Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics
Abstract
:1. Introduction
2. Nanoelectronics Devices Based on Electrically Driven MIT
2.1. Ultrafast Nanoelectronics Switches Based on Electrically Driven MIT
2.2. Nanoelectronics Devices Based on Electrically Driven MIT for Low-Power Applications and Computing
3. New Materials for Electrically Driven MIT
4. Conclusions
Funding
Conflicts of Interest
References
- Yang, Z.; Ko, C.; Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367. [Google Scholar] [CrossRef]
- Mott, N.F. Metal-insulator transitions. Rev. Mod. Phys. 1968, 40, 677–683. [Google Scholar] [CrossRef]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039–1263. [Google Scholar]
- Milloch, A.; Fabrizio, M.; Giann, C. Mott materials: Unsuccessful metals with a bright future. NPJ Spintron. 2024, 2, 49. [Google Scholar] [CrossRef]
- Evers, F.; Mirlin, A.D. The Andreson transitions. Rev. Mod. Phys. 2008, 80, 1355–1417. [Google Scholar] [CrossRef]
- Segev, M.; Silberberg, Y.; Christodoulides, D.N. Anderson localization of light. Nat. Photon. 2013, 7, 197–203. [Google Scholar] [CrossRef]
- Dragoman, M.; Dragoman, D. The Electronics at Atomic Scale Beyond CMOS; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Cao, W.; Bu, H.; Vinet, M.; Cao, M.; Takagi, S.; Hwang, S.; Ghani, T.; Banerjee, K. The future transistors. Nature 2023, 620, 501–515. [Google Scholar] [CrossRef]
- Liou, J.J.; Ziegler, M.; Schwierz, F. Gigahertz and terahertz transistors for 5G, 6G, and beyond mobile communication systems. Appl. Phys. Rev. 2024, 11, 031318. [Google Scholar] [CrossRef]
- Pavlidis, D. Fundamentals of Terahertz Devices and Applications; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Nikoo, M.S.; Jafari, A.; Perera, N.; Zhu, M.; Santoruvo, G.; Matioli, E. Nanoplasma-enabled picosecond switches for ultrafast electronics. Nature 2020, 579, 534–539. [Google Scholar] [CrossRef]
- Li, N.; Zhang, B.; He, Y.; Luo, Y. Sub-picosecond nanodiodes for low power ultrafast electronics. Adv. Mater. 2021, 33, 2100874. [Google Scholar] [CrossRef]
- Zhang, P.; Ang, Y.S.; Garner, A.L.; Valfells, Á.; Luginsland, J.W.; Ang, L.K. Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects. Appl. Phys. 2021, 129, 100902. [Google Scholar] [CrossRef]
- Li, Y.; Ang, L.K.; Xiao, B.; Djurabekova, F.; Cheng, Y.; Meng, G. Review of electron emission and electrical breakdown in nanogaps. Phys. Plasmas 2024, 31, 040502. [Google Scholar] [CrossRef]
- Chen, B.; Fan, L.; Bi, J.; Li, Z.; Xu, Z.; Majumdar, S. Nanoscale air channel devices- inheritance and breakthrough of vacuum tube. Nano Mater. Sci. 2024, 6, 714–725. [Google Scholar] [CrossRef]
- Yang, J.H.; Shin, J.H.; Kim, S.; Pyo, G.; Jang, A.-R.; Yang, H.W.; Kang, D.J.; Jang, J.E. Geometrically Enhanced Graphene Tunneling Diode With Lateral Nano-Scale Gap. IEEE Electron Device Lett. 2019, 40, 1840–1844. [Google Scholar] [CrossRef]
- Dragoman, M.; Dinescu, A.; Aldrigo, M.; Dragoman, D. Quantum Graphene Asymmetric Devices for Harvesting Electromagnetic Energy. Nanomaterials 2024, 14, 1114. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.; Hu, X.; Wang, F.; Niu, X.; Xie, J.; Gong, Q. Ultrafast all-optical switching. Opt. Mater. 2017, 5, 1600665. [Google Scholar] [CrossRef]
- Hassan, M.T. Lightwave Electronics: Attosecond Optical Switching. ACS Photonics 2024, 11, 334–338. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, Y.; Gim, H.; Hong, K.; Jang, H.W. Nanoelectronics Using Metal–Insulator Transition. Adv. Mater. 2023, 36, e2305353. [Google Scholar] [CrossRef]
- Zhou, Y.; Ramanathan, S. Mott Memory and Neuromorphic Devices. Proc. IEEE 2015, 103, 1289–1310. [Google Scholar] [CrossRef]
- Bhupathi, S.; Wang, S.; Ke, Y.; Long, Y. Recent progress in vanadium dioxide: The multi-stimuli responsive material and its applications. Mater. Sci. Eng. R Rep. 2023, 155, 100747. [Google Scholar] [CrossRef]
- Hu, P.; Hu, P.; Vu, T.D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chem. Rev. 2023, 123, 4353–4415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, X.; Ko, C.; Yang, Z.; Mouli, C.; Ramanathan, S. Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches. IEEE Electron Device Lett. 2013, 34, 220–222. [Google Scholar] [CrossRef]
- Rathi, S.; Park, J.-H.; Lee, I.-Y.; Baik, J.M.; Yi, K.S.; Kim, G.-H. Unravelling the switching mechanisms in electric field induced insulator–metal transitions in VO2nanobeams. J. Phys. D Appl. Phys. 2014, 47, 295101. [Google Scholar] [CrossRef]
- Lin, J.; Ramanathan, S.; Guha, S. Electrically Driven Insulator–Metal Transition-Based Devices—Part II: Transient Characteristics. IEEE Trans. Electron Devices 2018, 65, 3989–3994. [Google Scholar] [CrossRef]
- Brockman, J.S.; Gao, L.; Hughes, B.; Rettner, C.T.; Samant, M.G.; Roche, K.P.; Parkin, S.S.P. Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. Nat. Nanotechnol. 2014, 9, 453–457. [Google Scholar] [CrossRef]
- Kalcheim, Y.; Camjayi, A.; del Valle, J.; Salev, P.; Rozenberg, M.; Schuller, I.K. Non-thermal resistive switching in Mott insulator nanowires. Nat. Commun. 2020, 11, 2985. [Google Scholar] [CrossRef]
- Singh, T.; Hummel, G.; Vaseem, M.; Shamim, A. Recent Advancements in Reconfigurable mmWave Devices Based on Phase-Change and Metal Insulator Transition Materials. IEEE J. Microw. 2023, 3, 827–851. [Google Scholar] [CrossRef]
- Jeong, Y.-G.; Bernien, H.; Kyoung, J.-S.; Park, H.-R.; Choi, J.-W.; Kim, B.-J.; Kim, H.-T.; Ahn, K.J.; Kim, D.-S. Electrical control of terahertz nano antennas on VO2 thin film. Opt. Express 2011, 19, 21211. [Google Scholar] [CrossRef]
- Liu, M.; Wei, R.; Taplin, J.; Zhang, W. Terahertz Metasurfaces Exploiting the Phase Transition of Vanadium Dioxide. Materials 2023, 16, 7106. [Google Scholar] [CrossRef]
- Xu, R.; Liu, X.; Lin, Y.-S. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures. Results Phys. 2019, 13, 102176. [Google Scholar] [CrossRef]
- Liu, M.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Cueff, S.; John, J.; Zhang, Z.; Parra, J.; Sun, J.; Orobtchouk, R.; Ramanathan, S.; Sanchis, P. VO2 nanophotonics. APL Photon. 2020, 5, 110901. [Google Scholar] [CrossRef]
- Jeyaselvan, V.; Pal, A.; Kumar, P.S.A.; Selvaraja, S.K. Thermally-induced optical modulation in a vanadium dioxide-on-silicon waveguide. OSA Contin. 2020, 3, 132–142. [Google Scholar] [CrossRef]
- Markov, P.; Marvel, R.E.; Conley, H.J.; Miller, K.J.; Haglund, R.F., Jr.; Weiss, S.M. Optically Monitored Electrical Switching in VO2. ACS Photonics 2015, 2, 1175–1182. [Google Scholar] [CrossRef]
- Ha, S.D.; Zhou, Y.; Fisher, C.J.; Ramanathan, S.; Treadway, J.P. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices. J. Appl. Phys. 2013, 113, 184501. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, P.C.; Sokhoyan, R.; Mauser, K.A.; Glaudell, R.; Shirmanesh, G.K.; Atwater, H.A. Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. Nano Lett. 2019, 19, 3961–3968. [Google Scholar] [CrossRef]
- Azad, S.; Gajula, D.; Prio, M.H.; Muthusamy, L.; Miller, J.K.; Johnson, E.G.; Koley, G. VO2 Thin Film Enabled Free Space Modulation of Infrared Light Using Pulsed Electric Field. ACS Photonics 2024, 11, 2138–2149. [Google Scholar] [CrossRef]
- Jung, Y.; Han, H.; Sharma, A.; Jeong, J.; Parkin, S.S.P.; Poon, J.K.S. Integrated hybrid VO2−silicon optical memory. ACS Photonics 2022, 9, 217–223. [Google Scholar] [CrossRef]
- Cristoloveanu, S.; Wan, J.; Zaslavsky, A. A Review of Sharp-Switching Devices for Ultra-Low Power Applications. IEEE J. Electron Devices Soc. 2016, 4, 215–226. [Google Scholar] [CrossRef]
- Newns, D.M.; Misewich, J.A.; Tsuei, C.C.; Gupta, A.; Scott, B.A.; Schrott, A. Mott transition field effect transistor. Appl. Phys. Lett. 1998, 73, 780–782. [Google Scholar] [CrossRef]
- Hormoz, S.; Ramanathan, S. Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid-State Electron. 2010, 54, 654–659. [Google Scholar] [CrossRef]
- Nakano, M.; Shibuya, K.; Okuyama, D.; Hatano, T.; Ono, S.; Kawasaki, M.; Iwasa, Y.; Tokura, Y. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 2012, 487, 459–462. [Google Scholar] [CrossRef]
- Ko, E.; Shin, J.; Shin, C. Steep switching devices for low power applications: Negative differential capacitance/resistance field effect transistors. Nano Converg. 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Tian, H.; Li, C.; Xie, Z.; Wei, Y.; Li, Y.; He, J.; Yue, Y.; Ren, T. Steep Slope Field Effect Transistors Based on 2D Materials. Adv. Electron. Mater. 2024, 10, 2300625. [Google Scholar] [CrossRef]
- Shukla, N.; Thathachary, A.V.; Agrawal, A.; Paik, H.; Aziz, A.; Schlom, D.G.; Gupta, S.K.; Engel-Herbert, R.; Datta, S. A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 2015, 6, 7812. [Google Scholar] [CrossRef]
- Dragoman, M.; Dragoman, D. Negative differential resistance in novel nanoscale devices. Solid-State Electron. 2022, 197, 108464. [Google Scholar] [CrossRef]
- Frougier, J.; Shukla, N.; Deng, D.; Jerry, M.; Aziz, A.; Liu, L.; Lavallee, G.; Mayer, T.S.; Gupta, S.; Datta, S. Phase-transition-FET exhibiting steep switching slope of 8mV/decade and 36% enhanced on current. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Verma, A.; Song, B.; Downey, B.; Wheeler, V.D.; Meyer, D.J.; Xing, H.G.; Jena, D. Steep Sub-Boltzmann Switching in AlGaN/GaN Phase-FETs With ALD VO2. IEEE Trans. Electron Devices 2018, 65, 945–949. [Google Scholar] [CrossRef]
- Ahn, C.H.; Triscone, J.-M.; Mannhart, J. Electric field effect in correlated oxide systems. Nature 2003, 424, 1015–1018. [Google Scholar] [CrossRef]
- Yamada, H.; Marinova, M.; Altuntas, P.; Crassous, A.; Bégon-Lours, L.; Fusil, S.; Jacquet, E.; Garcia, V.; Bouzehouane, K.; Gloter, A.; et al. Ferroelectric control of a Mott insulator. Sci. Rep. 2013, 3, 2834. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Dragoman, D.; Iordanescu, S.; Dinescu, A.; Modreanu, M. HfO2-based ferroelectrics applications in nanoelectronics. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2021, 15, 2000521. [Google Scholar] [CrossRef]
- Silva, J.P.B.; Alcala, R.; Avci, U.E.; Barrett, N.; Bégon-Lours, L.; Borg, M.; Byun, S.; Chang, S.-C.; Cheong, S.-W.; Choe, D.-H.; et al. Roadmap on ferroelectric hafnia- and zirconia-based materials and devices. APL Mater. 2023, 11, 089201. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Dragoman, D.; Iordanescu, S.; Dinescu, A.; Vulpe, S.; Modreanu, M. Ferroelectrics at the nanoscale: Materials and devices—A critical review. Crit. Rev. Solid State Mater. Sci. 2022, 48, 561–579. [Google Scholar] [CrossRef]
- Yajima, T.; Nishimura, T.; Tanaka, T.; Uchida, K.; Toriumi, A. Modulation of VO2 metal-insulator- transition by ferroelectric HfO2 gate insulator. Adv. Electron. Mater. 2020, 6, 1901356. [Google Scholar] [CrossRef]
- Vaidya, J.; Kanthi, R.S.S.; Alam, S.; Amin, N.; Aziz, A.; Shukla, N. A three-terminal non-volatile ferroelectric switch with an insulator–metal transition channel. Sci. Rep. 2022, 12, 2199. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, X.; Zhang, L.; Han, M.-G.; Wang, W.; Fang, Y.-W.; Chen, H.; Zhu, Y.; Hong, X. Record high room temperature resistance switching in ferroelectric-gated Mott transistors unlocked by interfacial charge engineering. Nat. Commun. 2023, 14, 8247. [Google Scholar] [CrossRef]
- Loizos, M.; Rogdakis, K.; Parambil, A.P.; Lira-Cantu, M.; Kymakis, E. Emerging materials for resistive switching memories: Prospects for enhanced sustainability and performance for targeted applications. APL Energy 2024, 2, 040901. [Google Scholar] [CrossRef]
- Kim, D.; Yang, S.J.; Wainstein, N.; Skrzypczak, S.; Ducournau, G.; Pallecchi, E.; Happy, H.; Yalon, E.; Kim, M.; Akinwande, D. Emerging memory electronics for non-volatile radiofrequency switching technologies. Nat. Rev. Electr. Eng. 2024, 1, 10–23. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar]
- Wang, Y.; Kang, K.-M.; Kim, M.; Lee, H.-S.; Waser, R.; Wouters, D.; Dittmann, R.; Yang, J.J.; Park, H.-H. Mott-transition-based RRAM. Mater. Today 2019, 28, 63–80. [Google Scholar] [CrossRef]
- Ran, Y.; Pei, Y.; Zhou, Z.; Wang, H.; Sun, Y.; Wang, Z.; Hao, M.; Zhao, J.; Chen, J.; Yan, X. A review of Mott insulator in memristors: The materials, characteristics, applications for future computing systems and neuromorphic computing. Nano Res. 2022, 16, 1165–1182. [Google Scholar] [CrossRef]
- Zhao, Z.; Luan, W.; Zhai, Y.; Lv, Z.; Zhang, M.; Yan, Y.; Xue, S.; Zhou, K.; Ding, G.; Han, S.; et al. Mott Memristors for Neuromorphics. Adv. Phys. Res. 2024, 4, 2400129. [Google Scholar] [CrossRef]
- Taha, M.; Walia, S.; Ahmed, T.; Headland, D.; Withayachumnankul, W.; Sriram, S.; Bhaskaran, M. Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Sci. Rep. 2017, 7, 17899. [Google Scholar] [CrossRef]
- Mott, N.F. The basis of the electron theory of metals, with special reference to the transition of metals. Proc. Phys. Society Ser. A 1949, 62, 416–422. [Google Scholar] [CrossRef]
- Carlos, E.; Branquinho, R.; Martins, R.; Kiazadeh, A.; Fortunato, E. Recent Progress in Solution-Based Metal Oxide Resistive Switching Devices. Adv. Mater. 2020, 33, e2004328. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Fumeaux, C.; Herrmann, W.; Kneubuhl, F.K.; Rothuizen, H. Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys. Technol. 1998, 39, 123–183. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, Y.; Ramanathan, S. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nat. Commun. 2014, 5, 4860. [Google Scholar] [CrossRef]
- Wang, Q.; Puntambekar, A.; Chakrapani, V. Vacancy-Induced Semiconductor–Insulator–Metal Transitions in Nonstoichiometric Nickel and Tungsten Oxides. Nano Lett. 2016, 16, 7067–7077. [Google Scholar] [CrossRef]
- Gavriliuk, A.G.; Trojan, I.A.; Struzhkin, V.V. Insulator-Metal Transition in Highly Compressed NiO. Phys. Rev. Lett. 2012, 109, 086402. [Google Scholar] [CrossRef]
- Dragoman, M.; Vulpe, S.; Aperathithis, E.; Aivalioti, C.; Romanitan, C.; Dinescu, A.; Dragoman, D.; Aldrigo, M.; Djourelov, N.; Modreanu, M.; et al. Oxygen-vacancy induced ferroelectricity in nitrogen-doped nickel oxide. J. Appl. Phys. 2022, 131, 164304. [Google Scholar] [CrossRef]
- Park, D.-S.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 2022, 375, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Vulpe, S.; Dragoman, M.; Aldrigo, M.; Nastase, F.; Mladenovic, D.; Ligor, O.; Dragoman, D. Field-effect transistors based on nickel oxide doped with nitrogen semiconductor ferroelectrics for ultralow voltage switch (1 μV), low subthreshold swing and memory. Nanotechnology 2025, 36, 145202. [Google Scholar] [CrossRef]
- Yao, J.; Sun, W.; Guo, J.; Feng, Z.; Pan, Q.; Peng, J.; Cheng, Z.; Dong, S.; Xiong, R.; You, Y. The First Molecular Ferroelectric Mott Insulator. Adv. Mater. 2025, 37, e2414560. [Google Scholar] [CrossRef] [PubMed]
- Dragoman, M.; Modreanu, M.; Sheehan, B.; Vulpe, S.; Romanitan, C.; Aldrigo, M.; Dinescu, A.; Serban, A.B.; Dragoman, D. Field-induced reversible insulator-to-metal transition and the onset of ferroelectricity in molybdenum trioxide films. J. Appl. Phys. 2023, 133, 215101. [Google Scholar] [CrossRef]
- Li, S.; Tian, M.; Gao, Q.; Wang, M.; Li, T.; Hu, Q.; Li, X.; Wu, Y. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 2019, 18, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Alsaif, M.M.Y.A.; Chrimes, A.F.; Daeneke, T.; Balendhran, S.; Bellisario, D.O.; Son, Y.; Field, M.R.; Zhang, W.; Nili, H.; Nguyen, E.P.; et al. High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. Adv. Funct. Mater. 2015, 26, 91–100. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, X.; Liu, Z.; Li, Y.; Peng, X.; Li, X.; Qin, Y.; Hu, C.; Qiu, Y.; Jiang, H.; et al. The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Lett. 2024, 16, 119. [Google Scholar] [CrossRef]
MoO2.96 Thickness (nm) | Nr. of Measured Devices | Threshold of Phase Transition (V) | Hysteresis Width (V) | SS (mV/Decade) |
---|---|---|---|---|
10 | 18 | 3 | 0.1 | 48.3 |
15 | 19 | 5 | 0.1 | 48 |
25 | 17 | 2.5 | 0.3 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoman, M.; Dragoman, D.; Modreanu, M.; Vulpe, S.; Romanitan, C.; Aldrigo, M.; Dinescu, A. Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics. Nanomaterials 2025, 15, 589. https://doi.org/10.3390/nano15080589
Dragoman M, Dragoman D, Modreanu M, Vulpe S, Romanitan C, Aldrigo M, Dinescu A. Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics. Nanomaterials. 2025; 15(8):589. https://doi.org/10.3390/nano15080589
Chicago/Turabian StyleDragoman, Mircea, Daniela Dragoman, Mircea Modreanu, Silviu Vulpe, Cosmin Romanitan, Martino Aldrigo, and Adrian Dinescu. 2025. "Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics" Nanomaterials 15, no. 8: 589. https://doi.org/10.3390/nano15080589
APA StyleDragoman, M., Dragoman, D., Modreanu, M., Vulpe, S., Romanitan, C., Aldrigo, M., & Dinescu, A. (2025). Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics. Nanomaterials, 15(8), 589. https://doi.org/10.3390/nano15080589