Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = ultrasonic device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1298 KiB  
Technical Note
Ultrasound Imaging: Advancing the Diagnosis of Periodontal Disease
by Gaël Y. Rochefort, Frédéric Denis and Matthieu Renaud
Dent. J. 2025, 13(8), 349; https://doi.org/10.3390/dj13080349 - 29 Jul 2025
Viewed by 88
Abstract
Objectives: This pilot study evaluates the correlation between periodontal pocket depth (PPD) measurements obtained by manual probing and those derived from an AI-coupled ultrasound imaging device in periodontitis patients. Materials and Methods: Thirteen patients with periodontitis underwent ultrasonic probing with an [...] Read more.
Objectives: This pilot study evaluates the correlation between periodontal pocket depth (PPD) measurements obtained by manual probing and those derived from an AI-coupled ultrasound imaging device in periodontitis patients. Materials and Methods: Thirteen patients with periodontitis underwent ultrasonic probing with an AI engine for automated PPD measurements, followed by routine manual probing. Results: A total of 2088 manual and 1987 AI-based PPD measurements were collected. The mean PPD was 4.2 mm (range: 2–8 mm) for manual probing and 4.5 mm (range: 2–9 mm) for AI-based ultrasound, with a Pearson correlation coefficient of 0.68 (95% CI: 0.62–0.73). Discrepancies were noted in cases with inflammation or calculus. AI struggled to differentiate pocket depths in complex clinical scenarios. Discussion: Ultrasound imaging offers non-invasive, real-time visualization of periodontal structures, but AI accuracy requires further training to address image artifacts and clinical variability. Conclusions: The ultrasound device shows promise for non-invasive periodontal diagnostics but is not yet a direct alternative to manual probing. Further AI optimization and validation are needed. Clinical Relevance: This technology could enhance patient comfort and enable frequent monitoring, pending improvements in AI reliability. Full article
(This article belongs to the Special Issue Feature Papers in Digital Dentistry)
Show Figures

Figure 1

20 pages, 3148 KiB  
Article
Dynamic Ultrasonic Jamming via Time–Frequency Mosaic for Anti-Eavesdropping Systems
by Zichuan Yu, Lu Tang, Kai Wang, Xusheng Tang and Hongyu Ge
Electronics 2025, 14(15), 2960; https://doi.org/10.3390/electronics14152960 - 24 Jul 2025
Viewed by 128
Abstract
To combat microphone eavesdropping on devices like smartphones, ultrasonic-based methods offer promise due to human inaudibility and microphone nonlinearity. However, existing systems suffer from low jamming efficiency, poor energy utilization, and weak robustness. Based on these problems, this paper proposes a novel ultrasonic-based [...] Read more.
To combat microphone eavesdropping on devices like smartphones, ultrasonic-based methods offer promise due to human inaudibility and microphone nonlinearity. However, existing systems suffer from low jamming efficiency, poor energy utilization, and weak robustness. Based on these problems, this paper proposes a novel ultrasonic-based jamming algorithm called the Time–Frequency Mosaic (TFM) technique, which can be used for anti-eavesdropping. The proposed TFM technique can generate short-time, frequency-coded jamming signals according to the voice frequency characteristics of different speakers, thereby achieving targeted and efficient jamming. A jamming prototype using the Time–Frequency Mosaic technique was developed and tested in various scenarios. The test results show that when the signal-to-noise ratio (SNR) is lower than 0 dB, the text Word Error Rate (WER) of the proposed method is basically over 60%; when the SNR is 0 dB, the WER of the algorithm in this paper is on average more than 20% higher than that of current jamming algorithms. In addition, when the jamming system maintains the same distance from the recording device, the algorithm in this paper has higher energy utilization efficiency compared with existing algorithms. Experiments prove that in most cases, the proposed algorithm has a better jamming effect, higher energy utilization efficiency, and stronger robustness. Full article
(This article belongs to the Topic Addressing Security Issues Related to Modern Software)
Show Figures

Figure 1

19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 157
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 412
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 1350 KiB  
Review
Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
by Jinwook Kim, Jinwoo Kim and Juwon Kang
Actuators 2025, 14(7), 355; https://doi.org/10.3390/act14070355 - 19 Jul 2025
Viewed by 204
Abstract
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural [...] Read more.
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural constraints that tie resonance frequency to overall transducer length and mass. However, technical demands in biomedical, industrial, and underwater technologies have driven the development of broadband Langevin transducers capable of operating over wider frequency ranges. Lower frequencies are desirable for deep penetration and cavitation effects, while higher frequencies offer improved resolution and directivity. Recent design innovations have focused on modifications to the three key components of the transducer: the head mass, piezoelectric drive stack, and tail mass. Techniques such as integrating flexural or edge-resonance modes, adopting piezocomposite stacks, and tailoring structural geometry have shown promising improvements in bandwidth and transmitting efficiency. This review examines broadband Langevin transducer designs over the past three decades, offering detailed insights into design strategies for future development of high-power broadband ultrasonic transducers. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 2083 KiB  
Article
Quantification of Microplastics in Urban Compost-Amended Farmland Soil Using an Elutriation Device
by Luigi Paolo D’Acqui, Sara Di Lonardo, Martina Grattacaso, Alessandra Bonetti and Ottorino-Luca Pantani
Agronomy 2025, 15(7), 1736; https://doi.org/10.3390/agronomy15071736 - 18 Jul 2025
Viewed by 209
Abstract
Microplastics (MPs) present in farmland soils, where urban compost has been distributed since 2005, were extracted using a device based on elutriation, a method developed for marine sediments but not yet used in soil. Since (i) fine earth (diameter < 2 mm) is [...] Read more.
Microplastics (MPs) present in farmland soils, where urban compost has been distributed since 2005, were extracted using a device based on elutriation, a method developed for marine sediments but not yet used in soil. Since (i) fine earth (diameter < 2 mm) is the standard fraction used for soil analysis and (ii) the size of MPs contained in urban compost may exceed that value, MP were recovered from both the entire soil and fine earth. The recovered MPs pieces were weighed, counted, and characterized using FTIR photoacoustic spectroscopy (FTIR-PAS). Both the mass and number of recovered MPs pieces (>34 µm) were comparable to those reported in the literature for soils. Polystyrene, polyethylene, and polypropylene are the primary polymers. Nevertheless, some issues were highlighted: (i) the importance of sampling the soil by volume, and (ii) the need of analyzing the entire soil sample rather than just the fraction below 2 mm, commonly used in soil analysis; (iii) the necessity of breaking up (i.e., by ultrasonication and/or dispersion) soil aggregates that may withstand the elutriation process. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 382
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

14 pages, 2680 KiB  
Article
Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators
by Yutaro Okano, Shuya Ochiai, Hiroto Nakayama, Kiyofumi Nagai and Masayuki Takashiri
Materials 2025, 18(14), 3339; https://doi.org/10.3390/ma18143339 - 16 Jul 2025
Viewed by 337
Abstract
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a [...] Read more.
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a small variation of the particle size. The SWCNT films fabricated under this dispersion condition had well-distributed SWCNT bundles and exhibited the highest power factor. However, when the dispersion amplitude was excessive, the viscosity of the SWCNT ink increased due to the reduced contact between the SWCNTs owing to over-dispersion, and the crystallinity of the SWCNT films decreased, exhibiting a lower power factor. When the optimized SWCNT films at 60% were applied to heat-source-free water-floating SWCNT-TEGs, an output voltage of 2.0 mV could be generated under sunlight irradiation. These findings are useful for preparing various electronic devices with SWCNT films to improve the film quality using ultrasonic dispersion. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials and Micro/Nanoscale Heat Transfer)
Show Figures

Figure 1

15 pages, 2397 KiB  
Article
A Double Closed-Loop Process for Nanoparticle Synthesis via Aerosol Mixing and Venturi Jet Scrubbing
by Bruno Fabiano, Marco Salerno, Marco Vocciante, Omar Soda and Andrea Pietro Reverberi
Appl. Sci. 2025, 15(14), 7693; https://doi.org/10.3390/app15147693 - 9 Jul 2025
Viewed by 256
Abstract
Inorganic nanoparticles (NPs) have been synthesised via mixing and coalescence of droplets containing precursors and entrained by gaseous streams. The droplets have been generated by ultrasonic aerosolisation of two different liquid phases, each containing the respective reagent. The as-produced NPs are trapped by [...] Read more.
Inorganic nanoparticles (NPs) have been synthesised via mixing and coalescence of droplets containing precursors and entrained by gaseous streams. The droplets have been generated by ultrasonic aerosolisation of two different liquid phases, each containing the respective reagent. The as-produced NPs are trapped by mixing with a liquid phase in a Venturi nozzle, acting simultaneously as a collector and concentrator of the solid nanosized phase produced. Commercial electrically powered ultrasonic aerosolising devices have been adapted to atomise salt solutions characterised by high electrical conductivity. This process allowed the synthesis of calcium carbonate NPs with an average diameter in the range of (34–52) nm, according to the concentration of precursors in the aerosolised phases. This closed-loop method of synthesis, where neither capping agents were used nor demanding operating conditions were adopted, can represent a safe and viable eco-friendly technique for NP production free of undesirable compounds, as required for pharmaceutical preparations and theranostic uses. Full article
Show Figures

Figure 1

18 pages, 16017 KiB  
Article
Design and Fabrication of Multi-Frequency and Low-Quality-Factor Capacitive Micromachined Ultrasonic Transducers
by Amirhossein Moshrefi, Abid Ali, Mathieu Gratuze and Frederic Nabki
Micromachines 2025, 16(7), 797; https://doi.org/10.3390/mi16070797 - 8 Jul 2025
Viewed by 466
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for air-coupled applications to address key challenges such as noise, prolonged ringing, and side-lobe interference. This study introduces an optimized CMUT design that leverages the squeeze-film damping effect to achieve a low-quality factor, enhancing resolution [...] Read more.
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for air-coupled applications to address key challenges such as noise, prolonged ringing, and side-lobe interference. This study introduces an optimized CMUT design that leverages the squeeze-film damping effect to achieve a low-quality factor, enhancing resolution and temporal precision for imaging as one of the suggested airborne application. The device was fabricated using the PolyMUMPs process, ensuring high structural accuracy and consistency. Finite element analysis (FEA) simulations validated the optimized parameters, demonstrating improved displacement, reduced side-lobe artifacts, and sharper main lobes for superior imaging performance. Experimental validation, including Laser Doppler Vibrometer (LDV) measurements of membrane displacement and mode shapes, along with ring oscillation tests to assess Q-factor and signal decay, confirmed the device’s reliability and consistency across four CMUT arrays. Additionally, this study explores the implementation of multi-frequency CMUT arrays, enhancing imaging versatility across different air-coupled applications. By integrating multiple frequency bands, the proposed CMUTs enable adaptable imaging focus, improving their suitability for diverse diagnostic scenarios. These advancements highlight the potential of the proposed design to deliver a superior performance for airborne applications, paving the way for its integration into advanced diagnostic systems. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

16 pages, 3262 KiB  
Article
Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid
by Miguel Esteban, Guadalupe Olvera-Licona, Gabriel Humberto Virgen-Cobos and Ignacio Bobadilla
Forests 2025, 16(7), 1125; https://doi.org/10.3390/f16071125 - 8 Jul 2025
Viewed by 210
Abstract
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of [...] Read more.
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of two ultrasonic wave devices with different frequencies (USLab and Sylvatest Duo) and a stress wave device (Microsecond Timer) to generate acoustic tomography using ImageWood VC1 software. The tests were carried out on 12 cross-sections of urban trees in the city of Madrid of the species Robinia pseudoacacia L., Platanus × hybrida Brot., Ulmus pumila L., and Populus alba L. Velocity measurements were made, forming a diffraction mesh in both standing trees and logs after cutting them down. An inspection was carried out with a perforation resistance drill (IML RESI F-400S) in the radial direction in each section, which allowed for more precise identification of defects and differentiating between holes and cracks. The various defects were determined with greater accuracy in the tomographic images taken with the higher-frequency equipment (45 kHz), and the combination of ultrasonic tomography and the use of the inspection drill can provide a more accurate representation of the defects. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

16 pages, 18636 KiB  
Article
Design of a Modular Wall-Climbing Robot with Multi-Plane Transition and Cleaning Capabilities
by Boyu Wang, Weijian Zhang, Jianghan Luo and Qingsong Xu
Biomimetics 2025, 10(7), 450; https://doi.org/10.3390/biomimetics10070450 - 8 Jul 2025
Viewed by 411
Abstract
This paper presents the design and development of a new modular wall-climbing robot—Modular Wall Climbing-1 (MC-1)—for solving the problem of autonomous wall switching observed in wall-climbing robots. Each modular robot is capable of independently adhering to vertical surfaces and maneuvering, making it a [...] Read more.
This paper presents the design and development of a new modular wall-climbing robot—Modular Wall Climbing-1 (MC-1)—for solving the problem of autonomous wall switching observed in wall-climbing robots. Each modular robot is capable of independently adhering to vertical surfaces and maneuvering, making it a fully autonomous robotic system. Multiple modules of MC-1 are connected by an electromagnet-based magnetic attachment method, and wall transitions are achieved using a servo motor mechanism. Moreover, an ultrasonic sensor is employed to measure the unknown wall-inclination angle. Mechanical analysis is conducted for MC-1 at rest individually and in combination to determine the required suction force. Experimental investigations are performed to assess the robot’s crawling ability, loading capacity, and wall-transition performance. The results demonstrate that the MC-1 robot is capable of multi-angle wall transitions for executing multiple tasks. It provides a new approach for wall-climbing robots to collaborate during wall transitions through a quick attachment-and-disassembly device and an efficient wall detection method. Full article
Show Figures

Figure 1

18 pages, 5101 KiB  
Article
Investigation of the Preparation and Interlayer Properties of Multi-Walled Carbon Nanotube-Reinforced Ultra-Thin TA1/CFRP Laminates
by Quanda Zhang, Zhongxiao Zhang, Jiahua Cao, Yao Wang and Zhiying Sun
Metals 2025, 15(7), 765; https://doi.org/10.3390/met15070765 - 7 Jul 2025
Viewed by 218
Abstract
Titanium alloy/carbon fiber-reinforced polymer (TA1/CFRP) laminates, representing the latest fourth generation of fiber metal laminates (FMLs), is a kind of high-performance composite material. However, the fragility of the fiber/resin and metal/resin interface layers in these composites directly impacts their mechanical properties. To enhance [...] Read more.
Titanium alloy/carbon fiber-reinforced polymer (TA1/CFRP) laminates, representing the latest fourth generation of fiber metal laminates (FMLs), is a kind of high-performance composite material. However, the fragility of the fiber/resin and metal/resin interface layers in these composites directly impacts their mechanical properties. To enhance these properties, this paper investigates the preparation process of multi-walled carbon nanotube (MWCNT)-reinforced ultra-thin TA1/CFRP laminates and explores the impact of MWCNT content on the interlayer properties of these ultra-thin TA1/CFRP laminates. Initially, the challenge of dispersing carbon nanotubes using ultrasonic dispersion devices and dispersants was addressed. Vacuum-curing pressure studies revealed minimal overflow at 0.8 bar vacuum. Subsequently, the impact of MWCNT content on interlayer properties was investigated. The results indicated a significant increase in interlayer shear strength and interlayer fracture toughness with MWCNT additions at 0.5 wt% and 0.75 wt%, whereas the interlayer properties decreased at 1.0 wt% MWCNT. Fracture morphology analysis revealed that MWCNT content exceeding 0.75 wt% led to agglomeration, resulting in resin cavity formation and stress concentration. Full article
Show Figures

Figure 1

13 pages, 7320 KiB  
Article
Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy
by Guoxi Luo, Haoyu Zhang, Delai Liu, Wenyan Li, Min Li, Zhikang Li, Lin Sun, Ping Yang, Ryutaro Maeda and Libo Zhao
Sensors 2025, 25(13), 4182; https://doi.org/10.3390/s25134182 - 4 Jul 2025
Viewed by 313
Abstract
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by [...] Read more.
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by integrating six types of different cells with adjacent resonant frequencies into an array. Through overlapping and coupling of the bandwidths from the different cells, the proposed PMUTs showed a wide –6 dB fractional bandwidth of 108% in silicon oil. Due to the broadening of bandwidth, the device could obtain the maximum steady state with less excitation (5 cycles versus 14 cycles) and reduce its residual ring-down (ca. 6 μs versus 15 μs) compared with the traditional PMUT array with the same cells, resulting in a small blind area. The pulse–echo ranging experiments demonstrated that the blind area was effectively reduced to 4.4 mm in air or 12.8 mm in silicon oil, and the error was controlled within ±0.3 mm for distance measurements up to 250 mm. In addition, a specific ultrasound signal processing circuit with functions of transmitting, receiving, and processing ultrasonic waves was developed. Combining the processing circuit and PMUT device, the system was applied to determine the axial clearance of the main bearing in a tunneling machine. This work develops broadband PMUTs with a small blind area and high resolution for distance measurement in narrow and confined spaces, opening up a new path for ultrasonic ranging technology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

16 pages, 3606 KiB  
Article
Comparative Study on Rail Damage Recognition Methods Based on Machine Vision
by Wanlin Gao, Riqin Geng and Hao Wu
Infrastructures 2025, 10(7), 171; https://doi.org/10.3390/infrastructures10070171 - 4 Jul 2025
Viewed by 306
Abstract
With the rapid expansion of railway networks and increasing operational complexity, intelligent rail damage detection has become crucial for ensuring safety and improving maintenance efficiency. Traditional physical inspection methods (e.g., ultrasonic testing, magnetic flux leakage) are limited in terms of efficiency and environmental [...] Read more.
With the rapid expansion of railway networks and increasing operational complexity, intelligent rail damage detection has become crucial for ensuring safety and improving maintenance efficiency. Traditional physical inspection methods (e.g., ultrasonic testing, magnetic flux leakage) are limited in terms of efficiency and environmental adaptability. This study proposes a machine vision-based approach leveraging deep learning to identify four primary types of rail damages: corrugations, spalls, cracks, and scratches. A self-developed acquisition device collected 298 field images from the Chongqing Metro system, which were expanded into 1556 samples through data augmentation techniques (including rotation, translation, shearing, and mirroring). This study systematically evaluated three object detection models—YOLOv8, SSD, and Faster R-CNN—in terms of detection accuracy (mAP), missed detection rate (mAR), and training efficiency. The results indicate that YOLOv8 outperformed the other models, achieving an mAP of 0.79, an mAR of 0.69, and a shortest training time of 0.28 h. To further enhance performance, this study integrated the Multi-Head Self-Attention (MHSA) module into YOLO, creating MHSA-YOLOv8. The optimized model achieved a significant improvement in mAP by 10% (to 0.89), increased mAR by 20%, and reduced training time by 50% (to 0.14 h). These findings demonstrate the effectiveness of MHSA-YOLO for accurate and efficient rail damage detection in complex environments, offering a robust solution for intelligent railway maintenance. Full article
Show Figures

Figure 1

Back to TopTop