental results show that in the range of 300–1200 °C, the sensor delay increases monotonically with increasing temperature, the sound speed shows a downward trend, and the repeatability error is less than 5%; the differential processing method effectively suppresses common mode noise in the range of 300–700 °C, and still shows high sensitivity above 800 °C. This research offers a technical solution with high reliability and accuracy for temperature monitoring in extreme environments such as those characterized by high temperatures and high pressures. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

20 pages, 4864 KB  
Article
A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II
by Xin Zeng, Xueshen Cao, Jiaheng Zhao, Yuyu Dai, Chao Li and Hao Chen
Sensors 2025, 25(21), 6762; https://doi.org/10.3390/s25216762 - 5 Nov 2025
Viewed by 417
Abstract
Key detection performance metrics, particularly resolution, are largely determined by the design parameters of ultrasonic arrays. The structural design of the transducer strongly influences critical indicators, including side lobe levels, beam directivity, and focal spot size. To improve parameter selection, this study proposes [...] Read more.
Key detection performance metrics, particularly resolution, are largely determined by the design parameters of ultrasonic arrays. The structural design of the transducer strongly influences critical indicators, including side lobe levels, beam directivity, and focal spot size. To improve parameter selection, this study proposes a multi-objective optimization strategy specifically tailored for cylindrical surface ultrasonic transducers. The geometric parameters of the array and the variables influencing resolution performance are mapped in a nonlinear manner. The NSGA-II algorithm is employed to perform extremum seeking optimization on a trained BPNN, generating a Pareto-optimal solution set by specifying main-lobe width, side-lobe intensity, and sound-pressure uniformity as optimization objectives. For validation, the geometric configurations derived from this solution set are applied in acoustic field simulations. Simulation results demonstrate that the dynamic aperture exhibits clear regularity when the array settings meet millimeter-level resolution requirements. These findings support real-world engineering applications and provide valuable insights for enhancing the geometric design of cylindrical ultrasonic arrays. Full article
(This article belongs to the Special Issue Ultrasonic Sensors and Ultrasonic Signal Processing)
Show Figures

Figure 1

24 pages, 5371 KB  
Article
Non-Contact In Situ Estimation of Soil Porosity, Tortuosity, and Pore Radius Using Acoustic Reflections
by Stuart Bradley
Agriculture 2025, 15(20), 2146; https://doi.org/10.3390/agriculture15202146 - 15 Oct 2025
Viewed by 647
Abstract
Productive and healthy soils are essential in agriculture and other economic uses of land which depend on plant growth, and are under increasing pressure globally. The physical properties of soil, its porosity and pore structure, also have a significant impact on a wide [...] Read more.
Productive and healthy soils are essential in agriculture and other economic uses of land which depend on plant growth, and are under increasing pressure globally. The physical properties of soil, its porosity and pore structure, also have a significant impact on a wide range of environmental factors, such as surface water runoff and greenhouse gas exchange. Methods exist for evaluating soil porosity that are applied in a laboratory environment or by inserting sensors into soil in the field. However, such methods do not readily sample adequately in space or time and are labour-intensive. The purpose of the current study is to investigate the potential for estimation of soil porosity and pore size using the strength of reflection of audio pulses from natural soil surfaces. Estimation of porous material properties using acoustic reflections is well established. But because of the complex, viscous interactions between sound waves and pore structures, these methods are generally restricted to transmissions at low audio frequencies or at ultrasonic frequencies. In contrast, this study presents a novel design for an integrated broad band sensing system, which is compact, inexpensive, and which is capable of rapid, non-contact, and in situ sampling of a soil structure from a small, moving, farm vehicle. The new system is shown to have the capability of obtaining soil parameter estimates at sampling distances of less than 1 m and with accuracies of around 1%. In describing this novel design, special care is taken to consider the challenges presented by real agriculture soils. These challenges include the pasture, through which the sound must penetrate without significant losses, and soil roughness, which can potentially scatter sound away from the specular reflection path. The key to this new integrated acoustic design is an extension of an existing theory for acoustic interactions with porous materials and rigorous testing of assumptions via simulations. A configuration is suggested and tested, comprising seven audio frequencies and three angles of incidence. It is concluded that a practical, new operational tool of similar design should be readily manufactured. This tool would be inexpensive, compact, low-power, and non-intrusive to either the soil or the surrounding environment. Audio processing can be conducted within the scope of, say, mobile phones. The practical application is to be able to easily map regions of an agricultural space in some detail and to use that to guide land treatment and mitigation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

26 pages, 12809 KB  
Article
Coating Thickness Estimation Using a CNN-Enhanced Ultrasound Echo-Based Deconvolution
by Marina Perez-Diego, Upeksha Chathurani Thibbotuwa, Ainhoa Cortés and Andoni Irizar
Sensors 2025, 25(19), 6234; https://doi.org/10.3390/s25196234 - 8 Oct 2025
Viewed by 912
Abstract
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces [...] Read more.
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces often produce overlapping echoes, which complicates detection and accurate isolation of each layer’s thickness. In this study, analysis of the pulse-echo signal from a coated sample has shown that the front-coating reflection affects each main backwall echo differently; by comparing two consecutive backwall echoes, we can cancel the acquisition system’s impulse response and isolate the propagation path-related information between the echoes. This work introduces an ultrasound echo-based methodology for estimating coating thickness by first obtaining the impulse response of the test medium (reflectivity sequence) through a deconvolution model, developed using two consecutive backwall echoes. This is followed by an enhanced detection of coating layer thickness in the reflectivity function using a 1D convolutional neural network (1D-CNN) trained with synthetic signals obtained from finite-difference time-domain (FDTD) simulations with k-Wave MATLAB toolbox (v1.4.0). The proposed approach estimates the front-side coating thickness in steel samples coated on both sides, with coating layers ranging from 60μm to 740μm applied over 5 mm substrates and under varying coating and steel properties. The minimum detectable thickness corresponds to approximately λ/5 for an 8 MHz ultrasonic transducer. On synthetic signals, where the true coating thickness and speed of sound are known, the model achieves an accuracy of approximately 8μm. These findings highlight the strong potential of the model for reliably monitoring relative thickness changes across a wide range of coatings in real samples. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
Show Figures

Figure 1

15 pages, 5011 KB  
Article
Research on Ultrasonic Focusing Stacked Transducers for Composite
by Yi Bo, Jie Li, Shunmin Yang, Chenju Zhou and Yutao Tian
Sensors 2025, 25(19), 6179; https://doi.org/10.3390/s25196179 - 6 Oct 2025
Viewed by 778
Abstract
Most existing carbon fiber composite materials are formed by high-temperature molding of multiple layers of fiber cloth. During the manufacturing and usage processes, materials are prone to defects such as voids, delamination, and inclusions, which seriously threaten their service life and safety performance. [...] Read more.
Most existing carbon fiber composite materials are formed by high-temperature molding of multiple layers of fiber cloth. During the manufacturing and usage processes, materials are prone to defects such as voids, delamination, and inclusions, which seriously threaten their service life and safety performance. Ultrasonic testing is currently a widely adopted method for detecting defects in carbon fiber composite materials. However, existing narrow-pulse ultrasonic transducers often have to sacrifice emission energy to achieve narrow-pulse emission, which results in their limited ability to penetrate thicker carbon fiber composite materials. To address this issue, this paper proposes the design of a focused laminated transducer. By stacking and bonding lead titanate piezoelectric wafers and using a concave lens made of organic glass to focus ultrasonic waves, the emission sound intensity of the ultrasonic transducer is enhanced. The simulation results show that the designed focused double-stack transducer has a directivity gain that is 4.49 dB higher than that of the traditional single-piezoelectric-wafer transducer. The transducer fabricated based on this design has successfully achieved effective detection of internal defects in carbon fiber composite materials. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

4 pages, 349 KB  
Abstract
Influences of Dissolved Oxygen and Microbubbles on Heat Generation at Defect Under Immersion Sonic-IR Testing
by Daiki Tazuke, Yui Izumi and Hirotaka Tanabe
Proceedings 2025, 129(1), 59; https://doi.org/10.3390/proceedings2025129059 - 12 Sep 2025
Viewed by 380
Abstract
The sonic-IR method is an innovative approach to defect detection. Ultrasonic waves are input to the inspection object, and the frictional heat generated by friction with the defect interfaces is detected by an infrared camera. A notable advantage of this method is its [...] Read more.
The sonic-IR method is an innovative approach to defect detection. Ultrasonic waves are input to the inspection object, and the frictional heat generated by friction with the defect interfaces is detected by an infrared camera. A notable advantage of this method is its superior detection ability to detect closure defects that are often missed by other inspection methods. However, the conventional Sonic-IR method of pressing an ultrasonic transducer directly against the inspection object may cause deformation or surface damage, depending on the material and shape of the object. As a method to solve this problem, the immersion Sonic-IR testing, in which ultrasonic waves are input to the inspection object through water, has been proposed. However, this method has a problem in defect detectability because of the small frictional heat at the defects. Large-diameter bubbles in water are difficult to collapse and also cause scattering and attenuation of ultrasonic waves. In contrast, small-diameter bubbles are easily collapsed so that cavitation, which is a source of vibrational energy, is likely to occur. The objective of this study is to investigate the influences of dissolved oxygen and microbubbles on the sound pressure level in the water and heat generation at defects in order to improve the defect detectability of the immersion Sonic-IR testing. Full article
Show Figures

Figure 1

52 pages, 44108 KB  
Article
Experimental Validation of Time-Explicit Ultrasound Propagation Models with Sound Diffusivity or Viscous Attenuation in Biological Tissues Using COMSOL Multiphysics
by Nuno A. T. C. Fernandes, Shivam Sharma, Ana Arieira, Betina Hinckel, Filipe Silva, Ana Leal and Óscar Carvalho
Bioengineering 2025, 12(9), 946; https://doi.org/10.3390/bioengineering12090946 - 31 Aug 2025
Cited by 4 | Viewed by 2771
Abstract
Ultrasonic wave attenuation in biological tissues arises from complex interactions between mechanical, structural, and fluidic properties, making it essential to identify dominant mechanisms for accurate simulation and device design. This work introduces a novel integration of experimentally measured tissue parameters into time-explicit nonlinear [...] Read more.
Ultrasonic wave attenuation in biological tissues arises from complex interactions between mechanical, structural, and fluidic properties, making it essential to identify dominant mechanisms for accurate simulation and device design. This work introduces a novel integration of experimentally measured tissue parameters into time-explicit nonlinear acoustic wave simulations, in which the equations are directly solved in the time domain using an explicit solver. This approach captures the full transient waveform without relying on frequency-domain simplifications, offering a more realistic representation of ultrasound propagation in heterogeneous media. The study estimates both sound diffusivity and viscous damping parameters (dynamic and bulk viscosity) for a broad range of ex vivo tissues (skin, adipose tissue, skeletal muscle, trabecular/cortical bone, liver, myocardium, kidney, tendon, ligament, cartilage, and gray/white brain matter). Four regression models (power law, linear, exponential, logarithmic) were applied to characterize their frequency dependence between 0.5 and 5 MHz. Results show that attenuation is more strongly driven by bulk viscosity than dynamic viscosity, particularly in fluid-rich tissues such as liver and myocardium, where compressional damping dominates. The power-law model consistently provided the best fit for all attenuation metrics, revealing a scale-invariant frequency relationship. Tissues such as cartilage and brain showed weaker viscous responses, suggesting the need for alternative modeling approaches. These findings not only advance fundamental understanding of attenuation mechanisms but also provide validated parameters and modeling strategies to improve predictive accuracy in therapeutic ultrasound planning and the design of non-invasive, tissue-specific acoustic devices. Full article
Show Figures

Graphical abstract

14 pages, 3931 KB  
Article
Design and Fabrication of Air-Coupled CMUT for Non-Contact Temperature Measurement Applications
by Xiaobo Rui, Yongshuai Ma, Chenghao He, Chi Zhang, Zhuochen Wang and Hui Zhang
Micromachines 2025, 16(9), 1008; https://doi.org/10.3390/mi16091008 - 31 Aug 2025
Viewed by 855
Abstract
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity [...] Read more.
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity and temperature to achieve non-contact temperature detection, with advantages such as fast response and non-invasiveness. CMUT-based acoustic temperature field measurement can achieve temperature detection in situations with narrow spaces, portability, and high measurement accuracy. This paper investigates an air-coupled CMUT device for acoustic temperature measurement, featuring a resonant frequency of 220 kHz, and composed of 16 × 8 cells. The design and fabrication of the CMUT array were completed, and the device characteristics were tested and characterized. A temperature field measurement method using mechanical scanning was proposed. A temperature measurement experimental system based on CMUT devices was constructed, achieving preliminary measurement of acoustic transmission time in both uniform and non-uniform temperature fields. Using a temperature field reconstruction algorithm, the measurement and imaging of the temperature field above an electric heating wire were accomplished and compared with the thermocouple-based temperature measurement experiment. The experimental results verified the feasibility of CMUT devices for non-contact temperature field measurement. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers, 2nd Edition)
Show Figures

Figure 1

14 pages, 2382 KB  
Article
Research on Viscous Dissipation Index Assessment of Polymer Materials Using High-Frequency Focused Ultrasound
by Zeqiu Yang, Yuebing Wang and Zhenwei Lu
Appl. Sci. 2025, 15(17), 9267; https://doi.org/10.3390/app15179267 - 22 Aug 2025
Viewed by 912
Abstract
Polymer viscoelasticity is crucial for mechanical performance, but conventional low-frequency methods struggle to isolate viscous loss—a key viscosity indicator. This study introduces a high-frequency ultrasonic method to differentiate the polymer viscous dissipation index by analyzing acoustic phase shifts. We employ ultrasonic phase-shift thermometry [...] Read more.
Polymer viscoelasticity is crucial for mechanical performance, but conventional low-frequency methods struggle to isolate viscous loss—a key viscosity indicator. This study introduces a high-frequency ultrasonic method to differentiate the polymer viscous dissipation index by analyzing acoustic phase shifts. We employ ultrasonic phase-shift thermometry to measure localized temperature increases resulting from minute variations in sound velocity during controlled heating. This allows for the quantification of viscous loss, which is then used to distinguish between different polymer formulations. Experimental and simulation results on a series of polyurethane specimens with varying Shore hardness levels demonstrate that decawatt-range (10–20 W) ultrasonic irradiation enables sensitive and precise differentiation. Notably, the Shore A70 polyurethane sample exhibited a significantly higher viscous dissipation index, evidenced by the largest temperature rise (27.5 °C) and the highest proportion of viscous heating to total power dissipation (93.1%) under 17 W acoustic irradiation. While this study focuses on commercially available polymers, the method can be extended to evaluate key performance parameters, such as tensile modulus and glass transition temperature, in polymers fabricated under various processing conditions, thereby offering a powerful tool for material quality assessment. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

15 pages, 4845 KB  
Article
Photoacoustic Tomography in Forward-Detection Mode for Monitoring Structural Changes in an Extracted Wisdom Tooth
by Marco P. Colín-García, Misael Ruiz-Veloz, Gerardo Gutiérrez-Juárez, Gonzalo Montoya-Ayala, Roberto G. Ramírez-Chavarría, Rosalba Castañeda-Guzmán and Argelia Pérez-Pacheco
Appl. Sci. 2025, 15(16), 9146; https://doi.org/10.3390/app15169146 - 20 Aug 2025
Cited by 1 | Viewed by 1043
Abstract
Photoacoustic tomography (PAT), which combines optical absorption and ultrasonic detection, enables the monitoring of dehydration-driven structural changes in extracted teeth over time. In this proof-of-concept study, 2D photoacoustic images of a wisdom tooth were generated on the same scanning plane at days 0, [...] Read more.
Photoacoustic tomography (PAT), which combines optical absorption and ultrasonic detection, enables the monitoring of dehydration-driven structural changes in extracted teeth over time. In this proof-of-concept study, 2D photoacoustic images of a wisdom tooth were generated on the same scanning plane at days 0, 1, 3, 6, 10, 15, 21, and 28 post-extraction, using day 0 as the reference. Measurements were performed in forward-detection mode with a single ultrasound transducer and a 532 nm pulsed laser. For the comparative analysis of variations between images, four metrics were used: Pearson correlation coefficient, Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR). Structural changes were also examined through radial intensity profiles extracted from each image. The results revealed marked differences in the central region, evidencing progressive structural and acoustic modifications within the tooth. The most significant change occurred on day 1, followed by small but consistent variations on subsequent days. These differences are associated with dehydration-induced changes in tissue density, which affect sound propagation. This study highlights the value of PAT for noninvasive monitoring of post-extraction dental changes, with implications for diagnosis, treatment guidance, and biomaterials research in dentistry. Full article
(This article belongs to the Special Issue Technological Innovations and Tools in Dental Practice)
Show Figures

Figure 1

Back to TopTop