Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (225)

Search Parameters:
Keywords = ultrasonic beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11724 KB  
Review
Tab-to-Busbar Interconnections in EV Battery Packs: An Introductory Review of Typical Welding Methods
by Sooyong Choi, Sooman Lim, Ali Shan, Jinkyu Lee, Tae Gwang Yun and Byungil Hwang
Micromachines 2026, 17(1), 2; https://doi.org/10.3390/mi17010002 - 19 Dec 2025
Viewed by 381
Abstract
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes [...] Read more.
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes are compared in terms of heat input, interfacial metallurgy, electrical resistance, mechanical robustness, and manufacturability. USW, as a solid-state method, suppresses porosity and limits Al-Cu intermetallic growth, but is sensitive to thickness, stack geometry, and tool wear. LBW enables high-speed, automated production with precise energy delivery, yet requires careful control to mitigate spatter, porosity, and brittle IMCs in dissimilar joints. RW remains cost-effective and flexible but can suffer from electrode wear and variability with highly conductive stacks. This review also summarizes the effect of the busbar material (Al versus Cu) and thickness on the connection resistance and temperature increase under a high current. No single process is universally superior, and the selection should match the stack-up, reliability targets, and production constraints. This paper aims to provide an overview of recent and conventional research trends for each welding method and to introduce selected non-traditional approaches, thereby presenting a range of viable options for future applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

15 pages, 4653 KB  
Article
Design, Fabrication, and Characterization of a Piezoelectric Micromachined Ultrasonic Transducer with a Suspended Cantilever Beam-like Structure with Enhanced SPL for Air Detection Applications
by Yanyuan Ba, Yiming Li and Yuanhang Zhou
Micromachines 2025, 16(11), 1280; https://doi.org/10.3390/mi16111280 - 13 Nov 2025
Cited by 1 | Viewed by 1796
Abstract
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that [...] Read more.
Air-coupled ultrasonic detection demands high transmission performance from piezoelectric micromachined ultrasonic transducers (PMUTs). However, existing microelectromechanical system (MEMS)-based PMUTs deliver limited output, which compromises measurement accuracy and constrains further development. This work proposes a novel PMUT design with a cantilevered, boundary-suspended diaphragm that relieves residual stress, relaxes edge constraints, increases the mechanical degrees of freedom, and enables larger vibration amplitudes. Additionally, this work develops an accurate air-coupling model to predict device performance and a streamlined micro-nanofabrication process for device realization. Experimental results show that under a 1 Vpp (−5 Voffset) drive, the device achieves a peak acoustic pressure of 4.004 Pa at 69.3 kHz, measured at 10 cm distance in air, corresponding to a maximum sound pressure level of 106.02 dB (re 2 × 10−5 Pa). Compared to a traditional PMUT at 98.45 dB, this represents a 7.57 dB improvement and, to our knowledge, the highest reported sound pressure level at 10 cm for a single PMUT operating near 70 kHz under a 1 Vpp excitation. These results validate the significant enhancement in transmission performance achieved by the proposed topological structure, offering a solution to overcome the common bottleneck of insufficient output in PMUTs, and indicate strong potential for broader air-coupled sensing applications. Full article
Show Figures

Figure 1

20 pages, 4864 KB  
Article
A Multi-Objective Optimization Method for Cylindrical Surface Ultrasonic Array Parameters Based on BPNN and NSGA-II
by Xin Zeng, Xueshen Cao, Jiaheng Zhao, Yuyu Dai, Chao Li and Hao Chen
Sensors 2025, 25(21), 6762; https://doi.org/10.3390/s25216762 - 5 Nov 2025
Viewed by 415
Abstract
Key detection performance metrics, particularly resolution, are largely determined by the design parameters of ultrasonic arrays. The structural design of the transducer strongly influences critical indicators, including side lobe levels, beam directivity, and focal spot size. To improve parameter selection, this study proposes [...] Read more.
Key detection performance metrics, particularly resolution, are largely determined by the design parameters of ultrasonic arrays. The structural design of the transducer strongly influences critical indicators, including side lobe levels, beam directivity, and focal spot size. To improve parameter selection, this study proposes a multi-objective optimization strategy specifically tailored for cylindrical surface ultrasonic transducers. The geometric parameters of the array and the variables influencing resolution performance are mapped in a nonlinear manner. The NSGA-II algorithm is employed to perform extremum seeking optimization on a trained BPNN, generating a Pareto-optimal solution set by specifying main-lobe width, side-lobe intensity, and sound-pressure uniformity as optimization objectives. For validation, the geometric configurations derived from this solution set are applied in acoustic field simulations. Simulation results demonstrate that the dynamic aperture exhibits clear regularity when the array settings meet millimeter-level resolution requirements. These findings support real-world engineering applications and provide valuable insights for enhancing the geometric design of cylindrical ultrasonic arrays. Full article
(This article belongs to the Special Issue Ultrasonic Sensors and Ultrasonic Signal Processing)
Show Figures

Figure 1

17 pages, 10273 KB  
Article
Deep Learning-Based Approach for Automatic Defect Detection in Complex Structures Using PAUT Data
by Kseniia Barshok, Jung-In Choi and Jaesun Lee
Sensors 2025, 25(19), 6128; https://doi.org/10.3390/s25196128 - 3 Oct 2025
Viewed by 1595
Abstract
This paper presents a comprehensive study on automated defect detection in complex structures using phased array ultrasonic testing data, focusing on both traditional signal processing and advanced deep learning methods. As a non-AI baseline, the well-known signal-to-noise ratio algorithm was improved by introducing [...] Read more.
This paper presents a comprehensive study on automated defect detection in complex structures using phased array ultrasonic testing data, focusing on both traditional signal processing and advanced deep learning methods. As a non-AI baseline, the well-known signal-to-noise ratio algorithm was improved by introducing automatic depth gate calculation using derivative analysis and eliminated the need for manual parameter tuning. Even though this method demonstrates robust flaw indication, it faces difficulties for automatic defect detection in highly noisy data or in cases with large pore zones. Considering this, multiple DL architectures—including fully connected networks, convolutional neural networks, and a novel Convolutional Attention Temporal Transformer for Sequences—are developed and trained on diverse datasets comprising simulated CIVA data and real-world data files from welded and composite specimens. Experimental results show that while the FCN architecture is limited in its ability to model dependencies, the CNN achieves a strong performance with a test accuracy of 94.9%, effectively capturing local features from PAUT signals. The CATT-S model, which integrates a convolutional feature extractor with a self-attention mechanism, consistently outperforms the other baselines by effectively modeling both fine-grained signal morphology and long-range inter-beam dependencies. Achieving a remarkable accuracy of 99.4% and a strong F1-score of 0.905 on experimental data, this integrated approach demonstrates significant practical potential for improving the reliability and efficiency of NDT in complex, heterogeneous materials. Full article
Show Figures

Figure 1

18 pages, 5036 KB  
Article
The Reflection Coefficient |r| as a Nondestructive Measure of the Coating Adhesion to a Steel Substrate
by Dariusz Ulbrich, Piotr Banas, Jakub Jezierski and Łukasz Warguła
Materials 2025, 18(19), 4559; https://doi.org/10.3390/ma18194559 - 30 Sep 2025
Viewed by 2411
Abstract
The main property of a steel substrate is the adhesion of its coating, which determines the quality and durability of the adhesive joint. The main objective of the research presented in this article is to evaluate the adhesion of coatings to substrates based [...] Read more.
The main property of a steel substrate is the adhesion of its coating, which determines the quality and durability of the adhesive joint. The main objective of the research presented in this article is to evaluate the adhesion of coatings to substrates based on ultrasonic measurements and the determined reflection coefficient |r|. An experiment was carried out on disc samples, not only for ultrasonic measurements but also for the evaluation of the mechanical adhesion of coatings to substrates using the pull-off test. Three different methods of surface preparation of the samples were used: glass beading, surface treatment with P400 sandpaper, and the laser beam treatment. Based on the results, it was found that the best adhesion was obtained for samples with surfaces prepared by the glass-beading process. Reflection coefficient values in the range of 0.61–0.83 corresponded to mechanical adhesion in the range of 1.75–4.56 MPa. The results of the tests provide an important reference for the nondestructive evaluation of coating adhesion to substrates and allow for the estimation of mechanical adhesion based on the values of the reflection coefficient |r|. Full article
Show Figures

Figure 1

18 pages, 7249 KB  
Article
Upcycling of Copper Scrap into High-Quality Powder for Additive Manufacturing: Processing, Characterization, and Sustainability Assessment
by Mattia Cabrioli, María Silva Colmenero, Sepideh Gholamzadeh, Matteo Vanazzi, Sasan Amirabdollahian, Matteo Perini, Wojciech Łacisz and Bartosz Kalicki
J. Manuf. Mater. Process. 2025, 9(9), 320; https://doi.org/10.3390/jmmp9090320 - 20 Sep 2025
Viewed by 1409
Abstract
Copper is a critical material for energy transition and green technologies, making its sustainable use increasingly important. Its superior thermal and electrical conductivity make it highly well-suited for additive manufacturing (AM). In this study, copper sourced from offshore electrical cables was upcycled to [...] Read more.
Copper is a critical material for energy transition and green technologies, making its sustainable use increasingly important. Its superior thermal and electrical conductivity make it highly well-suited for additive manufacturing (AM). In this study, copper sourced from offshore electrical cables was upcycled to produce high-quality metal powder for AM. The scrap was processed to separate the metal from plastic and rubber, then refined through ultrasonic atomization, achieving a purity of ~99.5% wt.% with minimal impurities. Characterization demonstrated good flowability, apparent and tap densities, and a well-distributed particle size. To assess its performance in AM, the powder was printed using Directed Energy Deposition (DED) with a laser beam, confirming its high printability and compatibility with the base material. Finally, a comparative Life Cycle Assessment (LCA) revealed a significant environmental advantage of the recycling-based process over conventional mining, reducing global warming potential by more than 70%. These findings highlight the importance of feedstock origin in AM sustainability and support the adoption of circular economy strategies to lower the environmental footprint of advanced manufacturing. Full article
(This article belongs to the Special Issue Additive Manufacturing of Copper-Based Alloys)
Show Figures

Figure 1

23 pages, 5034 KB  
Article
Study on Early Warning of Stiffness Degradation and Collapse of Steel Frame Under Fire
by Ming Xie, Fangbo Xu, Xiangdong Wu, Zhangdong Wang, Li’e Yin, Mengqi Xu and Xiang Li
Buildings 2025, 15(17), 3146; https://doi.org/10.3390/buildings15173146 - 2 Sep 2025
Viewed by 846
Abstract
Frequent building fires seriously threaten the safety of steel structures. According to the data, fire accidents account for about 35% of the total number of production safety accidents. The collapse of steel structures accounted for 42% of the total collapse. The early warning [...] Read more.
Frequent building fires seriously threaten the safety of steel structures. According to the data, fire accidents account for about 35% of the total number of production safety accidents. The collapse of steel structures accounted for 42% of the total collapse. The early warning problem of steel structure fire collapse is imminent. This study aims to address this challenge by establishing a novel early warning framework, which is used to quantify the critical early warning threshold of steel frames based on elastic modulus degradation and its correlation with ultrasonic wave velocity under different collapse modes. The sequential thermal–mechanical coupling numerical method is used in the study. Firstly, Pyrosim is used to simulate the high-fidelity fire to obtain the real temperature field distribution, and then it is mapped to the Abaqus finite element model as the temperature load for nonlinear static analysis. The critical point of structural instability is identified by monitoring the mutation characteristics of the displacement and the change rate of the key nodes in real time. The results show that when the steel frame collapses inward as a whole, the three-level early warning elastic modulus thresholds of the beam are 153.6 GPa, 78.6 GPa, and 57.5 GPa, respectively. The column is 168.7 GPa, 122.4 GPa, and 72.6 GPa. Then the three-level warning threshold of transverse and longitudinal wave velocity is obtained. The three-stage shear wave velocity warning thresholds of the fire column are 2828~2843 m/s, 2409~2434 m/s, and 1855~1874 m/s, and the three-stage longitudinal wave velocity warning thresholds are 5742~5799 m/s, 4892~4941 m/s, and 3804~3767 m/s. The core innovation of this study is to quantitatively determine a three-level early warning threshold system, which corresponds to the three stages of significant degradation initiation, local failure, and critical collapse. Based on the theoretical relationship, these elastic modulus thresholds are converted into corresponding ultrasonic wave velocity thresholds. The research results provide a direct and reliable scientific basis for the development of new early warning technology based on acoustic emission real-time monitoring and fill the gap between the mechanism research and engineering application of steel structure fire resistance design. Full article
Show Figures

Figure 1

17 pages, 2028 KB  
Review
CMOS-Compatible Ultrasonic 3D Beamforming Sensor System for Automotive Applications
by Khurshid Hussain, Wanhae Jeon, Yongmin Lee, In-Hyouk Song and Inn-Yeal Oh
Appl. Sci. 2025, 15(16), 9201; https://doi.org/10.3390/app15169201 - 21 Aug 2025
Viewed by 4493
Abstract
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer [...] Read more.
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer introduces per-element time delays derived from steering angles to control the direction of ultrasonic wave propagation, while the RX beamformer aligns echo signals for spatial focusing. Electrostatic actuation governs the CMOS-compatible ultrasonic transmission mechanism, whereas dynamic modulation under acoustic pressure forms the reception mechanism. The system architecture supports full horizontal and vertical angular coverage, leveraging delay-and-sum processing to achieve electronically steerable beams. The system enables low-power, compact, and high-resolution sensing modules by integrating signal generation, beam control, and delay logic within a CMOS framework. Theoretical modeling demonstrates its capability to support fine spatial resolution and fast response, making it suitable for integration into autonomous vehicle platforms and driver-assistance systems. Full article
(This article belongs to the Special Issue Ultrasonic Transducers in Next-Generation Application)
Show Figures

Figure 1

15 pages, 3491 KB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 812
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

32 pages, 6074 KB  
Review
High-Quality Manufacturing with Electrochemical Jet Machining (ECJM) for Processing Applications: A Comprehensive Review, Challenges, and Future Opportunities
by Yong Huang, Yi Hu, Xincai Liu, Xin Wang, Siqi Wu and Hanqing Shi
Micromachines 2025, 16(7), 794; https://doi.org/10.3390/mi16070794 - 7 Jul 2025
Cited by 1 | Viewed by 2163
Abstract
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser [...] Read more.
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser beam machining (LBM) have been widely adopted as feasible alternatives to traditional methods, enabling the production of high-quality engineering components with specific characteristics. ECJM, a non-contact machining technology, employs electrodes on the nozzle and workpiece to establish an electrical circuit via the jet. As a prominent special machining technology, ECJM has demonstrated significant advantages, such as rapid, non-thermal, and stress-free machining capabilities, in past research. This review is dedicated to outline the research progress of ECJM, focusing on its fundamental concepts, material processing capabilities, technological advancements, and its variants (e.g., ultrasonic-, laser-, abrasive-, and magnetism-assisted ECJM) along with their applications. Special attention is given to the application of ECJM in the semiconductor and biomedical fields, where the demand for ultra-precision components is most pronounced. Furthermore, this review explores recent innovations in process optimization, significantly boosting machining efficiency and quality. This review not only provides a snapshot of the current status of ECJM technology, but also discusses the current challenges and possible future improvements of the technology. Full article
Show Figures

Figure 1

18 pages, 4458 KB  
Article
Intelligent Hybrid SHM-NDT Approach for Structural Assessment of Metal Components
by Romaine Byfield, Ahmed Shabaka, Milton Molina Vargas and Ibrahim Tansel
Infrastructures 2025, 10(7), 174; https://doi.org/10.3390/infrastructures10070174 - 6 Jul 2025
Cited by 2 | Viewed by 982
Abstract
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, [...] Read more.
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, SHM employs permanently installed, cost-effective sensors to enable continuous monitoring, though often with reduced detail. This study presents an integrated hybrid SHM-NDT methodology enhanced by deep learning to enable the real-time monitoring and classification of mechanical stresses in structural components. As a case study, a 6-foot-long parallel flange I-beam, representing bridge truss elements, was subjected to variable bending loads to simulate operational conditions. The hybrid system utilized an ultrasonic transducer (NDT) for excitation and piezoelectric sensors (SHM) for signal acquisition. Signal data were analyzed using 1D and 2D convolutional neural networks (CNNs), long short-term memory (LSTM) models, and random forest classifiers to detect and classify load magnitudes. The AI-enhanced approach achieved 100% accuracy in 47 out of 48 tests and 94% in the remaining tests. These results demonstrate that the hybrid SHM-NDT framework, combined with machine learning, offers a powerful and adaptable solution for continuous monitoring and precise damage assessment of structural systems, significantly advancing maintenance practices and safety assurance. Full article
Show Figures

Figure 1

17 pages, 4371 KB  
Article
Research on Nondestructive Testing Method Based on Magnetic Characteristics of Electron Beam Weld Defects
by Qiangqiang Cheng, Jijun Liu, Yisong Wang, Guisuo Xia and Chunquan Li
Sensors 2025, 25(13), 4094; https://doi.org/10.3390/s25134094 - 30 Jun 2025
Viewed by 574
Abstract
In view of the problems of poor safety, slow detection speed, and low accuracy of existing nondestructive testing (NDT) technologies, such as X-ray methods and ultrasonic detection in detecting electron beam weld defects in aluminum alloys, this study proposes a weak magnetic NDT [...] Read more.
In view of the problems of poor safety, slow detection speed, and low accuracy of existing nondestructive testing (NDT) technologies, such as X-ray methods and ultrasonic detection in detecting electron beam weld defects in aluminum alloys, this study proposes a weak magnetic NDT method based on the geomagnetic field. Firstly, the finite element analysis method was used to establish a simulation model of aluminum alloy electron beam welding defects, and the distribution characteristics of the magnetic field around weld defects, such as cracks and pores, were obtained. Then, the magnetic anomaly signal at the crack weld was identified by combining the wavelet transform and the least squares method. Finally, experimental tests show that the proposed method can safely, quickly, and accurately detect the defects of aluminum alloy electron beam welds. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 1130 KB  
Article
Hong–Ou–Mandel Interference on an Acousto-Optical Beam Splitter
by Piotr Kwiek
Optics 2025, 6(2), 25; https://doi.org/10.3390/opt6020025 - 5 Jun 2025
Viewed by 1308
Abstract
This paper presents the results of theoretical and experimental investigations of a Hong–Ou–Mandel interferometer in which an optical beam splitter is replaced by an ultrasonic wave. The ultrasonic wave acts as an acousto-optical beam splitter for light, which is based on the phenomenon [...] Read more.
This paper presents the results of theoretical and experimental investigations of a Hong–Ou–Mandel interferometer in which an optical beam splitter is replaced by an ultrasonic wave. The ultrasonic wave acts as an acousto-optical beam splitter for light, which is based on the phenomenon of Bragg diffraction on an ultrasonic wave. The Doppler effect was considered in the theoretical considerations and confirmed experimentally. It has been shown theoretically and experimentally that the Doppler effect changes the frequency of two-photon states at the outputs of an acousto-optical beam splitter. The frequency of the two-photon state in the positive diffraction order is increased by the frequency of the ultrasonic wave, whereas in the negative diffraction order, it is reduced by the frequency of the ultrasonic wave. It should be emphasized that there are no states 1112 in the outputs (diffraction orders), which disappear as a result of Hong–Ou–Mandel interference; consequently, the probability of detecting coincidences of photons between the plus first and minus first diffraction orders is zero, as it occurs in the Hong–Ou–Mandel interferometer. The frequency difference between the two-photon states at the outputs of the acousto-optical beam splitter was confirmed by recording the two-photon beat phenomenon. The obtained results changed the current view that the Doppler effect caused by ultrasonic waves can be neglected in the interaction of correlated pairs of photons with ultrasonic waves. Full article
Show Figures

Figure 1

20 pages, 3596 KB  
Article
Detection of Internal Defects in Concrete Using Delay Multiply and Sum-Enhanced Synthetic Aperture Focusing Technique
by Feng Li, Sheng-Kui Di, Jing Zhang, Dong Yang, Yao Pei and Xiao-Ying Wang
Buildings 2025, 15(11), 1887; https://doi.org/10.3390/buildings15111887 - 29 May 2025
Viewed by 816
Abstract
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm [...] Read more.
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm to address these limitations and improve both the resolution and signal-to-noise ratio. The proposed method sequentially transmits and receives ultrasonic waves through an array of transducers, and applies DMAS-based nonlinear beam-forming to enhance image sharpness and contrast. Its effectiveness was validated through finite element simulations and experimental tests using three precast concrete specimens with artificial defects (specimen size: 240 mm × 300 mm × 100 mm). Compared with the conventional SAFT, the proposed method improves image contrast by approximately 40%, with clearer defect boundaries and a vertical positioning error of less than ±5 mm. This demonstrates the method’s promising potential for practical applications in internal defect visualization of concrete structures. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

10 pages, 2895 KB  
Communication
Implementation of a Parametric Ultrasonic Receiver Using Multilayer Lead Zirconate Titanate for a Feasibility Study of an Ultrasonic-Beam-Focused Hearing Aid
by Ki Woong Seong, Jin Ho Cho, Myoung Nam Kim, Dong Ho Shin and Jyung Hyun Lee
Appl. Sci. 2025, 15(10), 5679; https://doi.org/10.3390/app15105679 - 19 May 2025
Cited by 1 | Viewed by 1068
Abstract
We demonstrated that focusing an ultrasonic beam on the eardrum can overcome the high-frequency sensitivity limitations and acoustic distortion of conventional hearing aid receivers. Multilayer PZT was used for an ultrasonic receiver that operates at low voltage and enters the external auditory canal, [...] Read more.
We demonstrated that focusing an ultrasonic beam on the eardrum can overcome the high-frequency sensitivity limitations and acoustic distortion of conventional hearing aid receivers. Multilayer PZT was used for an ultrasonic receiver that operates at low voltage and enters the external auditory canal, and a 3 mm radius radiator was designed to radiate the focused parametric acoustic signal to the center of the eardrum based on an acoustic analysis according to the frequency. To this end, an ultrasonic earphone consisting of a radiator attached to multilayer PZT and a 130 kHz parametric ultrasonic modulator was implemented; vibration and sound pressure were measured using a laser vibrometer and a tube-type microphone. The proposed parametric ultrasonic receiver generates an average sound pressure of 70 dB SPL at a frequency of 1~10 kHz with a 10 Vpeak applied voltage; this was implemented to provide a higher output in the range of 5 kHz and above, which is difficult to cover with existing receivers. Full article
(This article belongs to the Special Issue Monitoring of Human Physiological Signals)
Show Figures

Figure 1

Back to TopTop