Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = ultra-low frequency broadband

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8862 KiB  
Review
Design Methodology and Application Dynamics of Compact Quasi-Zero Stiffness Isolators
by Yingqi Zhu, Qingchao Yang, Shuyong Liu and Kai Chai
Appl. Sci. 2025, 15(7), 3478; https://doi.org/10.3390/app15073478 - 22 Mar 2025
Viewed by 1000
Abstract
With the rapid development of precision instruments, aerospace, and automotive industries, the demand for compact vibration isolators capable of suppressing low-frequency vibrations has surged. Although prior reviews have established the theoretical framework of quasi-zero stiffness (QZS) isolators, critical gaps persist in addressing their [...] Read more.
With the rapid development of precision instruments, aerospace, and automotive industries, the demand for compact vibration isolators capable of suppressing low-frequency vibrations has surged. Although prior reviews have established the theoretical framework of quasi-zero stiffness (QZS) isolators, critical gaps persist in addressing their compact design under strong nonlinear dynamics and diverse engineering constraints. This review systematically analyzes the dynamic characteristics of QZS systems under nonlinear effects and evaluates five innovative design methodologies for compact QZS isolators: special spring type, magnetic type, bionic type, metamaterials-based type, and origami-inspired type. Key findings reveal that special spring-type isolators are simple to design and space-efficient but difficult to machine. Magnetic-type isolators achieve ultra-low start-up frequencies but face thermal instability. Metamaterial designs enable multifunctional integration at the cost of manufacturing complexity, while bionic-inspired and origami-inspired isolators are difficult to abstract for practical applications. We find that current research tends to prioritize miniaturization over the synergistic optimization of load capacity, broadband isolation, and adaptability. Future research should focus on multi-degree-of-freedom systems, coupled metamaterials-bionic structures, and active magnetic control. This work provides a key roadmap for advancing compact QZS technology in space-constrained applications. Full article
(This article belongs to the Collection Recent Applications of Active and Passive Noise Control)
Show Figures

Figure 1

11 pages, 1448 KiB  
Article
Design of a Low-Infrared-Emission and Wideband-Microwave-Absorption Lightweight Metasurface
by Liping Liu, Zongsheng Chen, Zhigang Li, Yajing Chang, Pengfei Li, Xun Liu, Xuesong Deng and Yunsong Feng
Nanomaterials 2025, 15(5), 399; https://doi.org/10.3390/nano15050399 - 5 Mar 2025
Cited by 1 | Viewed by 1129
Abstract
The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared–radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure [...] Read more.
The compatibility of low infrared emission and wideband microwave absorption has drawn extensive attention, both theoretically and practically. In this paper, an infrared–radar-compatible stealth metasurface is designed using transparent conductive materials, namely indium tin oxide (ITO) and poly methacrylimide (PMI). The designed structure is a combination of a radar-absorbing layer (RAL) and a low-infrared-emission layer (IRSL), with an overall thickness of about 1.7 mm. It consists of three layers, a top-layer patch-type ITO frequency-selective surface, an intermediate layer of a four-fold rotationally symmetric ITO patterned structure, and a bottom reflective surface. The layers are separated by PMI. Simulation results show that the structure achieves over 90% broadband absorption in the microwave band from 7 to 58 GHz and low emissivity of 0.36 in the infrared band. In addition, due to the four-fold rotationally symmetric design, the structure also exhibits polarization insensitivity and excellent angular stability. Therefore, the designed structure possesses ultra-broadband radar absorption performance, low infrared emissivity, and polarization-insensitive properties at a thin thickness, and has a promising application in the field of multi-band-compatible stealth technology. Full article
Show Figures

Figure 1

16 pages, 4393 KiB  
Article
A Field-Programmable Gate Array-Based Quasi-Cyclic Low-Density Parity-Check Decoder with High Throughput and Excellent Decoding Performance for 5G New-Radio Standards
by Bilal Mejmaa, Ismail Akharraz and Abdelaziz Ahaitouf
Technologies 2024, 12(11), 215; https://doi.org/10.3390/technologies12110215 - 31 Oct 2024
Cited by 1 | Viewed by 2546
Abstract
This work presents a novel fully parallel decoder architecture designed for high-throughput decoding of Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes within the context of 5G New-Radio (NR) communication. The design uses the layered Min-Sum (MS) algorithm and focuses on increasing throughput to meet the [...] Read more.
This work presents a novel fully parallel decoder architecture designed for high-throughput decoding of Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes within the context of 5G New-Radio (NR) communication. The design uses the layered Min-Sum (MS) algorithm and focuses on increasing throughput to meet the strict needs of enhanced Mobile BroadBand (eMBB) applications. We incorporated a Sub-Optimal Low-Latency (SOLL) technique to enhance the critical check node processing stage inherent to the MS algorithm. This technique efficiently computes the two minimum values, rendering the architecture well-suited for specific Ultra-Reliable Low-Latency Communication (URLLC) scenarios. We design the decoder to be reconfigurable, enabling efficient operation across all expansion factors. We rigorously validate the decoder’s effectiveness through meticulous bit-error-rate (BER) performance evaluations using Hardware Description Language (HDL) co-simulation. This co-simulation utilizes a well-established suite of tools encompassing MATLAB/Simulink for system modeling and Vivado, a prominent FPGA design suite, for hardware representation. With 380,737 Look-Up Tables (LUTs) and 32,898 registers, the decoder’s implementation on a Virtex-7 XC7VX980T FPGA platform by AMD/Xilinx shows good hardware utilization. The architecture attains a robust operating frequency of 304.5 MHz and a normalized throughput of 49.5 Gbps, marking a 36% enhancement compared to the state-of-the-art. This advancement propels decoding capabilities to meet the demands of high-speed data processing. Full article
Show Figures

Figure 1

26 pages, 8614 KiB  
Article
A Low Earth Orbit Satellite-Orbit Extrapolation Method Based on Multi-Satellite Ephemeris Coordination and Multi-Stream Fractional Autoregressive Integrated Moving Average
by Wenliang Lin, Jian Yi, Tong Wang, Ke Wang, Zexi Huang, Zhongliang Deng, Yang Liu, Yicheng Liao, Heng Kang, Zeyang Liu and Junyu Zhang
Aerospace 2024, 11(9), 746; https://doi.org/10.3390/aerospace11090746 - 11 Sep 2024
Cited by 1 | Viewed by 1502
Abstract
The low Earth orbit (LEO) satellite internet network (LEO-SIN) has become a heated issue for the next generation of mobile communications, serving as a crucial means to achieve global wide-area broadband coverage and, especially, mobile phone directly to satellite cell (MPDTSC) communication. The [...] Read more.
The low Earth orbit (LEO) satellite internet network (LEO-SIN) has become a heated issue for the next generation of mobile communications, serving as a crucial means to achieve global wide-area broadband coverage and, especially, mobile phone directly to satellite cell (MPDTSC) communication. The ultra-high-speed movement of LEO satellites relative to the Earth results in serious Doppler effects, leading to signal de-synchronization at the user end (UE), and relative high-speed motion leading to frequent satellite handovers. Satellite ephemeris, which indicates the satellite’s position, has the potential to determine the position of the transmit (Tx) within the LEO-SIN, thereby enhancing the reliability and efficiency of satellite communication. The adoption of ephemeris in the LEO-SIN has met some new challenges: (1) how UEs can acquire ephemerides before signal synchronization is complete, (2) how to minimize the frequency of ephemeris broadcasting, and (3) how to decrease the overhead of ephemeris broadcasting. To address the above challenges, this paper proposes a method for extrapolating the LEO-SIN orbit based on multi-satellite ephemeris coordination (MSEC) and the multi-stream fractional autoregressive integrated moving average (MS-FARIMA). First, a multi-factor global error analysis model for ephemeris-extrapolation error is established, which decomposes it into three types; namely, random error (RE), trending error (TE), and periodic error (PE), with a focus on increasing the extrapolation accuracy by improving RE and TE. Second, RE is eliminated by utilizing the ephemerides from multiple satellites received at the same UE at the same time, as well as multiple ephemerides from the same satellite at different times. Subsequently, we propose a new FARIMA algorithm with the innovation of a multi-stream data time-series forecast (TSF), which effectively improves ephemeris extrapolation errors. Finally, the simulation results show that the proposed method reduces ephemeris extrapolation errors by 33.5% compared to existing methods, which also contributes to a performance enhancement in the Doppler frequency offset (DFO) estimation of MPDTSC. Full article
(This article belongs to the Special Issue Spacecraft Orbit Transfers)
Show Figures

Figure 1

13 pages, 12488 KiB  
Article
Improvement of SAW Resonator Performance by Petal-like Topological Insulator
by Jin Bai, Lixia Li and Chenyang Chai
Sensors 2024, 24(17), 5584; https://doi.org/10.3390/s24175584 - 28 Aug 2024
Viewed by 1045
Abstract
This article introduces a novel petal-like SAW topology insulator, which can transmit sound waves with low loss and high flexibility in an ultra-wide frequency band by simultaneously adjusting multiple structural parameters of phononic crystals. Using finite element analysis, it was found that adjusting [...] Read more.
This article introduces a novel petal-like SAW topology insulator, which can transmit sound waves with low loss and high flexibility in an ultra-wide frequency band by simultaneously adjusting multiple structural parameters of phononic crystals. Using finite element analysis, it was found that adjusting these parameters can generate a broadband gap of 55.8–65.7 MHz. This structure can also achieve defect immunity and sharp bending in waveguide transmission. When this topology insulator is applied to resonators, compared to traditional designs, the insertion loss is reduced by 22 dB, the on-load quality factor is increased by 227%, the off-load quality factor is increased by 1024.5%, and the quality sensitivity is improved by 3.7 times compared to bare devices. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 6023 KiB  
Article
Second Harmonic Generation in Apodized Chirped Periodically Poled Lithium Niobate Loaded Waveguides Based on Bound States in Continuum
by Junjie He, Mianjie Lin and Fei Ma
Photonics 2024, 11(8), 769; https://doi.org/10.3390/photonics11080769 - 18 Aug 2024
Viewed by 1997
Abstract
With the rapid development of optical communication and quantum information, the demand for efficient and broadband nonlinear frequency conversion has increased. At present, most single-frequency conversion processes in lithium niobate on insulator (LNOI) waveguides suffer from lateral leakage without proper design, leading to [...] Read more.
With the rapid development of optical communication and quantum information, the demand for efficient and broadband nonlinear frequency conversion has increased. At present, most single-frequency conversion processes in lithium niobate on insulator (LNOI) waveguides suffer from lateral leakage without proper design, leading to an additional increase in propagation loss. Achieving broadband frequency conversion also encounters this problem in that there are no relevant works that have solved this yet. In this paper, we theoretically propose an efficient and flat broadband second harmonic generation (SHG) in silicon nitride loaded apodized chirped periodically poled LNOI waveguides. By using a bound states in the continuum (BICs) mechanism to reduce the propagation loss and utilizing the characteristic that the BICs are insensitive to wavelength, an ultra-low-loss wave band of 80 nm is realized. Then, by employing an apodized chirped design, a flat broadband SHG is achieved. The normalized conversion efficiency (NCE) is approximately 222%W−1cm−2, and the bandwidth is about 100 nm. Moreover, the presented waveguides are simple and can be fabricated without direct etching of lithium niobate, exhibiting excellent fabrication tolerance. Our work may open a new avenue for exploring low-loss and flat broadband nonlinear frequency conversion on various on-chip integrated photonic platforms. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

13 pages, 5136 KiB  
Article
Ultra-Thin and Broadband P-Band Metamaterial Absorber Based on Carbonyl Iron Powder Composites
by Mengyu Zhou, Yubin Chen, Yuguang He and Cheng Yang
Materials 2024, 17(5), 1157; https://doi.org/10.3390/ma17051157 - 1 Mar 2024
Cited by 4 | Viewed by 1837
Abstract
The field of P-band (0.3–1 GHz) absorption has witnessed rapid development in metamaterial absorbers due to their exceptional designability and the absence of restrictions imposed by the one-fourth wavelength rule. In this study, we combined carbonyl iron powder (CIP) composites with a periodic [...] Read more.
The field of P-band (0.3–1 GHz) absorption has witnessed rapid development in metamaterial absorbers due to their exceptional designability and the absence of restrictions imposed by the one-fourth wavelength rule. In this study, we combined carbonyl iron powder (CIP) composites with a periodic structure composed of metal capacitive patterns and employed a genetic algorithm (GA) to optimize the electromagnetic parameters of the CIP substrate. By selecting the appropriate shape and material for the units of pattern based on transmission line theory, as well as regulating relevant structural parameters, we successfully designed an ultra-thin broadband metamaterial absorber for the P-band. Experimental results demonstrate that within the range of 0.3–0.85 GHz, the reflection loss of our absorber remains below −5 dB, with a maximum value of −9.54 dB occurring at 0.45 GHz. Remarkably, this absorber possesses a thickness equivalent to only 1/293 of its working wavelength. Then, we conducted analyses on electric field distribution, magnetic field distribution, and energy loss density. Our findings suggest that high-performance absorption in metamaterials can be attributed to λ/4 resonant or coupling effects between structural units or diffraction phenomena. This absorber offers several advantages, including broad low-frequency absorption capability, ultra-thin profile, and convenient fabrication process, thus providing valuable theoretical insights for designing metamaterial structures. Full article
Show Figures

Graphical abstract

13 pages, 3637 KiB  
Article
Tunable Ultralow-Frequency Bandgaps Based on Locally Resonant Plate with Quasi-Zero-Stiffness Resonators
by Zhiwei Guo, Buliang Xie, Meiping Sheng and Hao Zeng
Appl. Sci. 2024, 14(4), 1467; https://doi.org/10.3390/app14041467 - 11 Feb 2024
Cited by 1 | Viewed by 1177
Abstract
In order to suppress the transverse vibration of a plate, a quasi-zero-stiffness (QZS) resonator with tunable ultralow frequency bandgaps was introduced and analyzed. The resonator was designed by introducing the quasi-zero-stiffness systems into mass-in-mass resonators. The plane wave expansion method was employed to [...] Read more.
In order to suppress the transverse vibration of a plate, a quasi-zero-stiffness (QZS) resonator with tunable ultralow frequency bandgaps was introduced and analyzed. The resonator was designed by introducing the quasi-zero-stiffness systems into mass-in-mass resonators. The plane wave expansion method was employed to derive the bandgap characteristics of the locally resonant (LR) plate with QZS resonators, and corresponding simulations were carried out by finite element method (FEM). The results show that an LR plate with a QZS resonator can provide two bandgaps, and the ranges of the bandgaps agree well with the vibration attenuation bands calculated by FEM. Owing to the introduction of the QZS system, the bandgaps can be easily transferred to a lower frequency or even an ultralow frequency. The damping of the QZS resonators can effectively broaden the vibration attenuation bands. In addition, the differentiated design of the bandgap frequencies can be realized to obtain broadband low-frequency transverse wave suppression performance. Finally, a mechanical structure design scheme was proposed in order to achieve flexible adjustment of the bandgap frequency, which significantly increases the engineering applicability of QZS resonators. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 7666 KiB  
Article
Study of Ultra-Broadband Synthesizer of Fast Indirect Type in a 0.5–18 GHz Range for SIGINT System
by Yuseok Jeon
Electronics 2024, 13(1), 48; https://doi.org/10.3390/electronics13010048 - 21 Dec 2023
Cited by 2 | Viewed by 1718
Abstract
In the present study, a new structure (0.5–18 GHz) with excellent phase noise characteristics and a fast switching speed is proposed. Ultra-wideband synthesizers with low phase noises and less spurious signals have been developed to be used as local oscillators and for built-in [...] Read more.
In the present study, a new structure (0.5–18 GHz) with excellent phase noise characteristics and a fast switching speed is proposed. Ultra-wideband synthesizers with low phase noises and less spurious signals have been developed to be used as local oscillators and for built-in test (BIT) functions in the field of electronic warfare systems (EW), in which synthesizers are installed at the front-end of devices; this is accomplished by applying an SMT process using a packaged-type device. This paper compares the advantages and disadvantages of PLVCO (old) and DDS reference sources (new) based on two types of frequency synthesizers. At this time, different frequencies can be output from the two ports by different FPGA coding of the internal frequency plan according to the operating frequency. The main RF line will be made a dielectric substrate, RO4350, with a relative dielectric constant of 3.38 and a dielectric thickness of 0.508 mm. In the ultra-broadband synthesizer module, the phase noise of the DDS output (1.25 GHz) was −131 dBc/Hz at 10 KHz offset. The phase noise in the 18 GHz output is expected to be −105.9 dBc/Hz at 1 KHz offset. In particular, by proposing a structure for obtaining a wideband frequency using a single source (DDS), the structure secures reliability from the point of view of a system operating for a long time by implementing a similar circuit within a predictable range. Full article
(This article belongs to the Special Issue Advanced RF, Microwave Engineering, and High-Power Microwave Sources)
Show Figures

Figure 1

10 pages, 4979 KiB  
Article
Path Loss Characterization in an Outdoor Corridor Environment for IoT-5G in a Smart Campus University at 850 MHz and 3.5 GHz Frequency Bands
by Juan Muñoz, David Mancipe, Herman Fernández, Lorenzo Rubio, Vicent M. Rodrigo Peñarrocha and Juan Reig
Sensors 2023, 23(22), 9237; https://doi.org/10.3390/s23229237 - 17 Nov 2023
Cited by 5 | Viewed by 2346
Abstract
The usage scenarios defined in the ITU-M2150-1 recommendation for IMT-2020 systems, including enhanced Mobile Broadband (eMBB), Ultra-reliable Low-latency Communication (URLLC), and massive Machine Type Communication (mMTC), allow the possibility of accessing different services through the set of Radio Interface Technologies (RITs), Long-term Evolution [...] Read more.
The usage scenarios defined in the ITU-M2150-1 recommendation for IMT-2020 systems, including enhanced Mobile Broadband (eMBB), Ultra-reliable Low-latency Communication (URLLC), and massive Machine Type Communication (mMTC), allow the possibility of accessing different services through the set of Radio Interface Technologies (RITs), Long-term Evolution (LTE), and New Radio (NR), which are components of RIT. The potential of the low and medium frequency bands allocated by the Federal Communications Commission (FCC) for the fifth generation of mobile communications (5G) is described. In addition, in the Internet of Things (IoT) applications that will be covered by the case of use of the mMTC are framed. In this sense, a propagation channel measurement campaign was carried out at 850 MHz and 5.9 GHz in a covered corridor environment, located in an open space within the facilities of the Pedagogical and Technological University of Colombia campus. The measurements were carried out in the time domain using a channel sounder based on a Universal Software Radio Peripheral (USRP) to obtain the received signal power levels over a range of separation distances between the transmitter and receiver from 2.00 m to 67.5 m. Then, a link budget was proposed to describe the path loss behavior as a function of these distances to obtain the parameters for the close-in free space reference distance (CI) and the floating intercept (FI) path loss prediction models. These parameters were estimated from the measurements made using the Minimum Mean Square Error (MMSE) approach. The estimated path loss exponent (PLE) values for both the CI and FI path loss models at 850 MHz and 3.5 GHz are in the range of 2.21 to 2.41, respectively. This shows that the multipath effect causes a lack of constructive interference to the received power signal for this type of outdoor corridor scenario. These results can be used in simulation tools to evaluate the path loss behavior and optimize the deployment of device and sensor network infrastructure to enable 5G-IoT connectivity in smart university campus scenarios. Full article
(This article belongs to the Special Issue Internet of Things for Smart City Application)
Show Figures

Figure 1

17 pages, 7084 KiB  
Article
Ultra-Low-Frequency Acoustic Black Hole Radial Elastic Metamaterials
by Lixia Li, Haiteng Hu and Xiaolan Wu
Appl. Sci. 2023, 13(20), 11542; https://doi.org/10.3390/app132011542 - 21 Oct 2023
Cited by 3 | Viewed by 2557
Abstract
In this paper, we propose an acoustic black hole radial elastic metamaterial (AREM). Through the study of its dispersion relations, it is found that, compared with the conventional elastic metamaterial, the AREM gathers energy at the tip of the black hole cell, which [...] Read more.
In this paper, we propose an acoustic black hole radial elastic metamaterial (AREM). Through the study of its dispersion relations, it is found that, compared with the conventional elastic metamaterial, the AREM gathers energy at the tip of the black hole cell, which can trigger the local resonance (LR) effect and couples with the Bragg scattering (BS) effect, thus opening the very low-frequency strong attenuation broadband. The influence of the structural parameters of the AREM on the bandgap (BG) characteristics is further explored, and the bandwidth can be modulated in the frequency range of 0–1300 Hz by varying the truncation thickness and power exponent of the acoustic black hole (ABH) structure. Finally, by analyzing the transmission spectrum and displacement field, it is found that the total bandwidth of the flexural BG is better than that of the conventional radial elastic metamaterial, and the wave attenuation capability is improved by more than 110%. It is also discovered that the BG characteristics of the longitudinal BG are also better than those of the conventional radial elastic metamaterial, and the total bandwidth of the longitudinal BG is superior to that of the conventional radial elastic metamaterial, with the wave attenuation capability improved by more than 56%. The research findings may have applications in engineering fields such as ultra-low-frequency vibration reduction. Full article
Show Figures

Figure 1

20 pages, 6787 KiB  
Article
From Micro-Perforates to Micro-Capillary Absorbers: Analysis of Their Broadband Absorption Performance through Modeling and Experiments
by Cédric Maury and Teresa Bravo
Appl. Sci. 2023, 13(19), 10844; https://doi.org/10.3390/app131910844 - 29 Sep 2023
Viewed by 1250
Abstract
A challenging issue is currently the design of non-fibrous ultra-thin acoustic absorbers that are able to provide broadband performance in demanding environments. The objective of this study is to compare using simulations and measurements the broadband absorption performance of highly porous micro-capillary plates [...] Read more.
A challenging issue is currently the design of non-fibrous ultra-thin acoustic absorbers that are able to provide broadband performance in demanding environments. The objective of this study is to compare using simulations and measurements the broadband absorption performance of highly porous micro-capillary plates (MCPs) to that of micro-perforated panels (MPPs) under normal incidence while considering unbacked or backed configurations. MCPs are unusual materials used for sound absorption with micron-sized channels and a high perforation ratio. Impedance-based modeling and Kundt tube experiments show that MCPs with suitable channel diameters have a pure constant resistance that outperforms the acoustic efficiency of MPP absorbers. Unbacked MCPs exhibit a controllable amount of high absorption that can exceed 0.8 over more than five octaves starting from 80 Hz, thereby achieving a highly sub-wavelength absorber. MCPs still provide broadband high absorption when backed by a rigid cavity. Their bandwidth-to-thickness ratio increases toward its causal limit when the cavity depth decreases. A parallel MCP resonant absorber partly backed by closed and open cavities is proposed. Such MCP-based absorbers could serve as short anechoic terminations for the characterization of acoustic materials at low frequencies. Full article
Show Figures

Figure 1

24 pages, 6160 KiB  
Article
Analysis and Implementation of Controlled Semiconductor Switch for Ultra-Wideband Radar Sensor Applications
by Patrik Jurik, Miroslav Sokol, Pavol Galajda and Milos Drutarovsky
Sensors 2023, 23(17), 7392; https://doi.org/10.3390/s23177392 - 24 Aug 2023
Cited by 6 | Viewed by 2106
Abstract
All ultra-wideband (UWB) sensor applications require hardware designed directly for their specific application. The switching of broadband radio frequency and microwave signals is an integral part of almost every piece of high-frequency equipment, whether in commercial operation or laboratory conditions. The trend of [...] Read more.
All ultra-wideband (UWB) sensor applications require hardware designed directly for their specific application. The switching of broadband radio frequency and microwave signals is an integral part of almost every piece of high-frequency equipment, whether in commercial operation or laboratory conditions. The trend of integrating various circuit structures and systems on a chip (SoC) or in a single package (SiP) is also related to the need to design these integrated switches for various measuring devices and instruments in laboratories, paradoxically for their further development. Another possible use is switching high-frequency signals in telecommunications devices, whether mobile or fixed networks, for example, for switching signals from several antennas. Based on these requirements, a high-frequency semiconductor integrated switch with NMOS transistors was designed. With these transistors, it is possible to achieve higher integration than with bipolar ones. Even though MOSFET transistors have worse frequency characteristics, we can compensate them to some extent with the precise design of the circuit and layout of the chip. This article describes the analysis and design of a high-frequency semiconductor integrated switch for UWB applications consisting of three series-parallel switches controlled by CMOS logic signals. They are primarily intended for UWB sensor systems, e.g., when switching and configuring the antenna MIMO system or when switching calibration tools. The design of the switch was implemented in low-cost 0.35 µm SiGe BiCMOS technology with an emphasis on the smallest possible attenuation and the largest possible bandwidth and isolation. The reason for choosing this technology was also that other circuit structures of UWB systems were realized in this technology. Through the simulations, individual parameters of the circuit were simulated, the layout of the chip was also created, and the parameters of the circuit were simulated with the parasitic extraction and the inclusion of parasitic elements (post-layout simulations). Subsequently, the chip was manufactured and its parameters were measured and evaluated. Based on these measurements, the designed and fabricated UWB switch was found to have the following parameters: a supply current of 2 mA at 3.3 V, a bandwidth of 6 GHz, an insertion loss (at 1 GHz) of −2.2 dB, and isolation (at 1 GHz) of 33 dB, which satisfy the requirements for our UWB sensor applications. Full article
(This article belongs to the Special Issue Microwave Sensing Systems)
Show Figures

Figure 1

17 pages, 5647 KiB  
Article
Radial Gradient Seismic Metamaterials with Ultra-Low Frequency and Ultra-Wide Band Gap
by Qian Yang, Kun Su, Lixia Li, Yan Li and Jin Bai
Appl. Sci. 2023, 13(16), 9284; https://doi.org/10.3390/app13169284 - 16 Aug 2023
Cited by 2 | Viewed by 2197
Abstract
In this paper, a radial gradient seismic metamaterial (RGSM) is proposed. The structural unit cell is composed of an external square soil embedded with a triangular-cross-sectioned steel ring, which is filled at different angles of multiple steel rings to form a supercell. The [...] Read more.
In this paper, a radial gradient seismic metamaterial (RGSM) is proposed. The structural unit cell is composed of an external square soil embedded with a triangular-cross-sectioned steel ring, which is filled at different angles of multiple steel rings to form a supercell. The dispersion curve and attenuation spectrum of the unit cell are calculated by the finite element method, and the opening mechanism of the band gap is explained by analyzing the modes at the band gap boundary. The influence of geometric parameters and material parameters on the band gap is further studied, and the optimized supercell radial gradient seismic metamaterial (OS-RGSM) structure is designed through structure and parameter optimization. The ultra-low broadband excellent band gap in the range of 2.35–20 Hz for seismic Lamb waves is realized, and its three-dimensional frequency response and displacement field diagram are calculated. In addition, the attenuation characteristics of the optimized supercell seismic metamaterial on the seismic surface wave are calculated and analyzed. It is found that the attenuation can reach more than 50% in the ultra-low frequency range of 3.5–9 Hz. The seismic wave barrier is verified by the vibration transmission characteristics of RGSM under finite period and dynamic time history analysis. The results show that RGSM can effectively shield from seismic Lamb waves in the ultra-wideband with the starting frequency of 2.35 Hz and can also effectively attenuate the seismic surface wave in semi-infinite space. Full article
Show Figures

Figure 1

17 pages, 34224 KiB  
Technical Note
Directional and High-Gain Ultra-Wideband Bow-Tie Antenna for Ground-Penetrating Radar Applications
by Shuai Pi, Tianhao Wang and Jun Lin
Remote Sens. 2023, 15(14), 3522; https://doi.org/10.3390/rs15143522 - 12 Jul 2023
Cited by 10 | Viewed by 5977
Abstract
Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applications require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband (UWB) bow-tie antenna with gain enhancement [...] Read more.
Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applications require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband (UWB) bow-tie antenna with gain enhancement for GPR applications is proposed in this paper. First, a UWB bow-tie antenna with resistive loading is designed. The metal reflector and metamaterial loading make the bow-tie antenna directional, and loading the same metamaterial on the front side of the antenna further improves directional gain. After testing, the lowest frequency of the fabricated antenna is 317 MHz, the relative bandwidth is 98.6%, the peak gain in the frequency range is 9.3 dBi, and the size is only 0.38 λ at the lowest frequency. The proposed compact antenna takes both gain and bandwidth into consideration. Finally, in order to further verify the effectiveness of the proposed antenna in the GPR system, a stepped frequency continuous wave ground-penetrating radar (SFCW-GPR) system was built. The experimental results show that the designed antenna is suitable for the GPR system of deep penetration and high-resolution detection, which is beneficial to the imaging of underground structures. Full article
Show Figures

Figure 1

Back to TopTop