Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (266)

Search Parameters:
Keywords = ultrasonic attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4389 KiB  
Article
Acoustic Wave Propagation Characteristics of Maize Seed and Surrounding Region with the Double Media of Seed–Soil
by Yadong Li, Caiyun Lu, Hongwen Li, Jin He, Zhinan Wang and Chengkun Zhai
Agriculture 2025, 15(14), 1540; https://doi.org/10.3390/agriculture15141540 - 17 Jul 2025
Viewed by 328
Abstract
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations [...] Read more.
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations and analyze propagation characteristics. The effects of the compression ratio (0/6/12%), excitation frequency (20/40/60 kHz), and amplitude (5/10/15 μm) on signal variation and attenuation were analyzed. The results show consistent trends: time/frequency domain signal intensity increased with a higher compression ratio and amplitude but decreased with frequency. Comparing ultrasonic signals at soil particles before and after the seed along the propagation path shows that the seed significantly absorbs and attenuates ultrasonic waves. Time domain intensity drops 93.99%, and first and residual wave frequency peaks decrease by 88.06% and 96.39%, respectively. Additionally, comparing ultrasonic propagation velocities in the double media of seed–soil and the single soil medium reveals that the velocity in the seed is significantly higher than that in the soil. At compression ratios of 0%, 6%, and 12%, the sound velocity in the seed is 990.47%, 562.72%, and 431.34% of that in the soil, respectively. These findings help distinguish seed presence and provide a basis for ultrasonic seed position monitoring after sowing. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Optimization of Vertical Ultrasonic Attenuator Parameters for Reducing Exhaust Gas Smoke of Compression–Ignition Engines: Efficient Selection of Emitter Power, Number, and Spacing
by Adil Kadyrov, Łukasz Warguła, Aliya Kukesheva, Yermek Dyssenbaev, Piotr Kaczmarzyk, Wojciech Klapsa and Bartosz Wieczorek
Appl. Sci. 2025, 15(14), 7870; https://doi.org/10.3390/app15147870 - 14 Jul 2025
Viewed by 268
Abstract
Compression–ignition engines emit particulate matter (PM) (soot), prompting the widespread use of diesel particulate filters (DPFs) in the automotive sector. An alternative method for PM reduction involves the use of ultrasonic waves to disperse and modify the structure of exhaust particles. This article [...] Read more.
Compression–ignition engines emit particulate matter (PM) (soot), prompting the widespread use of diesel particulate filters (DPFs) in the automotive sector. An alternative method for PM reduction involves the use of ultrasonic waves to disperse and modify the structure of exhaust particles. This article presents experimental results of the effects of ultrasonic emitter parameters, including the number, arrangement, and power, along with the engine speed, on the exhaust smoke density. Tests were conducted on a laboratory prototype equipped with six ultrasonic emitters spaced 0.17 m apart. The exhaust source was a diesel engine from a construction excavator, based on the MTZ-80 tractor design, delivering 80 HP and a displacement of 4750 cm3. A regression model was developed to describe the relationship between the engine speed, emitter power and spacing, and smoke density. The optimal configuration was found to involve an emitter power of 319.35 W and a spacing of 1.361 m for a given engine speed. Under the most effective conditions—an engine speed of 1500 rpm, six active emitters, and a total power of 600 W—smoke emissions were reduced by 18%. These findings support the feasibility of using ultrasonic methods as complementary or alternative exhaust gas filtration techniques for non-road diesel engines. Full article
Show Figures

Figure 1

21 pages, 918 KiB  
Article
Analysis of Ultrasonic Wave Dispersion in Presence of Attenuation and Second-Gradient Contributions
by Nicola De Fazio, Luca Placidi, Francesco Fabbrocino and Raimondo Luciano
CivilEng 2025, 6(3), 37; https://doi.org/10.3390/civileng6030037 - 14 Jul 2025
Viewed by 146
Abstract
In this study, we aim to analyze the dispersion of ultrasonic waves due to second-gradient contributions and attenuation within the framework of continuum mechanics. To investigate dispersive behavior and attenuation effects, we consider the influence of both higher-order gradient terms (second gradients) and [...] Read more.
In this study, we aim to analyze the dispersion of ultrasonic waves due to second-gradient contributions and attenuation within the framework of continuum mechanics. To investigate dispersive behavior and attenuation effects, we consider the influence of both higher-order gradient terms (second gradients) and Rayleigh-type viscoelastic contributions. To this end, we employ the extended Rayleigh–Hamilton principle to derive the governing equations of the problem. Using a wave-form solution, we establish the relationship between the phase velocity and the material’s constitutive parameters, including those related to the stiffness of both standard (first-gradient) and second-gradient types, as well as viscosity. To validate the model, we use data available in the literature to identify all the material parameters. Based on this identification, we observe that our model provides a good approximation of the experimentally measured trends of both phase velocity and attenuation versus frequency. In conclusion, this result not only confirms that our model can accurately describe both wave dispersion and attenuation in a material, as observed experimentally, but also highlights the necessity of simultaneously considering both second-gradient and viscosity parameters for a proper mechanical characterization of materials. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 411
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 3031 KiB  
Article
Influence and Potential of Additive Manufactured Reference Geometries for Ultrasonic Testing
by Stefan Keuler, Anne Jüngert, Martin Werz and Stefan Weihe
J. Manuf. Mater. Process. 2025, 9(7), 224; https://doi.org/10.3390/jmmp9070224 - 1 Jul 2025
Viewed by 476
Abstract
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led [...] Read more.
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led to strong anisotropy in sound velocity and attenuation, with a deviation in sound velocity and gain of over 840 m/s and 9 dB, depending on the measuring direction. Furthermore, it was demonstrated that the build direction exhibits distinct acoustic properties. The influence of surface roughness on both the reflector and coupling surfaces was analyzed. It was demonstrated that post-processing of the reflector surface is not necessary, as varying roughness levels did not significantly change the signal amplitude. However, for high frequencies, pre-treatment of the coupling surface can improve sound transmission up to 6 dB at 20 MHz. Finally, the reflection properties of flat bottom holes (FBH) in reference blocks produced by AM and electrical discharge machining (EDM) were compared. The equivalent reflector size (ERS) of the FBH, which refers to the size of an idealized defect with the same ultrasonic reflection behavior as the measured defect, was determined using the distance gain size (DGS) method—a method that uses the relationship between reflector size, scanning depth, and echo amplitude to evaluate defects. The findings suggest that printed FBHs achieve an improved match between the ERS and the actual manufactured reflector size with a deviation of less than 13%, thereby demonstrating the potential for producing standardized test blocks through additive manufacturing. Full article
Show Figures

Figure 1

11 pages, 1586 KiB  
Article
Quantification of Sensitization in Aluminum–Magnesium Alloys Through Frequency-Dependent Ultrasonic Attenuation
by Songwei Wang and Haiying Huang
Sensors 2025, 25(13), 3983; https://doi.org/10.3390/s25133983 - 26 Jun 2025
Viewed by 296
Abstract
Aluminum–Magnesium (Al–Mg) alloys undergo sensitization, i.e., the precipitations of β-phase (Al2Mg3) at the grain boundaries, when exposed to elevated temperature. This microstructural change increases the susceptibility of Al–Mg alloys to intergranular corrosion, exfoliation, and stress corrosion cracking. This study [...] Read more.
Aluminum–Magnesium (Al–Mg) alloys undergo sensitization, i.e., the precipitations of β-phase (Al2Mg3) at the grain boundaries, when exposed to elevated temperature. This microstructural change increases the susceptibility of Al–Mg alloys to intergranular corrosion, exfoliation, and stress corrosion cracking. This study introduces a time-frequency analysis (TFA) technique to determine the frequency-dependent ultrasonic attenuation parameter and correlate the frequency-attenuation slope to the Degree of Sensitization (DoS) developed in heat-treated Al–Mg alloy samples. Broadband pitch-catch signal was generated using a laser ultrasonic testing (LUT) system, from which the narrowband pitch-catch signal at different frequencies can be digitally generated. The attenuation parameters of sensitized Al–Mg samples were determined from these narrowband pitch-catch signals using the primary pulse-first echo (PP-FE) method. By identifying the frequency range within which the attenuation parameter is linearly proportional to the frequency, the slopes of the frequency-attenuation relationship were determined and correlated with the DoS values of the sample plates. The experimental results validate that the frequency-attenuation slope has a higher sensitivity and lower scattering as compared to other conventional ultrasonic attenuation measurement techniques. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

16 pages, 1957 KiB  
Article
Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor
by Haijian Liang, Gao Wang, Xiaomei Yang, Yanlong Wei and Hongxin Xue
Appl. Sci. 2025, 15(13), 6965; https://doi.org/10.3390/app15136965 - 20 Jun 2025
Viewed by 269
Abstract
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen [...] Read more.
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen to improve measurement performance; using magnetostrictive and resonant temperature measurement principles, the length, diameter, and resonator dimensions of the waveguide rod were designed, and a molybdenum–rhenium alloy (Mo-5%Re) material suitable for high-temperature environments was selected; COMSOL finite element simulation was used to simulate the propagation characteristics of acoustic signals in the waveguide rod, observing the distribution of sound pressure and energy attenuation, verifying the applicability of the model in high-temperature testing environments. Second, a resonant temperature sensor consistent with the simulation parameters was prepared using a molybdenum–rhenium alloy waveguide rod, and an ultrasonic resonant temperature-sensing system suitable for high-temperature environments up to 1800 °C was constructed using the molybdenum–rhenium alloy waveguide rod. The experiment used a tungsten–rhenium calibration furnace to perform static calibration of the sensor. The temperature range was set from room temperature to 1800 °C, with the temperature increased by 100 °C at a time, and it was maintained at each temperature point for 5 to 10 min to ensure thermal stability. This was conducted to verify the performance of the sensor and obtain the functional relationship between temperature and resonance frequency. Experimental results show that during the heating process, the average resonance frequency of the sensor decreased from 341.8 kHz to 310.37 kHz, with an average sensitivity of 17.66 Hz/°C. During the cooling process, the frequency increased from 309 kHz to 341.8 kHz, with an average sensitivity of 18.43 Hz/°C. After cooling to room temperature, the sensor’s resonant frequency returned to its initial value of 341.8 kHz, demonstrating excellent repeatability and thermal stability. This provides a reliable technical foundation for its application in actual high-temperature environments. Full article
Show Figures

Figure 1

15 pages, 1550 KiB  
Article
A Study of the Nonlinear Attenuation Behavior of Preload in the Bolt Fastening Process for Offshore Wind Turbine Blades Using Ultrasonic Technology
by Jia Han, Ke Xie, Zhaohui Yang, Lin’an Li and Ming Zhao
Energies 2025, 18(12), 3211; https://doi.org/10.3390/en18123211 - 19 Jun 2025
Viewed by 250
Abstract
The attenuation of bolt preload is a critical factor leading to bolt fatigue failure, whereas the study of the nonlinear attenuation behavior of preload and its mechanism during installation is an inevitable challenge in engineering practice. The attenuation of the preload of a [...] Read more.
The attenuation of bolt preload is a critical factor leading to bolt fatigue failure, whereas the study of the nonlinear attenuation behavior of preload and its mechanism during installation is an inevitable challenge in engineering practice. The attenuation of the preload of a bolt is mainly related to the stiffness of the bolt body as well as the stiffness of the connected parts. This study aimed to develop an experimental system to analyze the nonlinear attenuation behavior of preload during bolt tightening. First, a simulation system replicating the bolt installation process was constructed in a laboratory setting, incorporating blade and pitch bearing specimens identical to those used in a 10 MW wind turbine, restoring the stiffness coupling characteristics of the “composite-metal bearing” heterogeneous interface at the blade root through a 1:1 full-scale simulation system for the first time. Second, ultrasonic preload measurement equipment was employed to monitor preload variations during the bolt tightening process. Finally, the instantaneous preload decay rate of the wind turbine blade-root bolts and the over-draw coefficient were quantified. Experiments have shown that the preload decay rate of commonly used M36 leaf root bolts is 11–16%. If a more precise value is required, each bolt needs to be calibrated. These findings provide valuable insights for optimizing bolt installation procedures, enabling precise preload control to mitigate fatigue failures caused by abnormal preload attenuation. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 5473 KiB  
Article
Sivelestat-Loaded Neutrophil-Membrane-Coated Antioxidative Nanoparticles for Targeted Endothelial Protection in Sepsis
by Juexian Wei, Aijia Zhong, Yuting Zhang, Ehua Deng, Hengzong Mo, Hongyu Zhao, Jiayu Huang, Huaidong Peng, Kaiyin Zhang, Xiaohui Chen, Haifeng Mao, Yixin Chen and Yongcheng Zhu
Pharmaceutics 2025, 17(6), 766; https://doi.org/10.3390/pharmaceutics17060766 - 10 Jun 2025
Viewed by 698
Abstract
Background/Objectives: This study aims to develop and evaluate neutrophil-membrane-coated nanoparticles (Siv@NMs) encapsulating sivelestat for the treatment of sepsis-induced endothelial injury. Leveraging the intrinsic chemotactic properties of neutrophil membranes, Siv@NMs are engineered to achieve site-specific delivery of sivelestat to damaged endothelia, thereby overcoming [...] Read more.
Background/Objectives: This study aims to develop and evaluate neutrophil-membrane-coated nanoparticles (Siv@NMs) encapsulating sivelestat for the treatment of sepsis-induced endothelial injury. Leveraging the intrinsic chemotactic properties of neutrophil membranes, Siv@NMs are engineered to achieve site-specific delivery of sivelestat to damaged endothelia, thereby overcoming the limitations of conventional therapies in mitigating endothelial dysfunction and multiorgan failure associated with sepsis. Methods: Siv@NMs were synthesized through a combination of ultrasonication and extrusion techniques to encapsulate sivelestat within neutrophil-membrane-derived vesicles. Comprehensive physicochemical characterization included analysis of particle size distribution, zeta potential, and encapsulation efficiency. Stability profiles and controlled release kinetics were systematically evaluated under simulated conditions. In vitro investigations encompassed (1) endothelial cell biocompatibility assessment via cytotoxicity assays, (2) investigation of the targeting efficiency in suppressing endothelial neutrophil extracellular trap generation during inflammation, and (3) ROS-scavenging capacity quantification using flow cytometry with DCFH-DA fluorescent probes. In vivo therapeutic efficacy was validated using a cecal ligation and puncture (CLP) sepsis mouse model, with multiparametric monitoring of endothelial function, inflammatory markers, ROS levels, and survival outcomes. Results: The optimized Siv@NMs exhibited an average particle size of approximately 150 nm, and a zeta potential of −10 mV was achieved. Cellular studies revealed that (1) Siv@NMs selectively bound to inflammatory endothelial cells with minimal cytotoxicity, and (2) Siv@NMs significantly reduced ROS accumulation in endothelial cells subjected to septic stimuli. In vitro experiments demonstrated that Siv@NMs treatment markedly attenuated endothelial injury biomarkers’ expression (ICAM-1 and iNOS), suppressed formation of neutrophil extracellular traps, and improved survival rates compared to treatment with free sivelestat. Conclusions: The neutrophil-membrane-coated nanoparticles loaded with sivelestat present a breakthrough strategy for precision therapy of sepsis-associated endothelial injury. This bioengineered system synergistically combines targeted drug delivery with multimodal therapeutic effects, including ROS mitigation, anti-inflammatory action, and endothelial protection. These findings substantiate the clinical translation potential of Siv@NMs as a next-generation nanotherapeutic for sepsis management. Full article
(This article belongs to the Special Issue ROS-Mediated Nano Drug Delivery for Antitumor Therapy)
Show Figures

Figure 1

17 pages, 11318 KiB  
Article
Porous Surface Design with Stability Analysis for Turbulent Transition Control in Hypersonic Boundary Layer
by Youngwoo Kim, Minjae Jeong, Suhun Cho, Donghun Park and Solkeun Jee
Aerospace 2025, 12(6), 518; https://doi.org/10.3390/aerospace12060518 - 8 Jun 2025
Viewed by 338
Abstract
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like [...] Read more.
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like in the ultrasonic frequency range and can be effectively attenuated by porous surfaces. Previous studies have explored porous surfaces, either by targeting a specific frequency or by adopting geometrically complex configurations for various frequencies. In contrast, the present study proposes a porous surface design that effectively stabilizes the Mack second mode over a wide frequency range, while maintaining structural simplicity. In addition, this porous surface design incorporates constraints associated with practical fabrication to enhance manufacturability. The absorption characteristics of porous surfaces are evaluated with an acoustic impedance model, and the stabilization performance is assessed with linear stability theory. The proposed porous surface design is compared with a conventional design method that focuses on the Mack second mode with a single frequency. Consequently, the proposed design methodology demonstrates robust and consistent suppression of the Mack second mode in a broad frequency range. This approach improves both stabilization performance and manufacturability with a uniform porous surface, contributing to its practical application in high-speed vehicles. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 3363 KiB  
Article
Effect of Elevated Temperature on Mechanical Properties and Shielding Performance of Magnetite–Serpentine Radiation-Proof Concrete
by Dan Wu, Zehua Liu, Zhenfu Chen, Qiongfang Wu and Qiuwang Tao
Materials 2025, 18(12), 2686; https://doi.org/10.3390/ma18122686 - 6 Jun 2025
Viewed by 612
Abstract
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety [...] Read more.
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety and stability in extreme environment. In this study, the magnetite–serpentine radiation-proof concrete is designed with magnetite as coarse aggregate, serpentine as fine aggregate, and Portland cement and granulated blast furnace slag as mixture. The apparent characteristics, mass loss, ultrasonic pulse velocity, mechanical properties, shielding performance, and correlation of this concrete were analyzed through experiments. The results show that the damage degree and relative wave velocity have a good correlation in evaluating the relative mass loss, linear attenuation coefficient, compressive strength, and tensile strength after high temperatures. The compressive strength at 800 °C is 12.2 MPa and the splitting tensile strength is 0.48 MPa; the linear attenuation coefficient of specimen at 800 °C is reduced to 80.9% of that at normal temperature. Meanwhile, penetrating cracks appeared at 600 °C and spalling phenomenon appeared at 800 °C, and better thermal stability and favorable mechanical properties and shielding performance also occurred; thus, suitable radioactive and high temperature environment was determined. The results could provide scientific guidance for nondestructive testing and performance evaluation of shielding structure materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 1690 KiB  
Article
Identifying Ultrasonic Testing Based Nondestructive Qualification Parameters for Laser DED Processed IN718
by Guillermo Huanes-Alvan, Himanshu Sahasrabudhe and Sunil Kishore Chakrapani
NDT 2025, 3(2), 12; https://doi.org/10.3390/ndt3020012 - 5 Jun 2025
Viewed by 362
Abstract
This article explores the use of ultrasonic nondestructive evaluation for qualification of laser-DED IN718 samples. The main goal of this article is to identify potential ultrasonic parameters which have highest sensitivity to microstructral changes that result from fabrication of DED samples. The ultrasonic [...] Read more.
This article explores the use of ultrasonic nondestructive evaluation for qualification of laser-DED IN718 samples. The main goal of this article is to identify potential ultrasonic parameters which have highest sensitivity to microstructral changes that result from fabrication of DED samples. The ultrasonic qualification parameters were extracted from ultrasonic testing including velocity and attenuation measurement, and C-Scan imaging. These measurements were further used to extract parameters that quantify the anisotropy, microstructural heterogeneity, and grain scattering. Two laser-DED IN718 samples fabricated with slightly different processing parameters were evaluated to observe the influence of the laser power and scan speed on the qualification parameters. The identified qualification parameters were compared for these two samples, along with a hot-rolled sample that was also used as reference. The results suggest that the anisotropy, attenuation, and heterogeneity were highest in the DED samples compared to the reference sample. The identified qualification parameters seem to capture these changes, suggesting they could be potentially used for qualification of AM parts. Full article
Show Figures

Figure 1

25 pages, 5455 KiB  
Article
Experimental Study on Frost Durability of Sprayed Glass Fibre Epoxy Mortar (GFEM)-Reinforced Concrete Specimens
by Jianhui Si, Yuanhao Li, Wenshuo Sun, Xiaoyu Niu, Junpeng Ju, Lizhe He and Junlin Xiang
Buildings 2025, 15(11), 1896; https://doi.org/10.3390/buildings15111896 - 30 May 2025
Viewed by 272
Abstract
Addressing the shortcomings of currently available concrete reinforcement techniques, a new method using sprayed Glass Fibre Epoxy Mortar (GFEM) reinforcement is proposed. To investigate the effect of this method on the frost durability of concrete, a total of 156 specimens in four groups [...] Read more.
Addressing the shortcomings of currently available concrete reinforcement techniques, a new method using sprayed Glass Fibre Epoxy Mortar (GFEM) reinforcement is proposed. To investigate the effect of this method on the frost durability of concrete, a total of 156 specimens in four groups were designed, and related freezing and thawing cycle tests were conducted. The apparent morphology, mass loss rate, ultrasonic velocity, freeze–thaw damage, and strength loss rate of each group of specimens after different freeze–thaw cycles were analysed comparatively. The test results show that the concrete specimens reinforced with GFEM have a better mass loss rate after freeze–thaw cycles and ultrasonic wave velocity than the unreinforced concrete specimens. The compressive strength of specimens in group A is 24.04 MPa, and the compressive strengths of specimens in groups B, C, and D are 35.28 MPa, 35.73 MPa, and 36.37 MPa, respectively, which is higher than that of group A by 46.76%, 48.63%, and 51.29%, respectively, and 46.76%, 48.63%, and 51.29% higher than group A, respectively. It can be seen that the concrete specimens reinforced with sprayed Glass Fibre Epoxy Mortar can effectively improve the frost durability of concrete; the reinforcing effect is obvious, and in a certain range of fibre mixing, the larger the better the frost resistance. The integration of GFEM is cost-effective and improves viscosity, and the best glass fibre mix percentage is about 0.8%. A freeze–thaw damage model for GFEM-reinforced concrete was developed using the Weibull distribution theory, and an improved strength attenuation model under freeze–thaw cycles was established. By correlating the strength attenuation model with the freeze–thaw damage model, a damage evolution equation for the reinforced specimens was formulated, allowing for the prediction of freeze–thaw damage based on the number of cycles and the relative compressive strength. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 3596 KiB  
Article
Detection of Internal Defects in Concrete Using Delay Multiply and Sum-Enhanced Synthetic Aperture Focusing Technique
by Feng Li, Sheng-Kui Di, Jing Zhang, Dong Yang, Yao Pei and Xiao-Ying Wang
Buildings 2025, 15(11), 1887; https://doi.org/10.3390/buildings15111887 - 29 May 2025
Viewed by 348
Abstract
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm [...] Read more.
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm to address these limitations and improve both the resolution and signal-to-noise ratio. The proposed method sequentially transmits and receives ultrasonic waves through an array of transducers, and applies DMAS-based nonlinear beam-forming to enhance image sharpness and contrast. Its effectiveness was validated through finite element simulations and experimental tests using three precast concrete specimens with artificial defects (specimen size: 240 mm × 300 mm × 100 mm). Compared with the conventional SAFT, the proposed method improves image contrast by approximately 40%, with clearer defect boundaries and a vertical positioning error of less than ±5 mm. This demonstrates the method’s promising potential for practical applications in internal defect visualization of concrete structures. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

19 pages, 3708 KiB  
Article
Multiple Ring Electrode-Based PMUT with Tunable Deflections
by Jan Helmerich, Manfred Wich, Annika Hofmann, Thomas Schaechtle and Stefan Johann Rupitsch
Micromachines 2025, 16(6), 623; https://doi.org/10.3390/mi16060623 - 25 May 2025
Cited by 1 | Viewed by 2437
Abstract
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and [...] Read more.
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and small-feature sizes are required. This fact mainly relates to the inverse relationship between the resonance frequency constant and the transducers’ dimension, yielding a higher frequency and attenuation with a decreasing size. Piezoelectric micromachined ultrasonic transducers (PMUTs), in comparison, incorporate a small-scale µm design while preserving the operating frequency in the desired kHz range. This contribution presents the detailed manufacturing of such a PMUT with a multiple ring electrode‑based structure to additionally adjust the sound pressure fields. The PMUT will be characterized by its deflection in air along with the characterization of the piezoelectric material lead zirconate titanate (PZT) itself. The measurements showed a maximum polarization of 21.8 µC/cm2 at 50 kV/cm, the PMUT’s displacement of 30.50 nm/V in air when all electrodes are driven, and an adjustable deflection via different electrode excitations without the need for additional hardware. The ring design also offered the possibility to emit two distinct frequencies simultaneously. These results demonstrate the potential of the designs for small-feature-size applications as they are in high demand for implantable devices, miniaturized ultrasonic-based communication or drug delivery. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

Back to TopTop