Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = ultrafast photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5908 KiB  
Review
Exploring the Frontier of Integrated Photonic Logic Gates: Breakthrough Designs and Promising Applications
by Nikolay L. Kazanskiy, Ivan V. Oseledets, Artem V. Nikonorov, Vladislava O. Chertykovtseva and Svetlana N. Khonina
Technologies 2025, 13(8), 314; https://doi.org/10.3390/technologies13080314 - 23 Jul 2025
Viewed by 307
Abstract
The increasing demand for high-speed, energy-efficient computing has propelled the development of integrated photonic logic gates, which utilize the speed of light to surpass the limitations of traditional electronic circuits. These gates enable ultrafast, parallel data processing with minimal power consumption, making them [...] Read more.
The increasing demand for high-speed, energy-efficient computing has propelled the development of integrated photonic logic gates, which utilize the speed of light to surpass the limitations of traditional electronic circuits. These gates enable ultrafast, parallel data processing with minimal power consumption, making them ideal for next-generation computing, telecommunications, and quantum applications. Recent advancements in nanofabrication, nonlinear optics, and phase-change materials have facilitated the seamless integration of all-optical logic gates onto compact photonic chips, significantly enhancing performance and scalability. This paper explores the latest breakthroughs in photonic logic gate design, key material innovations, and their transformative applications. While challenges such as fabrication precision and electronic–photonic integration remain, integrated photonic logic gates hold immense promise for revolutionizing optical computing, artificial intelligence, and secure communication. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

17 pages, 1494 KiB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Viewed by 270
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

13 pages, 2045 KiB  
Article
Enhanced Nonlinear Optical Absorption in Fused-Ring Aromatic Donor–Acceptor–Donor Core Units of Y6 Derivatives
by Xingyuan Wen, Tianyang Dong, Xingzhi Wu, Jiabei Xu, Xiaofeng Shi, Yinglin Song, Chunru Wang and Li Jiang
Molecules 2025, 30(13), 2748; https://doi.org/10.3390/molecules30132748 - 26 Jun 2025
Viewed by 305
Abstract
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this [...] Read more.
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this study, it was observed that selenophene-incorporated fused D-A-D architectures exhibit a remarkable enhancement in two-photon absorption characteristics. By strategically modifying the heteroatomic composition of the Y6-derived fused-ring core, replacing thiophene (BDS) with selenophene (BDSe), the optimized system achieves unprecedented NLO performance. BDSe displays a nonlinear absorption coefficient (β) of 3.32 × 10−10 m/W and an effective two-photon absorption cross-section (σTPA) of 2428.2 GM under 532 nm with ns pulse excitation. Comprehensive characterization combining Z-scan measurements, transient absorption spectroscopy, and DFT calculations reveals that the heavy atom effect of selenium induces enhanced spin–orbit coupling, optimized intramolecular charge transfer dynamics and stabilized excited states, collectively contributing to the superior reverse saturable absorption behavior. It is believed that this molecular engineering strategy establishes critical structure–property relationships for the rational design of organic NLO materials. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

10 pages, 977 KiB  
Communication
Tailorable Brillouin Light Scattering in Air-Slit Suspended Waveguide
by Yanzhao Wang, Hongrun Ren and Yunjie Teng
Photonics 2025, 12(6), 586; https://doi.org/10.3390/photonics12060586 - 9 Jun 2025
Viewed by 293
Abstract
Silicon-based optical waveguides exhibit high Brillouin gain, enabling the realization of Brillouin lasers directly on silicon substrates. These lasers hold significant promise for applications such as tunable-frequency laser emission, ultrafast pulse generation via mode-locking techniques, and other advanced photonic functionalities. However, a key [...] Read more.
Silicon-based optical waveguides exhibit high Brillouin gain, enabling the realization of Brillouin lasers directly on silicon substrates. These lasers hold significant promise for applications such as tunable-frequency laser emission, ultrafast pulse generation via mode-locking techniques, and other advanced photonic functionalities. However, a key challenge in silicon-based Brillouin lasers is the requirement for long waveguide lengths to achieve sufficient optical feedback and reach the lasing threshold. This study proposes a novel floating waveguide architecture designed to significantly enhance the Brillouin gain in silicon-based systems. Furthermore, we introduce a breakthrough method for achieving wide-range phonon frequency tunability, enabling precise control over stimulated Brillouin scattering (SBS) dynamics. By strategically engineering the waveguide geometry (shape and dimensions), we demonstrate a tunable SBS phonon laser, offering a versatile platform for on-chip applications. Additionally, the proposed waveguide system features adjustable operating frequencies, unlocking new opportunities for compact Brillouin devices and integrated microwave photonic signal sources. Full article
Show Figures

Figure 1

18 pages, 2308 KiB  
Article
High-Speed All-Optical Encoder and Comparator at 120 Gb/s Using a Carrier Reservoir Semiconductor Optical Amplifier
by Amer Kotb and Kyriakos E. Zoiros
Nanomaterials 2025, 15(9), 647; https://doi.org/10.3390/nano15090647 - 24 Apr 2025
Cited by 1 | Viewed by 464
Abstract
All-optical encoders and comparators are essential components for high-speed optical computing, enabling ultra-fast data processing with minimal latency and low power consumption. This paper presents a numerical analysis of an all-optical encoder and comparator architecture operating at 120 Gb/s, based on carrier reservoir [...] Read more.
All-optical encoders and comparators are essential components for high-speed optical computing, enabling ultra-fast data processing with minimal latency and low power consumption. This paper presents a numerical analysis of an all-optical encoder and comparator architecture operating at 120 Gb/s, based on carrier reservoir semiconductor optical amplifier-assisted Mach–Zehnder interferometers (CR-SOA-MZIs). Building upon our previous work on all-optical arithmetic circuits, this study extends the application of CR-SOA-MZI structures to implement five key logic operations between two input signals (A and B): A¯B, AB¯, AB (AND), A¯B¯ (NOR), and AB + A¯B¯ (XNOR). The performance of these logic gates is evaluated using the quality factor (QF), yielding values of 17.56, 17.04, 19.05, 10.95, and 8.33, respectively. We investigate the impact of critical design parameters on the accuracy and stability of the logic outputs, confirming the feasibility of high-speed operation with robust signal integrity. These results support the viability of CR-SOA-MZI-based configurations for future all-optical logic circuits, offering promising potential for advanced optical computing and next-generation photonic information processing systems. Full article
Show Figures

Graphical abstract

22 pages, 5783 KiB  
Review
Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics
by Mircea Dragoman, Daniela Dragoman, Mircea Modreanu, Silviu Vulpe, Cosmin Romanitan, Martino Aldrigo and Adrian Dinescu
Nanomaterials 2025, 15(8), 589; https://doi.org/10.3390/nano15080589 - 11 Apr 2025
Viewed by 615
Abstract
We present here a comprehensive review of various classes of electric-field-induced reversible Mott metal-insulator materials, which have many applications in ultrafast switches, reconfigurable high-frequency devices up to THz, and photonics. Various types of Mott transistors are analyzed, and their applications are discussed. This [...] Read more.
We present here a comprehensive review of various classes of electric-field-induced reversible Mott metal-insulator materials, which have many applications in ultrafast switches, reconfigurable high-frequency devices up to THz, and photonics. Various types of Mott transistors are analyzed, and their applications are discussed. This paper introduces new materials that demonstrate the Mott transition at very low DC voltage levels, induced by an external electric field. The final section of the paper examines ferroelectric Mott transistors and these innovative ferroelectric Mott materials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1522
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

17 pages, 5454 KiB  
Article
Quasi-1D NbTe4 for Broadband Pulse Generation from 1.0 to 3.0 μm: Bridging the Near- and Mid-Infrared
by Zian Cai, Wenyao Zhang, Qi Kang, Hongfu Huang, Xin Xiang, Shunbin Lu and Qiao Wen
Nanomaterials 2025, 15(6), 424; https://doi.org/10.3390/nano15060424 - 10 Mar 2025
Viewed by 785
Abstract
Quasi-one-dimensional (quasi-1D) transition metal chalcogenides (TMCs), a subclass of low-dimensional materials, have attracted significant attention due to their unique optical and electronic properties, making them promising candidates for nonlinear photonics. In this work, NbTe4, a quasi-1D transition metal tetrachalcogenide, was synthesized [...] Read more.
Quasi-one-dimensional (quasi-1D) transition metal chalcogenides (TMCs), a subclass of low-dimensional materials, have attracted significant attention due to their unique optical and electronic properties, making them promising candidates for nonlinear photonics. In this work, NbTe4, a quasi-1D transition metal tetrachalcogenide, was synthesized and employed for the first time as a broadband saturable absorber (SA) for pulsed laser applications. The nonlinear optical (NLO) properties of NbTe4 were systematically characterized at 1.0 μm, 2.0 μm, and 3.0 μm, revealing saturation intensities of 59.53 GW/cm2, 14 GW/cm2, and 6.8 MW/cm2, with corresponding modulation depths of 17.4%, 5.3%, and 21.5%. Utilizing NbTe4-SA, passively Q-switched (PQS) pulses were successfully generated in the 1.0 μm and 2.0 μm bands, achieving pulse durations of 86 ns and 2 μs, respectively. Furthermore, stable mode-locked operation was demonstrated in an Er-doped fluoride fiber laser at 3.0 μm, yielding a pulse duration of 19 ps. These results establish NbTe4 as a highly promising broadband SA material for next-generation ultrafast photonic devices and pave the way for the development of other quasi-1D materials in nonlinear optics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 2340 KiB  
Article
Fullerene-Passivated Methylammonium Lead Iodide Perovskite Absorber for High-Performance Self-Powered Photodetectors with Ultrafast Response and Broadband Detectivity
by Lakshmi Praba, Yoseob Chung, Dong Ho Han and Jae Woong Jung
Molecules 2025, 30(5), 1166; https://doi.org/10.3390/molecules30051166 - 5 Mar 2025
Cited by 1 | Viewed by 837
Abstract
We herein report the enhanced electrical properties of self-powered perovskite-based photodetectors with high sensitivity and responsivity by applying the surface passivation strategy using C60 (fullerene) as a surface passivating agent. The perovskite (CH3NH3PbI3) thin film passivated [...] Read more.
We herein report the enhanced electrical properties of self-powered perovskite-based photodetectors with high sensitivity and responsivity by applying the surface passivation strategy using C60 (fullerene) as a surface passivating agent. The perovskite (CH3NH3PbI3) thin film passivated with fullerene achieves a highly uniform and compact surface, showing reduced leakage current and higher photon-to-current conversion capability. As a result, the improved film quality of the perovskite layer allows excellent photon-detecting properties, including high values of external quantum efficiency (>95%), responsivity (>5 A W−1), and specific detectivity (>1013 Jones) at zero bias voltage, which surpasses those of the pristine perovskite-based device. Furthermore, the passivated device showed fast rise (0.18 μs) and decay times (17 μs), demonstrating high performance and ultrafast light-detecting capability of the self-powered perovskite-based photodetectors. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

10 pages, 2484 KiB  
Article
Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band
by Jiao Xu, Xianmin Pan, Jiao Tang, Xianghua Peng and Yuxiang Peng
Nanomaterials 2025, 15(4), 251; https://doi.org/10.3390/nano15040251 - 7 Feb 2025
Cited by 1 | Viewed by 819
Abstract
A switchable enhancement group delay in the terahertz band based on a novel sandwich topology protection structure with graphene is proposed in this paper. The notable phase transition of the reflected beam comes from the topological edge-protected mode excited at the sandwich photonic [...] Read more.
A switchable enhancement group delay in the terahertz band based on a novel sandwich topology protection structure with graphene is proposed in this paper. The notable phase transition of the reflected beam comes from the topological edge-protected mode excited at the sandwich photonic crystal surface, and the non-trivial topology of the photonic crystal allows the structure to be immune against defects and imperfections, which lays the foundation for the enhancement of group delay in the terahertz band. And the introduction of graphene creates favorable conditions for the reversible switching of positive and negative reflection group delay. Moreover, the reflected group delay can also be flexibly and dynamically controlled by the incident angle. The positive and negative reversible switching reflected group delay proposed in the terahertz band greatly reduces the optical transmission loss and significantly increases the transmission efficiency compared with the traditional metal sandwich structure, which provides a feasible idea for the realization of multi-dimensional manipulation of the wavelength and phase of electromagnetic waves in the terahertz band. The novel scheme is expected to provide potential applications in fields such as optical buffers or ultrafast modulators. Full article
Show Figures

Figure 1

4 pages, 175 KiB  
Editorial
Metal-Based Nanomaterials: Fabrications, Optical Properties, and Ultrafast Photonics
by Bo Fu and Vittorio Scardaci
Nanomaterials 2025, 15(3), 186; https://doi.org/10.3390/nano15030186 - 24 Jan 2025
Viewed by 712
Abstract
Metals are known for conductivity and luster due to the abundance of free electrons [...] Full article
13 pages, 2525 KiB  
Article
Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation
by Huiling Chen, Yu Lian, Tao Zhou, Hui Li, Jiashi Li, Xinyi Liu, Yuan Huang and Wei-Tao Liu
Nanomaterials 2024, 14(23), 1892; https://doi.org/10.3390/nano14231892 - 25 Nov 2024
Viewed by 1118
Abstract
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is [...] Read more.
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs). By utilizing both infrared and visible light, TR-SFG can provide surface-specific information about both molecular vibrations and electronic transitions simultaneously. Our setup employed a Bragg grating for generating both a narrowband probe and an ultrafast pump pulse, along with a synchronized beam chopper and Galvo mirror combination for real-time spectral normalization, which can be readily incorporated into standard SFG setups. Applying this technique to the TMDC/PMMA interfaces yielded structural information regarding PMMA side chains and dynamic responses of both PMMA vibrational modes and TMDC excitonic transitions. We further observed a prominent enhancement effect of the PMMA vibrational SF amplitude for about 10 times upon the resonance with TMDC excitonic transition. These findings lay a foundation for further investigation into interactions at the 2D material/organic molecule interfaces. Full article
(This article belongs to the Special Issue Nonlinear Optics of Nanostructures and Metasurfaces)
Show Figures

Figure 1

11 pages, 3198 KiB  
Article
Mo2TiAlC2 as a Saturable Absorber for a Passively Q-Switched Tm:YAlO3 Laser
by Chen Wang, Tianjie Chen, Zhe Meng, Sujian Niu, Zhaoxue Li and Xining Yang
Nanomaterials 2024, 14(22), 1823; https://doi.org/10.3390/nano14221823 - 14 Nov 2024
Cited by 2 | Viewed by 1139
Abstract
Owing to their remarkable characteristics, two-dimensional (2D) layered, MAX phase materials have garnered significant attention in the field of optoelectronics in recent years. Herein, a novel MAX phase ceramic material (Mo2TiAlC2) was prepared into a saturable absorber (SA) by [...] Read more.
Owing to their remarkable characteristics, two-dimensional (2D) layered, MAX phase materials have garnered significant attention in the field of optoelectronics in recent years. Herein, a novel MAX phase ceramic material (Mo2TiAlC2) was prepared into a saturable absorber (SA) by the spin-coating method for passively Q-switching (PQS), and its nonlinear optical absorption properties were characterized with a Tm:YAlO3 (Tm:YAP) nanosecond laser. The structure characteristics and composition analysis revealed that the Mo2TiAlC2 material exhibits a well-defined and stable structure, with a uniform thin film successfully obtained through spin coating. In this study of a PQS laser by employing a Mo2TiAlC2-based SA, an average output power of 292 mW was achieved when the absorbed pump power was approximately 4.59 W, corresponding to a central output wavelength of 1931.2 nm. Meanwhile, a stable pulse with a duration down to 242.9 ns was observed at a repetition frequency of 47.07 kHz, which is the narrowest pulse width recorded among PQS solid-state lasers using MAX phase materials as SAs. Our findings indicate that the Mo2TiAlC2 MAX phase ceramic material is an excellent modulator and has promising potential for ultrafast nonlinear photonic applications. Full article
(This article belongs to the Special Issue Linear and Nonlinear Optical Properties of Nanomaterials)
Show Figures

Figure 1

11 pages, 2378 KiB  
Article
Femtosecond Third-Order Nonlinear Electronic Responses of 2D Metallic NbSe2
by Cecília L. A. V. Campos, Igor Gonçalves, Jessica E. Q. Bautista, Alyson Carvalho, Ali M. Jawaid, Robert Busch, Richard Vaia and Anderson S. L. Gomes
Photonics 2024, 11(10), 930; https://doi.org/10.3390/photonics11100930 - 30 Sep 2024
Viewed by 1077
Abstract
This manuscript reports on the third-order nonlinear optical responses of two-dimensional metallic NbSe2 suspended in acetonitrile (ACN). The standard Z-scan technique was employed with 190 fs optical pulses at 790 nm, a repetition rate of 750 Hz, and an intensity ranging from [...] Read more.
This manuscript reports on the third-order nonlinear optical responses of two-dimensional metallic NbSe2 suspended in acetonitrile (ACN). The standard Z-scan technique was employed with 190 fs optical pulses at 790 nm, a repetition rate of 750 Hz, and an intensity ranging from 30 to 300 GW/cm2. A self-focusing nonlinear refractive index (NLR), n2=+(1.8±0.1)×1015 cm2/W, and a nonlinear absorption (NLA) coefficient, α2=+(3.5±0.2)×102 cm/GW, were measured, with the NLA arising from a two-photon process. Aiming to further understand the material’s electronic nonlinearities, we also employed the Optical Kerr Gate (OKG) to evaluate the material’s time response and measure the NLR coefficient in an optical intensity range different from the one used in the Z-scan. For optical pulses of 170 fs at 800 nm and a repetition rate of 76 MHz, the modulus of the NLR coefficient was measured to be n2=4.2±0.5×1014 cm2/W for intensities up to 650 MW/cm2, with the material’s time response limited by the pulse duration. The ultrafast time response and electronic optical nonlinearities are explained based on the material’s 2D structure. Full article
Show Figures

Figure 1

16 pages, 4697 KiB  
Article
Study on the Thermal Radiation Characteristics of Tungsten Surface Grating Structures Prepared by Femtosecond Laser Direct Writing
by Ruxue Guo, Ping Zhou, Wanyun Zhang, Haiying Song and Shibing Liu
Coatings 2024, 14(8), 1045; https://doi.org/10.3390/coatings14081045 - 16 Aug 2024
Viewed by 1277
Abstract
In this paper, using laser direct writing technology, a femtosecond laser was used to process a periodic grating structure on a 99.99% tungsten target. The specific parameters of the laser are as follows: a center wavelength of 800 nm, pulse width of 35 [...] Read more.
In this paper, using laser direct writing technology, a femtosecond laser was used to process a periodic grating structure on a 99.99% tungsten target. The specific parameters of the laser are as follows: a center wavelength of 800 nm, pulse width of 35 fs, repetition rate of 1 kHz, and maximum single pulse energy of 3.5 mJ. The surface morphology of the samples was characterized and analyzed using a scanning electron microscope (SEM, Coxem, Republic of Korea) and atomic force microscope (AFM, Being Nano-Instruments, China). The thermal radiation infrared spectrum of the tungsten target with grating structures was measured using a Fourier transform infrared spectrometer (Vertex 70, Bruker, Germany). The results show that as the laser fluence increases, the depth of the groove, the width of the nanostructure region, and the width of the direct writing etching region all increase. The peak thermal radiation enhancement appears around the wavenumber of 900 cm−1 when the laser fluence is sufficient. Additionally, its intensity initially increases and then decreases as the laser fluence increases. If the grating period is too large, the impact on thermal radiation is not clear. The heating temperature significantly affects the intensity of thermal radiation but does not have a noticeable effect on the position of thermal radiation peaks. Moreover, the relative weighting of different wavenumbers changes as the temperature increases. Full article
(This article belongs to the Special Issue Laser-Assisted Coating Techniques and Surface Modifications)
Show Figures

Figure 1

Back to TopTop