Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = ultrafast technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7101 KiB  
Article
Study on the Influence of Ultrafast Laser Welding Parameters on Glass Bonding Performance
by Aowei Xing, Ziwei Li, Tianfeng Zhou, Zhiyuan Huang, Weijia Guo and Peng Liu
Micromachines 2025, 16(8), 888; https://doi.org/10.3390/mi16080888 - 30 Jul 2025
Viewed by 146
Abstract
Glass enjoys a wide range of applications thanks to its superior optical properties and chemical stability. Conventional glass bonding techniques suffer from low efficiency, limited precision, and high cost. Moreover, for multilayer glass bonding, repeated alignment is often required, further complicating the process. [...] Read more.
Glass enjoys a wide range of applications thanks to its superior optical properties and chemical stability. Conventional glass bonding techniques suffer from low efficiency, limited precision, and high cost. Moreover, for multilayer glass bonding, repeated alignment is often required, further complicating the process. These limitations have become major constraints on the advancement of microfluidic chip technologies. Laser bonding of microfluidic chips offers high precision and efficiency. This research first uses an ultrafast laser system to investigate how processing parameters affect weld morphology, identifying the optimal parameter range. Then, this paper proposes two methods for ultrafast-laser bonding of multilayer glass with different thicknesses and performs preliminary experiments to demonstrate their feasibility. The research in this paper could expand the fabrication method of microfluidic chips and lay a foundation for the wider application of microfluidic chips. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

23 pages, 14391 KiB  
Article
Design of All-Optical Ternary Inverter and Clocked SR Flip-Flop Based on Polarization Conversion and Rotation in Micro-Ring Resonator
by Madan Pal Singh, Jayanta Kumar Rakshit, Kyriakos E. Zoiros and Manjur Hossain
Photonics 2025, 12(8), 762; https://doi.org/10.3390/photonics12080762 - 29 Jul 2025
Viewed by 163
Abstract
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). [...] Read more.
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). The proposed scheme uses linear polarization-encoded light. Here, the ternary (radix = 3) logical states are expressed by the different polarized light. PRS-MRR explores the polarization-encoded methodology, which depends on polarization conversion from one state to another. All-optical ultrafast switching technology is employed to design the ternary NAND gate. We develop the ternary clocked SR flip-flop by employing the NAND gate; it produces a greater number of possible outputs as compared to the binary logic clocked SR flip-flop circuit. The performance of the proposed design is measured by the Jones parameter and Stokes parameter. The results of the polarization rotation-based ternary inverter and clocked SR flip-flop are realized using a pump–probe structure in the MRR. The numerical simulation results are confirmed by the well-known Jones vector (azimuth angle and ellipticity angle) and Stokes parameter (S1, S2, S3) using Ansys Lumerical Interconnect simulation software. Full article
(This article belongs to the Special Issue Advancements in Optical and Acoustic Signal Processing)
Show Figures

Figure 1

24 pages, 6475 KiB  
Review
Short-Circuit Detection and Protection Strategies for GaN E-HEMTs in High-Power Applications: A Review
by Haitz Gezala Rodero, David Garrido Díez, Iosu Aizpuru Larrañaga and Igor Baraia-Etxaburu
Electronics 2025, 14(14), 2875; https://doi.org/10.3390/electronics14142875 - 18 Jul 2025
Viewed by 379
Abstract
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into [...] Read more.
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into high-power applications is limited by critical reliability concerns, particularly regarding their short-circuit (SC) withstand capability and overvoltage (OV) resilience. GaN devices typically exhibit SC withstand times of only a few hundred nanoseconds, needing ultrafast protection circuits, which conventional desaturation (DESAT) methods cannot adequately provide. Furthermore, their high switching transients increase the risk of false activation events. The lack of avalanche capability and the dynamic nature of GaN breakdown voltage exacerbate issues related to OV stress during fault conditions. Although SC-related behaviour in GaN devices has been previously studied, a focused and comprehensive review of protection strategies tailored to GaN technology remains lacking. This paper fills that gap by providing an in-depth analysis of SC and OV failure phenomena, coupled with a critical evaluation of current and next-generation protection schemes suitable for GaN-based high-power converters. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

18 pages, 1539 KiB  
Article
A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach
by Yue Chen, Bingchen Wang, Kaiyue Zeng, Lifu Ding, Yingming Lin, Ying Chen and Qiuyu Lu
Energies 2025, 18(14), 3751; https://doi.org/10.3390/en18143751 - 15 Jul 2025
Viewed by 199
Abstract
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are [...] Read more.
Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are both accurate and computationally efficient for real-time implementation. This paper proposes a data-driven observer to rapidly estimate the potential power gain achievable through AWC as a function of the ambient wind direction. The approach is rooted in Koopman operator theory, which allows a linear representation of nonlinear dynamics. Specifically, a model is developed using an Input–Output Extended Dynamic Mode Decomposition framework combined with Sparse Identification (IOEDMDSINDy). This method lifts the low-dimensional wind direction input into a high-dimensional space of observable functions and then employs iterative sparse regression to identify a minimal, interpretable linear model in this lifted space. By training on offline simulation data, the resulting observer serves as an ultra-fast surrogate model, capable of providing instantaneous predictions to inform online control decisions. The methodology is demonstrated and its performance is validated using two case studies: a 9-turbine and a 20-turbine wind farm. The results show that the observer accurately captures the complex, nonlinear relationship between wind direction and power gain, significantly outperforming simpler models. This work provides a key enabling technology for advanced, real-time wind farm control systems. Full article
(This article belongs to the Special Issue Modeling, Control and Optimization of Wind Power Systems)
Show Figures

Figure 1

10 pages, 1608 KiB  
Article
A Reflection-Based Ultra-Fast Measurement Method for the Continuous Characterization of Self-Heating for Advanced MOSFETs
by Wei Liu, Guoqixin Huang, Yaru Ding, Chu Yan, Xinwei Yu, Liang Zhao and Yi Zhao
Electronics 2025, 14(13), 2634; https://doi.org/10.3390/electronics14132634 - 30 Jun 2025
Viewed by 253
Abstract
As semiconductor devices approach the sub-10 nm technology node, the self-heating effect (SHE) induced by confined geometries (e.g., FinFETs and nanosheet FETs) has emerged as a critical bottleneck affecting both performance and reliability. This challenge has prompted extensive research efforts to develop advanced [...] Read more.
As semiconductor devices approach the sub-10 nm technology node, the self-heating effect (SHE) induced by confined geometries (e.g., FinFETs and nanosheet FETs) has emerged as a critical bottleneck affecting both performance and reliability. This challenge has prompted extensive research efforts to develop advanced characterization methodologies to investigate this effect and its corresponding influence on the device’s reliability issues. In this paper, we propose reflection-based ultra-fast measurement techniques for the continuous monitoring of the self-heating effect in advanced MOSFETs. With this approach, the self-heating effect-induced degradation of transistor drain current and the real-time temperature change can be continuously captured using a digital phosphor oscilloscope on a nanosecond scale. The thermal time constant of 17 ns and the thermal resistance of 34,000 K/W have been extracted for the short channel transistors used in this study with the help of this new characterization method. This reflection-based method is useful for the fast extraction of the thermal time constant and thermal resistance and for the continuous monitoring of current degradation as well as the real-time temperature. Therefore, this new characterization method is beneficial for the evaluation of the self-heating effect in advanced ultra-scaled MOSFETs. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

35 pages, 5219 KiB  
Review
Pulsed Power Plasma Stimulation: A Comprehensive Review and Field Insights
by Son T. Nguyen, Mohamed E.-S. El-Tayeb, Mohamed Adel Gabry and Mohamed Y. Soliman
Energies 2025, 18(13), 3334; https://doi.org/10.3390/en18133334 - 25 Jun 2025
Viewed by 553
Abstract
Pulsed Power Plasma Stimulation (3PS) represents a promising and environmentally favorable alternative to conventional well stimulation techniques for enhancing subsurface permeability. This comprehensive review tracks the evolution of plasma-based rock stimulation, offering insights from key laboratory, numerical, and field-scale studies. The review begins [...] Read more.
Pulsed Power Plasma Stimulation (3PS) represents a promising and environmentally favorable alternative to conventional well stimulation techniques for enhancing subsurface permeability. This comprehensive review tracks the evolution of plasma-based rock stimulation, offering insights from key laboratory, numerical, and field-scale studies. The review begins with foundational electrohydraulic discharge concepts and progresses through the evolution of Pulsed Arc Electrohydraulic Discharge (PAED) and the more advanced 3PS systems. High-voltage, ultrafast plasma discharges generate mechanical shockwaves and localized thermal effects that result in complex fracture networks, particularly in tight and crystalline formations. Compared to conventional well stimulation techniques, 3PS reduces water use, avoids chemical additives, and minimizes induced seismicity. Laboratory studies demonstrate significant improvements in permeability, porosity, and fracture intensity, while field trials show an increase in production from oil, gas, and geothermal wells. However, 3PS faces some limitations such as short stimulation radii and logistical constraints in wireline-based delivery systems. Emerging technologies like plasma-assisted drilling and hybrid PDC–plasma tools offer promising integration pathways. Overall, 3PS provides a practical, scalable, low-impact stimulation approach with broad applicability across energy sectors, especially in environmentally sensitive or water-scarce regions. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage Discharge)
Show Figures

Figure 1

51 pages, 5828 KiB  
Review
A Comprehensive Review of Advanced Sensor Technologies for Fire Detection with a Focus on Gasistor-Based Sensors
by Mohsin Ali, Ibtisam Ahmad, Ik Geun, Syed Ameer Hamza, Umar Ijaz, Yuseong Jang, Jahoon Koo, Young-Gab Kim and Hee-Dong Kim
Chemosensors 2025, 13(7), 230; https://doi.org/10.3390/chemosensors13070230 - 23 Jun 2025
Viewed by 1432
Abstract
Early fire detection plays a crucial role in minimizing harm to human life, buildings, and the environment. Traditional fire detection systems struggle with detection in dynamic or complex situations due to slow response and false alarms. Conventional systems are based on smoke, heat, [...] Read more.
Early fire detection plays a crucial role in minimizing harm to human life, buildings, and the environment. Traditional fire detection systems struggle with detection in dynamic or complex situations due to slow response and false alarms. Conventional systems are based on smoke, heat, and gas sensors, which often trigger alarms when a fire is in full swing. In order to overcome this, a promising approach is the development of memristor-based gas sensors, known as gasistors, which offer a lightweight design, fast response/recovery, and efficient miniaturization. Recent studies on gasistor-based sensors have demonstrated ultrafast response times as low as 1–2 s, with detection limits reaching sub-ppm levels for gases such as CO, NH3, and NO2. Enhanced designs incorporating memristive switching and 2D materials have achieved a sensitivity exceeding 90% and stable operation across a wide temperature range (room temperature to 250 °C). This review highlights key factors in early fire detection, focusing on advanced sensors and their integration with IoT for faster, and more reliable alerts. Here, we introduce gasistor technology, which shows high sensitivity to fire-related gases and operates through conduction filament (CF) mechanisms, enabling its low power consumption, compact size, and rapid recovery. When integrated with machine learning and artificial intelligence, this technology offers a promising direction for future advancements in next-generation early fire detection systems. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

55 pages, 6250 KiB  
Review
Challenges and Issues Facing Ultrafast-Charging Lithium-Ion Batteries
by Amirreza Aghili Mehrizi, Firoozeh Yeganehdoust, Anil Kumar Madikere Raghunatha Reddy and Karim Zaghib
Batteries 2025, 11(6), 209; https://doi.org/10.3390/batteries11060209 - 26 May 2025
Viewed by 2579
Abstract
Ultrafast-charging (UFC) technology for electric vehicles (EVs) and energy storage devices has brought with it an increase in demand for lithium-ion batteries (LIBs). However, although they pose advantages in driving range and charging time, LIBs face several challenges such as mechanical degradation, lithium [...] Read more.
Ultrafast-charging (UFC) technology for electric vehicles (EVs) and energy storage devices has brought with it an increase in demand for lithium-ion batteries (LIBs). However, although they pose advantages in driving range and charging time, LIBs face several challenges such as mechanical degradation, lithium dendrite formation, electrolyte decomposition, and concerns about thermal runaway safety. This review evaluates the key challenges and advances in LIB components (anodes, cathodes, electrolytes, separators, and binders), alongside innovations in charging protocols and safety concerns. Material-level solutions such as nanostructuring, doping, and composite architectures are investigated to improve ion diffusion, conductivity, and electrode stability. Electrolyte modifications, separator enhancements, and binder optimizations are discussed in terms of their roles in reducing high-rate degradation. Furthermore, charging protocols are addressed; adjustments can reduce mechanical and electrochemical stress on LIBs, decreasing capacity fade while providing rapid charging. This review highlights the key technological advancements that are enabling ultrafast charging and that are assisting us in overcoming severe limitations, paving the way for the development of next-generation high-performance LIBs. Full article
Show Figures

Graphical abstract

16 pages, 6724 KiB  
Review
Nanosecond Laser Etching of Surface Drag-Reducing Microgrooves: Advances, Challenges, and Future Directions
by Xulin Wang, Zhenyuan Jia, Jianwei Ma and Wei Liu
Aerospace 2025, 12(6), 460; https://doi.org/10.3390/aerospace12060460 - 23 May 2025
Viewed by 466
Abstract
With the increasing demand for drag reduction, energy consumption reduction, and low weight in civil aircraft, high-precision microgroove preparation technology is being developed internationally to reduce wall friction resistance and save energy. Compared to mechanical processing, chemical etching, roll forming, and ultrafast laser [...] Read more.
With the increasing demand for drag reduction, energy consumption reduction, and low weight in civil aircraft, high-precision microgroove preparation technology is being developed internationally to reduce wall friction resistance and save energy. Compared to mechanical processing, chemical etching, roll forming, and ultrafast laser processing, nanosecond lasers offer processing precision, high efficiency, and controllable thermal effects, enabling low-cost and high-quality preparation of microgrooves. However, the impact of nanosecond laser etching on the fatigue performance of substrate materials remains unclear, leading to controversy over whether high-precision shape control and fatigue performance enhancement in microgrooves can be achieved simultaneously. This has become a bottleneck issue that urgently needs to be addressed. This paper focuses on the current research status of nanosecond laser processing quality control for microgrooves and the research status of laser effects on enhancing the fatigue performance of substrate materials. It identifies the main existing issues: (1) how to induce surface residual compressive stress through the thermo-mechanical coupling effect of nanosecond lasers to suppress micro-defects while ensuring high-precision shape control of fixed microgrooves; and (2) how to quantify the regulation of nanosecond laser process parameters on residual stress distribution and fatigue performance in the microgroove area. To address these issues, this paper proposes a collaborative strategy for high-quality shape control and surface strengthening in fixed microgrooves, an analysis of multi-dimensional fatigue regulation mechanisms, and a new method for multi-objective process optimization. The aim is to control the geometric accuracy error of the prepared surface microgrooves within 5% and to enhance the fatigue life of the substrate by more than 20%, breaking through the technical bottleneck of separating “drag reduction design” from “fatigue resistance manufacturing”, and providing theoretical support for the integrated manufacturing of “drag reduction-fatigue resistance” in aircraft skins. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 2430 KiB  
Article
A Comparative Analysis of Raw and Bran-Fried Acori tatarinowii Rhizoma Based on the Intelligent Sensory Evaluation System
by Yingna Le, Zhongjian Yang, Ruiping Wang, Shaolong Ma, Yang Cui, Kun Shi, Li Xin, Jinlian Zhang and Lingyun Zhong
Metabolites 2025, 15(5), 338; https://doi.org/10.3390/metabo15050338 - 20 May 2025
Viewed by 572
Abstract
Objectives: The study aimed to investigate the differences in odor, color, and taste characteristics between raw and bran-fried Acori tatarinowii Rhizoma (RATR and BATR) using advanced sensory evaluation technologies. The objective was to establish a reliable differential analysis method for distinguishing RATR and [...] Read more.
Objectives: The study aimed to investigate the differences in odor, color, and taste characteristics between raw and bran-fried Acori tatarinowii Rhizoma (RATR and BATR) using advanced sensory evaluation technologies. The objective was to establish a reliable differential analysis method for distinguishing RATR and BATR slices to support quality control in herbal processing. Methods: The Heracles NEO ultra-fast gas-phase electronic nose was employed to analyze odor profiles, while electronic eye and electronic tongue technologies were used to assess color and taste differences, respectively. Odor fingerprint analysis identified key volatile components, and colorimetric and taste measurements were conducted to compare RATR and BATR samples. Results: Fifteen characteristic odor components were identified, with methanol, 2-propanol, and 2-cyclopentenone potentially serving as discriminant markers differentiating RATR and BATR. PCA demonstrated exceptional separation efficacy, with a cumulative contribution rate of 99.937% for the primary components. Conclusions: The integration of Heracles NEO electronic nose, electronic eye, and electronic tongue technologies effectively distinguished RATR from BATR. This approach provides a novel strategy for online quality monitoring in herbal slice production and offers a robust analytical framework for the identification and quality assessment of processed herbal medicines. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

10 pages, 3827 KiB  
Communication
Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure
by Zhenhong Wang, Zexin Zhou, Yubo Ji, Qiong Zeng, Yufeng Song, Geguo Du and Hongye Li
Photonics 2025, 12(5), 465; https://doi.org/10.3390/photonics12050465 - 9 May 2025
Viewed by 430
Abstract
In this study, we have demonstrated an ultrafast Tm-doped fiber laser utilizing the nonlinear multimode interference (NL-MMI) effect, with a single mode fiber–grade index multimode fiber–single mode fiber (SMF-GIMF-SMF) structure serving as the saturable absorber (SA). In addition to stable pulses, mode-locked pulses [...] Read more.
In this study, we have demonstrated an ultrafast Tm-doped fiber laser utilizing the nonlinear multimode interference (NL-MMI) effect, with a single mode fiber–grade index multimode fiber–single mode fiber (SMF-GIMF-SMF) structure serving as the saturable absorber (SA). In addition to stable pulses, mode-locked pulses with chaotic features can be obtained in this fiber laser, characterized by a high average output power and pulse energy, resembling noise-like pulses. By employing the time-stretch dispersive Fourier transform (TS-DFT) technology, it can be seen that the sub-pulses constituting these pulses exhibit noisy characteristics with random intensities and energies. Furthermore, the numerical simulations elucidate the corresponding generation mechanism and dynamic evolution. These findings significantly enhance the comprehension of pulse dynamics and offer novel insights into the technological development and application prospects of ultrafast fiber lasers. Full article
(This article belongs to the Special Issue Advances in Nonlinear Optics: From Fundamentals to Applications)
Show Figures

Figure 1

15 pages, 4776 KiB  
Article
Stack and Structure: Ultrafast Lasers for Additive Manufacturing of Thin Polymer Films for Medical Applications
by Dominic Bartels, Yvonne Reg, Mahboobeh Borandegi, Maximilian Marschall, Alexander Sommereyns and Michael Schmidt
J. Manuf. Mater. Process. 2025, 9(4), 125; https://doi.org/10.3390/jmmp9040125 - 8 Apr 2025
Viewed by 672
Abstract
Overcoming the limitations of powder-based additive manufacturing processes is a crucial aspect for the manufacturing of patient-specific sophisticated implants with tailored properties. Within this work, a novel manufacturing process for the fabrication of polymer-based implants is proposed. This manufacturing process is inspired by [...] Read more.
Overcoming the limitations of powder-based additive manufacturing processes is a crucial aspect for the manufacturing of patient-specific sophisticated implants with tailored properties. Within this work, a novel manufacturing process for the fabrication of polymer-based implants is proposed. This manufacturing process is inspired by the laminated object manufacturing technology and is based on using thin films as raw material, which are processed using an ultrafast laser source. Utilizing thin films as a starting material helps to avoid powder contamination during additive manufacturing, thus supporting the generation of internal cavities that can be filled with secondary phases. Additionally, the use of medical materials mitigates the burden of a later certification of potential implants. Furthermore, the ultrafast laser supports the generation of highly resolved structures smaller than the average layer thickness (from 50 to 100 µm) through material ablation. These structures can be helpful to obtain progressive part properties or a targeted stress flow, as well as a specified release of secondary phases (e.g., hydrogels) upon load. Within this work, first investigations on the joining, cutting, and structuring of thin polymer films with layer thickness of between 50 and 100 µm using a ps-pulsed laser are reported. It is shown that thin film sizes of around 50 µm could be structured, joined, and cut successfully using ultrafast lasers emitting in the NIR spectral range. Full article
Show Figures

Figure 1

37 pages, 31186 KiB  
Review
Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment
by Yining Zhang, Huiqin Wang and Jisheng Zhang
Catalysts 2025, 15(4), 336; https://doi.org/10.3390/catal15040336 - 31 Mar 2025
Cited by 1 | Viewed by 1289
Abstract
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their [...] Read more.
The global shortage of freshwater resources and the energy crisis have propelled solar-driven interfacial evaporation (SDIE) coupled with photocatalytic technology to become a research focus in efficient and low-carbon water treatment. Graphene-based materials demonstrate unique advantages in SDIE–photocatalysis integrated systems, owing to their broadband light absorption, ultrafast thermal carrier dynamics, tunable electronic structure, and low evaporation enthalpy characteristics. This review systematically investigates the enhancement mechanisms of graphene photothermal conversion on photocatalytic processes, including (1) improving light absorption through surface morphology modulation, defect engineering, and plasmonic material compositing; (2) reducing water evaporation enthalpy via hydrophilic functional group modification and porous structure design; (3) suppressing heat loss through thermal insulation layers and 3D structural optimization; and (4) enhancing water transport efficiency via fluid channel engineering and wettability control. Furthermore, salt resistance strategies and structural optimization significantly improve system practicality and stability. In water treatment applications, graphene-based SDIE systems achieve synergistic “adsorption–catalysis–evaporation” effects, enabling efficient the degradation of organic pollutants, reduction in/fixation of heavy metal ions, and microbial inactivation. However, practical implementation still faces challenges including low steam condensation efficiency, insufficient long-term material durability, and high scaling-up costs. Future research should prioritize enhancing heat and mass transfer in condensation systems, optimizing material environmental adaptability, and developing low-cost manufacturing processes to promote widespread application of graphene-based SDIE–photocatalysis integrated systems. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Figure 1

34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1616
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

10 pages, 4177 KiB  
Article
Intensity Modulation Effects on Ultrafast Laser Ablation Efficiency and Defect Formation in Fused Silica
by Dai Yoshitomi, Hideyuki Takada, Shinichi Kinugasa, Hiroshi Ogawa, Yohei Kobayashi and Aiko Narazaki
Nanomaterials 2025, 15(5), 377; https://doi.org/10.3390/nano15050377 - 28 Feb 2025
Viewed by 901
Abstract
Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of [...] Read more.
Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp. This effect was independent of the repetition rate ranging from 100 Hz to 1 MHz, which suggested that it originates from persistent residual effects of preceding pulses. Photoluminescence experiments indicated that the observed effect is primarily attributed to the dynamic reduction in the ablation threshold caused by the formation of defects such as non-bridging oxygen hole centers. The correlation between the sequence of intensity-modulated pulses and defect formation has been clarified. The knowledge of these correlations, combined with machine learning-based optimization methods, is useful for the optimization of the throughput and quality of ultrafast laser processing. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

Back to TopTop