The Reflection Coefficient |r| as a Nondestructive Measure of the Coating Adhesion to a Steel Substrate
Abstract
1. Introduction
2. Materials and Methods
- Glass beading (abrasive blasting);
- Grinding with P400 sandpaper;
- Surface treatment at 60% of maximum power (1800 W).
- Method I consisted of determining the reflection coefficient based on the difference between the amplitudes of the first echo measured in the first and second stages of ultrasonic testing, known as the total reflection method (Figure 5a);
- Method II consisted of determining the reflection coefficient using the three-echo method from the interface area (Figure 5b).
3. Results and Discussion
3.1. Roughness Profile Results
3.2. Ultrasonic Measurement Results and Reflection Coefficient Calculation
3.3. Correlation Test Analysis
4. Conclusions
- The highest mechanical adhesion values, ranging from 1.75–4.56 MPa, along with corresponding reflection coefficient values |r| (0.61–0.83), were obtained for the glass-beaded samples surfaces. In contrast, the lowest values (1.82–3.39 MPa; 0.68–0.89) corresponded to samples whose surfaces were sanded with P400 sandpaper.
- For nondestructive assessment of car putty coating adhesion to steel substrate, Method I (total reflection method) is recommended due to its strong correlation with mechanical strength (R2 > 0.8). The optimal reflection coefficient |r| range for high-quality coating after glass beading is 0.61–0.83.
- Determination of the reflection coefficient using the three-echo method from the connection area is characterized by a much lower correlation coefficient in the range of 0.37–0.58 and lower reflection coefficient values (0.41–0.63).
- For the putty coating-steel substrate interface, the total reflection method for determining the reflection coefficient |r| combined with the mechanical adhesion results show a strong correlation—lower reflection coefficient values correspond to significantly higher mechanical adhesion of the coating to the substrate.
- The three-echoes reflection coefficient method shows a lower correlation with the mechanical adhesion results, primarily because it does not account for the acoustic properties of the materials forming the adhesive joint.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | Measurement | Stage I | Stage II | ||||
---|---|---|---|---|---|---|---|
Pulse 1′ | Pulse 2′ | Pulse 3′ | Pulse 1″ | Pulse 2″ | Pulse 3″ | ||
1 | 1 | 46 | 28 | 20 | 37 | 20 | 12 |
2 | 50 | 33 | 23 | 42 | 23 | 14 | |
3 | 63 | 36 | 26 | 34 | 21 | 12 | |
2 | 1 | 51 | 29 | 16 | 31 | 15 | 9 |
2 | 53 | 33 | 19 | 34 | 16 | 8 | |
3 | 46 | 30 | 17 | 31 | 16 | 7 | |
3 | 1 | 42 | 25 | 15 | 38 | 21 | 9 |
2 | 44 | 27 | 16 | 32 | 17 | 8 | |
3 | 41 | 25 | 15 | 34 | 17 | 8 | |
4 | 1 | 42 | 25 | 16 | 31 | 17 | 9 |
2 | 49 | 31 | 20 | 33 | 18 | 9 | |
3 | 46 | 28 | 17 | 30 | 17 | 10 | |
5 | 1 | 39 | 24 | 13 | 31 | 19 | 10 |
2 | 44 | 27 | 15 | 35 | 19 | 8 | |
3 | 48 | 28 | 16 | 27 | 15 | 9 | |
6 | 1 | 37 | 37 | 19 | 44 | 20 | 10 |
2 | 50 | 34 | 23 | 32 | 20 | 13 | |
3 | 63 | 36 | 20 | 41 | 18 | 8 | |
7 | 1 | 44 | 27 | 17 | 24 | 13 | 7 |
2 | 50 | 31 | 19 | 30 | 17 | 10 | |
3 | 47 | 27 | 15 | 34 | 18 | 10 | |
8 | 1 | 37 | 21 | 15 | 32 | 17 | 11 |
2 | 40 | 23 | 16 | 27 | 16 | 8 | |
3 | 36 | 23 | 16 | 29 | 17 | 10 | |
9 | 1 | 41 | 26 | 14 | 34 | 17 | 7 |
2 | 62 | 37 | 21 | 28 | 14 | 7 | |
3 | 46 | 29 | 17 | 39 | 21 | 9 | |
10 | 1 | 37 | 21 | 12 | 26 | 15 | 7 |
2 | 43 | 24 | 13 | 29 | 16 | 8 | |
3 | 38 | 22 | 12 | 32 | 17 | 8 | |
11 | 1 | 21 | 12 | 7 | 16 | 9 | 5 |
2 | 19 | 12 | 7 | 18 | 9 | 6 | |
3 | 24 | 14 | 8 | 19 | 11 | 7 | |
12 | 1 | 46 | 28 | 19 | 42 | 19 | 10 |
2 | 43 | 27 | 20 | 37 | 19 | 9 | |
3 | 52 | 34 | 24 | 32 | 12 | 6 | |
13 | 1 | 43 | 27 | 17 | 31 | 16 | 9 |
2 | 45 | 28 | 19 | 37 | 19 | 11 | |
3 | 50 | 31 | 20 | 33 | 17 | 10 | |
14 | 1 | 50 | 28 | 16 | 39 | 17 | 8 |
2 | 56 | 31 | 17 | 34 | 16 | 7 | |
3 | 47 | 26 | 13 | 37 | 19 | 8 | |
15 | 1 | 51 | 32 | 18 | 28 | 14 | 7 |
2 | 55 | 35 | 19 | 31 | 16 | 8 | |
3 | 46 | 30 | 17 | 34 | 17 | 9 |
Sample | Measurement | Stage I | Stage II | ||||
---|---|---|---|---|---|---|---|
Pulse 1′ | Pulse 2′ | Pulse 3′ | Pulse 1″ | Pulse 2″ | Pulse 3″ | ||
1 | 1 | 25 | 15 | 10 | 21 | 12 | 8 |
2 | 27 | 16 | 11 | 20 | 12 | 8 | |
3 | 31 | 20 | 14 | 26 | 15 | 9 | |
2 | 1 | 28 | 16 | 10 | 24 | 13 | 6 |
2 | 29 | 16 | 10 | 28 | 14 | 7 | |
3 | 30 | 17 | 10 | 25 | 12 | 6 | |
3 | 1 | 36 | 22 | 13 | 26 | 16 | 8 |
2 | 30 | 18 | 12 | 26 | 15 | 8 | |
3 | 31 | 19 | 12 | 24 | 13 | 7 | |
4 | 1 | 24 | 15 | 11 | 19 | 11 | 7 |
2 | 25 | 16 | 13 | 20 | 11 | 7 | |
3 | 27 | 17 | 13 | 21 | 12 | 9 | |
5 | 1 | 28 | 17 | 11 | 20 | 11 | 6 |
2 | 32 | 20 | 13 | 25 | 13 | 7 | |
3 | 29 | 17 | 12 | 24 | 12 | 7 | |
6 | 1 | 32 | 18 | 12 | 27 | 14 | 8 |
2 | 38 | 19 | 11 | 28 | 14 | 8 | |
3 | 35 | 20 | 12 | 25 | 12 | 6 | |
7 | 1 | 28 | 18 | 12 | 25 | 14 | 7 |
2 | 30 | 19 | 12 | 23 | 13 | 7 | |
3 | 34 | 20 | 13 | 23 | 12 | 6 | |
8 | 1 | 30 | 18 | 12 | 21 | 12 | 7 |
2 | 26 | 16 | 10 | 23 | 14 | 8 | |
3 | 28 | 17 | 10 | 25 | 15 | 8 | |
9 | 1 | 30 | 17 | 10 | 23 | 13 | 7 |
2 | 25 | 14 | 8 | 19 | 12 | 6 | |
3 | 28 | 14 | 8 | 19 | 11 | 6 | |
10 | 1 | 27 | 16 | 11 | 17 | 10 | 6 |
2 | 29 | 17 | 12 | 23 | 13 | 7 | |
3 | 31 | 19 | 12 | 24 | 14 | 7 | |
11 | 1 | 24 | 12 | 6 | 22 | 12 | 6 |
2 | 29 | 15 | 7 | 16 | 9 | 4 | |
3 | 31 | 16 | 9 | 19 | 8 | 5 | |
12 | 1 | 29 | 19 | 10 | 21 | 13 | 6 |
2 | 31 | 20 | 11 | 21 | 13 | 6 | |
3 | 26 | 17 | 9 | 23 | 14 | 6 | |
13 | 1 | 30 | 17 | 11 | 28 | 13 | 8 |
2 | 44 | 23 | 15 | 30 | 14 | 8 | |
3 | 34 | 18 | 12 | 26 | 11 | 6 | |
14 | 1 | 30 | 21 | 13 | 24 | 17 | 10 |
2 | 26 | 16 | 9 | 24 | 17 | 9 | |
3 | 30 | 18 | 10 | 27 | 16 | 8 | |
15 | 1 | 28 | 17 | 10 | 24 | 13 | 6 |
2 | 29 | 18 | 11 | 27 | 15 | 7 | |
3 | 32 | 20 | 12 | 27 | 15 | 7 |
Sample | Measurement | Stage I | Stage II | ||||
---|---|---|---|---|---|---|---|
Pulse 1′ | Pulse 2′ | Pulse 3′ | Pulse 1″ | Pulse 2″ | Pulse 3″ | ||
1 | 1 | 53 | 25 | 19 | 39 | 19 | 11 |
2 | 57 | 27 | 20 | 41 | 20 | 13 | |
3 | 52 | 23 | 15 | 43 | 21 | 14 | |
2 | 1 | 50 | 29 | 20 | 36 | 23 | 15 |
2 | 51 | 29 | 20 | 38 | 23 | 15 | |
3 | 53 | 32 | 22 | 42 | 25 | 16 | |
3 | 1 | 54 | 34 | 24 | 37 | 20 | 13 |
2 | 57 | 35 | 27 | 40 | 22 | 14 | |
3 | 57 | 36 | 27 | 43 | 22 | 14 | |
4 | 1 | 52 | 32 | 22 | 40 | 21 | 13 |
2 | 54 | 32 | 22 | 45 | 26 | 16 | |
3 | 53 | 32 | 23 | 44 | 23 | 16 | |
5 | 1 | 54 | 32 | 24 | 40 | 19 | 12 |
2 | 58 | 34 | 23 | 41 | 21 | 13 | |
3 | 56 | 33 | 23 | 44 | 22 | 14 | |
6 | 1 | 53 | 32 | 23 | 40 | 18 | 12 |
2 | 59 | 35 | 25 | 41 | 19 | 12 | |
3 | 58 | 38 | 29 | 44 | 22 | 14 | |
7 | 1 | 54 | 32 | 24 | 39 | 20 | 12 |
2 | 57 | 31 | 20 | 40 | 20 | 13 | |
3 | 58 | 31 | 21 | 43 | 24 | 15 | |
8 | 1 | 51 | 24 | 14 | 37 | 16 | 8 |
2 | 45 | 24 | 14 | 35 | 15 | 8 | |
3 | 48 | 23 | 15 | 38 | 16 | 8 | |
9 | 1 | 57 | 32 | 23 | 43 | 21 | 13 |
2 | 63 | 33 | 22 | 49 | 20 | 13 | |
3 | 61 | 35 | 24 | 43 | 21 | 13 | |
10 | 1 | 57 | 32 | 24 | 40 | 19 | 11 |
2 | 56 | 32 | 23 | 44 | 23 | 14 | |
3 | 54 | 30 | 19 | 41 | 19 | 11 | |
11 | 1 | 54 | 32 | 23 | 42 | 19 | 12 |
2 | 58 | 35 | 26 | 40 | 21 | 13 | |
3 | 59 | 36 | 25 | 44 | 21 | 12 | |
12 | 1 | 54 | 29 | 19 | 41 | 21 | 14 |
2 | 60 | 35 | 27 | 48 | 23 | 13 | |
3 | 59 | 35 | 27 | 44 | 24 | 15 | |
13 | 1 | 57 | 33 | 23 | 44 | 24 | 15 |
2 | 63 | 38 | 27 | 46 | 24 | 15 | |
3 | 62 | 40 | 29 | 44 | 20 | 12 | |
14 | 1 | 59 | 32 | 20 | 42 | 12 | 20 |
2 | 58 | 32 | 20 | 43 | 20 | 12 | |
3 | 60 | 29 | 18 | 45 | 21 | 13 | |
15 | 1 | 55 | 37 | 29 | 46 | 24 | 16 |
2 | 56 | 38 | 29 | 45 | 21 | 14 | |
3 | 54 | 34 | 26 | 42 | 21 | 15 |
References
- Trembach, B.; Silchenko, Y.; Balenko, O.; Hlachev, D.; Kulahin, K.; Heiko, H.; Bellorin-Herrera, O.; Khabosha, S.; Zakovorotnyi, O.; Trembach, I. Study of the hardfacing process using self-shielding flux-cored wire with an exothermic addition with a combined oxidizer of the Al-(CuO/Fe2O3) system. Int. J. Adv. Manuf. Technol. 2024, 134, 309–335. [Google Scholar] [CrossRef]
- Trembach, B.; Trembach, I.; Grin, A.; Makarenko, N.; Rebrov, O.; Musairova, Y.; Kutavska, N.; Knyazev, S.; Krsnoshapka, I.; Kuravskyi, M.; et al. Optimisation of hardfacing conditions carried out by self-shielded flux-cored wire using combined Taguchi method and factorial design. Int. J. Adv. Manuf. Technol. 2025, 140, 1367–1408. [Google Scholar] [CrossRef]
- Krishnaja, D.; Cheepu, M.; Venkateswarlu, D. A Review of Research Progress on Dissimilar Laser Weld-Brazing of Automotive Applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 330, 012073. [Google Scholar] [CrossRef]
- Lozynskyi, V.; Trembach, B.; Katinas, E.; Sadovyi, K.; Krbata, M.; Balenko, O.; Krasnoshapka, I.; Rebrova, O.; Knyazev, S.; Kabatskyi, O. Effect of exothermic additions in core filler on arc stability and microstructure during self-shielded, flux-cored arc welding. Crystals 2024, 14, 335. [Google Scholar] [CrossRef]
- Reis, M.Q.; Banea, M.D.; Silva, L.F.M.; Carbas, R.J.C. Mechanical characterization of a modern epoxy adhesive for automotive industry. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 340. [Google Scholar] [CrossRef]
- Hill, J.; Mojdehi, A.R. 24-Automotive adhesives: Specification, qualification, and quality control. In Advances in Structural Adhesive Bonding, 2nd ed.; Woodhead Publishing in Materials: Cambridge, UK, 2023; pp. 807–825. [Google Scholar]
- Manladan, S.M.; Jang, Y.; Lee, Y.K.; Park, Y. Challenges and advances in resistance spot welding of ultra-high strength hot-stamped steels: Coating effect, softening phenomena, and mechanical performance. J. Mater. Res. Technol. 2024, 33, 7862–7887. [Google Scholar] [CrossRef]
- Soomro, I.A.; Pedapati, S.R.; Awang, M. A review of advances in resistance spot welding of automotive sheet steels: Emerging methods to improve joint mechanical performance. Int. J. Adv. Manuf. Technol. 2022, 118, 1335–1366. [Google Scholar] [CrossRef]
- Li, D.; Chrysanthou, A.; Patel, I.; Wiliams, G. Self-piercing riveting-a review. Int. J. Adv. Manuf. Technol. 2017, 92, 1777–1784. [Google Scholar] [CrossRef]
- Ulbrich, D.; Kowalczyk, J.; Stachowiak, A.; Sawczuk, W.; Selech, J. The Influence of Surface Preparation of the Steel during the Renovation of the Car Body on Its Corrosion Resistance. Coatings 2021, 11, 384. [Google Scholar] [CrossRef]
- Akafuah, N.K.; Poozesh, S.; Salaimeh, A.; Patrick, G.; Lawler, K.; Saito, K. Evolution of the Automotive Body Coating Process—A Review. Coatings 2016, 6, 24. [Google Scholar] [CrossRef]
- Ulbrich, D.; Kowalczyk, J.; Jósko, M.; Sawczuk, W.; Chudyk, P. Assessment of Selected Properties of Varnish Coating of Motor Vehicles. Coatings 2021, 11, 1320. [Google Scholar] [CrossRef]
- Czachor-Jadacka, D.; Pilch-Pitera, B. Progress in development of UV curable powder coatings. Prog. Org. Coat. 2021, 158, 106355. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Y.; Li, X.; Gao, Y.; He, W.; Liu, Y.; Mu, X.; Zhao, Y.; Fu, W.; Wang, X.; et al. Development of a mechanically robust superhydrophobic anti-corrosion coating using micro-hBN/nano-Al2O3 with multifunctional properties. Ceram. Int. 2025, 51, 1, 491–505. [Google Scholar] [CrossRef]
- Adams, R.D. Adhesive Bonding Science, Technology and Application; Woodhead Publishing Limited: Cambridge, UK, 2005. [Google Scholar]
- Possart, W. Adhesion: Current Research and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; ISBN 9783527312634. [Google Scholar]
- Jansen, H.P.; van Elburg, B.; van Veen, E.S.; Platenkamp, D.J. Ultrasonic Frequency Analysis of Adhesively Bonded Joints. Eng. Proc. 2025, 90, 20. [Google Scholar]
- Mbithi, F.; Worsley, P.R. Adhesives for medical application—Peel strength testing and evaluation of biophysical skin response. J. Mech. Behav. Biomed. Mater. 2023, 148, 106168. [Google Scholar] [CrossRef]
- Rao, J.; Yang, F.; Mo, H.; Kollmannsberger, S.; Rank, E. Quantitative reconstruction of defects in multi-layered bonded composites using fully convolutional network-based ultrasonic inversion. J. Sound Vib. 2023, 542, 117418. [Google Scholar] [CrossRef]
- Kostroun, T.; Dvořák, M. Application of the Pulse Infrared Thermography Method for Nondestructive Evaluation of Composite Aircraft Adhesive Joints. Materials 2021, 14, 533. [Google Scholar] [CrossRef]
- Xie, J.; Xu, C.; Wu, C.; Gao, L.; Chen, G.; Li, G.; Song, G. Visualization of defects in CFRP-reinforced steel structures using improved eddy current pulsed thermography. Autom. Constr. 2023, 145, 104643. [Google Scholar] [CrossRef]
- Jasiunienue, E.; Yilmaz, B.; Smagulova, D.; Bhat, G.A.; Cicenas, V.; Žukauskas, E.; Mažeika, L. Non-Destructive Evaluation of the Quality of Adhesive Joints Using Ultrasound, X-ray, and Feature-Based Data Fusion. Appl. Sci. 2022, 12, 12930. [Google Scholar] [CrossRef]
- Rique, A.M.; Machado, A.C.; Oliveira, D.F.; Lopes, R.T.; Lima, I. X-ray imaging inspection of fiberglass reinforced by epoxy composite. Nucl. Instrum. Methods Phys. Res. B 2015, 349, 184–191. [Google Scholar]
- Jiao, J.; Li, Z.; Li, L.; Li, G.; Lu, X. Nondestructive Evaluation of Adhesive Joints Using Nonlinear Non-collinear Wave Mixing Technique. J. Nondestruct. Eval. 2025, 44, 4. [Google Scholar]
- Kowalczyk, J.; Ulbrich, D. Evaluation of Adhesive Joints Using Ultrasonic Rayleigh Waves. Materials 2024, 17, 1367. [Google Scholar] [CrossRef]
- Ren, B.; Lissenden, C.J. Ultrasonic guided wave inspection of adhesive bonds between composite laminates. Int. J. Adhes. Adhes. 2013, 45, 59–68. [Google Scholar] [CrossRef]
- Brody, J.; Manogharam, P.; Moore, N.; Erturk, A. High intensity focused ultrasound for high strain rate material testing and delamination. Ultrasonics 2025, 154, 107689. [Google Scholar] [CrossRef]
- Solodov, I.; Kornely, M.; Philipp, J.; Stammen, E.; Dilger, K.; Kreutzbruck, M. Linear vs. nonlinear ultrasonic testing of kissing bonds in adhesive joints. Ultrasonics 2023, 132, 106967. [Google Scholar] [CrossRef]
- Wojtczak, E.; Rucka, M. Monitoring the curing process of epoxy adhesive using ultrasound and Lamb wave dispersion curves. Mech. Syst. Signal Process. 2021, 151, 107397. [Google Scholar] [CrossRef]
- Smagulova, D.; Yilmaz, B.; Jasiuniene, E. Ultrasonic Features for Evaluation of Adhesive Joints: A Comparative Study of Interface Defects. Sensors 2024, 24, 176. [Google Scholar] [CrossRef]
- Dourado, T.C.; Alvarenga, A.V.; Peters, F.C.; Mansur, W.J.; Costa-Felix, R.P.B. Simultaneous use of pulse-echo and through-transmission methods in determining a combined reflection coefficient. Appl. Acoust. 2022, 192, 108700. [Google Scholar] [CrossRef]
- Smagin, N.V.; Krutyansky, L.M.; Brysev, A.P.; Bunkin, F.V. Measurement of Acoustic Absorption Coefficient with PhaseConjugate Ultrasonic Waves. Phys. Acoust. 2011, 57, 482–489. [Google Scholar] [CrossRef]
- Pereira, A.; Fenollera, M.; Prado, T.; Wieczorowski, M. Effect of Surface Texture on the Structural Adhesive Joining Properties of Aluminum 7075 and TEPEX®. Materials 2022, 15, 887. [Google Scholar] [CrossRef]
- Mundry, A. On the effect of partially permeable interface In ultrasonic testing. Materialprufung 1967, 9, 120–130. [Google Scholar] [CrossRef]
- Josko, M. Metodological Aspects of Adhesion Evaluation by Ultrasonic Method; Poznan University of Technology: Poznań, Poland, 2002; ISBN 8371435800. [Google Scholar]
- Mochizuki, R.; Nishida, Y.; Ishii, K. A Method to Estimate Reflection Coefficient of Ultrasonic Wave at a Boundary of Two Media. J. Robot. Netw. Artif. Life 2023, 9, 343–348. [Google Scholar]
- Mayer, W.G. Ultrasonic reflection and material evaluation. Rev. Phys. Appliquée 1985, 20, 377–381. [Google Scholar] [CrossRef]
- Yue-Chao, C.; Chen-Long, Y.; Xiao-Jun, Z.; Hui-Feng, Z. Research of layered CFRP ultrasonic resonance characteristics based on reflection coefficient modelling. J. Vib. Shock. 2016, 35, 147–154. [Google Scholar]
Glass Beading | Average | Standard Deviation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ra | 2.15 | 2.88 | 2.52 | 2.14 | 1.79 | 2.73 | 2.93 | 2.66 | 3.25 | 2.36 | 1.95 | 1.98 | 1.88 | 2.36 | 2.6 | 2.41 | 0.42 |
Rz | 10.8 | 13.5 | 14.4 | 10.8 | 10.4 | 14.1 | 15.6 | 13.6 | 15.3 | 12.1 | 9.91 | 10.2 | 9.43 | 12.1 | 13 | 12.35 | 1.96 |
P400 Sandpaper | |||||||||||||||||
Ra | 1.09 | 1.03 | 0.62 | 0.72 | 0.93 | 1.13 | 0.58 | 0.75 | 0.49 | 0.31 | 0.79 | 0.41 | 0.39 | 0.65 | 0.88 | 0.72 | 0.25 |
Rz | 5.7 | 6.03 | 3.99 | 4.28 | 4.44 | 6.44 | 3.2 | 4.47 | 3.04 | 1.94 | 5.4 | 2.57 | 3.18 | 4.47 | 5.42 | 4.30 | 1.29 |
Laser Beam Treatment | |||||||||||||||||
Ra | 1.31 | 1.19 | 1.28 | 1.03 | 0.82 | 1.78 | 1.45 | 1.11 | 1.56 | 1.16 | 1.21 | 1.35 | 1.08 | 1.53 | 1.32 | 1.28 | 0.23 |
Rz | 7.78 | 6.90 | 8.37 | 5.96 | 5.41 | 11.60 | 8.92 | 7.23 | 8.29 | 6.71 | 7.11 | 7.92 | 6.25 | 9.23 | 7.75 | 7.70 | 1.47 |
Laser Beam Treatment | ||||||
---|---|---|---|---|---|---|
Stage I | Stage II | |||||
Pulse 1′ | Pulse 2′ | Pulse 3′ | Pulse 1″ | Pulse 2″ | Pulse 3″ | |
Average Amplitude | 56 | 32 | 23 | 42 | 21 | 13 |
Standard Deviation | 4 | 4 | 4 | 3 | 3 | 2 |
P400 Sandpaper | ||||||
Average Amplitude | 30 | 18 | 11 | 23 | 13 | 7 |
Standard Deviation | 4 | 2 | 2 | 3 | 2 | 1 |
Glass Beading | ||||||
Average Amplitude | 45 | 28 | 17 | 32 | 17 | 9 |
Standard Deviation | 9 | 6 | 4 | 6 | 3 | 2 |
Laser Beam Treatment | P400 Sandpaper | Glass Beading | ||||
---|---|---|---|---|---|---|
Method I | Method II | Method I | Method II | Method I | Method II | |
Average Amplitude | 0.75 | 0.52 | 0.79 | 0.55 | 0.73 | 0.52 |
Standard Deviation | 0.04 | 0.03 | 0.09 | 0.03 | 0.13 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulbrich, D.; Banas, P.; Jezierski, J.; Warguła, Ł. The Reflection Coefficient |r| as a Nondestructive Measure of the Coating Adhesion to a Steel Substrate. Materials 2025, 18, 4559. https://doi.org/10.3390/ma18194559
Ulbrich D, Banas P, Jezierski J, Warguła Ł. The Reflection Coefficient |r| as a Nondestructive Measure of the Coating Adhesion to a Steel Substrate. Materials. 2025; 18(19):4559. https://doi.org/10.3390/ma18194559
Chicago/Turabian StyleUlbrich, Dariusz, Piotr Banas, Jakub Jezierski, and Łukasz Warguła. 2025. "The Reflection Coefficient |r| as a Nondestructive Measure of the Coating Adhesion to a Steel Substrate" Materials 18, no. 19: 4559. https://doi.org/10.3390/ma18194559
APA StyleUlbrich, D., Banas, P., Jezierski, J., & Warguła, Ł. (2025). The Reflection Coefficient |r| as a Nondestructive Measure of the Coating Adhesion to a Steel Substrate. Materials, 18(19), 4559. https://doi.org/10.3390/ma18194559