Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = type II collagen (COL2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6293 KB  
Article
Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Enhance Chondrocyte Function by Reducing Oxidative Stress in Chondrocytes
by Che-Wei Wu, Yao-Hui Huang, Pei-Lin Shao, Ling-Hua Chang, Cheng-Chang Lu, Chung-Hwan Chen, Yin-Chih Fu, Mei-Ling Ho, Je-Ken Chang and Shun-Cheng Wu
Int. J. Mol. Sci. 2025, 26(16), 7683; https://doi.org/10.3390/ijms26167683 - 8 Aug 2025
Viewed by 395
Abstract
Articular cartilage (AC) has a very limited capacity for self-healing once damaged. Chondrocytes maintain AC homeostasis and are key cells in AC tissue engineering (ACTE). However, chondrocytes lose their function due to oxidative stress. Umbilical cord mesenchymal stem cells (UCMSCs) are investigated as [...] Read more.
Articular cartilage (AC) has a very limited capacity for self-healing once damaged. Chondrocytes maintain AC homeostasis and are key cells in AC tissue engineering (ACTE). However, chondrocytes lose their function due to oxidative stress. Umbilical cord mesenchymal stem cells (UCMSCs) are investigated as an alternative cell source for ACTE. MSCs are known to regulate tissue regeneration through host cell modulation, largely via extracellular vesicle (EV)-mediated cell-to-cell communication. The purpose of this study was to verify whether UCMSC-derived EVs (UCMSC-EVs) enhance chondrocyte function. The mean particle sizes of the UCMSC-EVs were 79.8 ± 19.05 nm. Transmission electron microscopy (TEM) revealed that UCMSC-EVs exhibited a spherical morphology. The presence of CD9, CD63, and CD81 confirmed the identity of UCMSC-EVs, with α-tubulin undetected. UCMSC-EVs maintained chondrocyte survival, and increased chondrocyte proliferation after intake by chondrocytes. UCMSC-EVs upregulated mRNA levels of SOX-9, collagen type II (Col-II), and Aggrecan, while decreasing collagen type I (Col-I) levels. UCMSC-EVs reduced the oxidative stress of chondrocytes by reducing mitochondrial superoxide production and increasing protein levels of SOD-2 and Sirt-3 in chondrocytes. The 50 most abundant known microRNAs (miRNAs) derived from UCMSC-EVs were selected for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. GO analysis revealed enrichment in pathways associated with small GTPase-mediated signal transduction, GTPase regulatory activity, and mitochondrial matrix. The KEGG analysis indicated that these miRNAs may regulate chondrocyte function through the PI3K-Akt, MAPK, and cAMP signaling pathways. In summary, this study shows that UCMSC-EVs enhance chondrocyte function and may be applied to ACTE. Full article
(This article belongs to the Special Issue Stem Cells in Tissue Engineering)
Show Figures

Figure 1

14 pages, 2893 KB  
Article
Morphological and Molecular Evaluation of a Gel Based on Hyaluronic Acid and Spermidine for Oral Regenerative Purposes
by Dolaji Henin, Elena Canciani, Daniela Carmagnola, Stefano Ferrero, Gaia Pellegrini, Mariachiara Perrotta, Riccardo Sirello, Claudia Dellavia and Nicoletta Gagliano
Cells 2025, 14(14), 1047; https://doi.org/10.3390/cells14141047 - 9 Jul 2025
Viewed by 2001
Abstract
Background: Oral wound healing is a complex process influenced by extracellular matrix (ECM) remodeling and cellular migration. Hyaluronic acid (HA) and spermidine (SP) have shown regenerative potential, but their combined effects on oral tissues remain unexplored. This study aimed to characterize the effect [...] Read more.
Background: Oral wound healing is a complex process influenced by extracellular matrix (ECM) remodeling and cellular migration. Hyaluronic acid (HA) and spermidine (SP) have shown regenerative potential, but their combined effects on oral tissues remain unexplored. This study aimed to characterize the effect of a gel composed of a mixture of HA and SP on the epithelial and connective compartments of oral tissue separately, evaluating (i) collagen turnover and cell migration on primary human gingival fibroblasts (HGFs) and (ii) epithelial integrity and cell proliferation on gingival organotypic cultures (OCs). Methods: HGFs were cultured, treated with HA-SP gel (1:0.5 HA-SP ratio) and evaluated for collagen types I and III (COL-I, COL-III), matrix metalloproteinase (MMP-1) protein and tissue inhibitor of MMP-1 (TIMP-1) levels secreted by the cells upon gel treatment, compared to CT. HGFs were also analyzed through a wound healing assay. Gingival samples were obtained to set OCs and were treated with different HA-SP formulations (HA 0.2%; 1:0.5 HA-SP ratio; 1:5 HA-SP ratio) to evaluate the beneficial addition of SP to HA for epithelial tissue. OC samples were formalin-fixed and paraffin-embedded and were stained with hematoxylin and eosin and immunostained for Ki-67 analysis. Results: In HGFs, the gel induced increased COL-III gene expression relative to that of COL-I after 48 h and stimulated cell migration, in turn favoring connective tissue remodeling and repair. In OCs, the gel preserved epithelial integrity up to 48 h, with the best effects observed with the 1:0.5 HA-SP ratio. After 72 h, epithelial detachment was more evident in HA formulations, suggesting that SP contributes to epithelial integrity. Conclusions: The HA-SP gel may support oral tissue healing by modulating ECM remodeling and maintaining epithelial integrity. The gel containing HA and SP at the 1:0.5 ratio may provide a promising solution for enhancing wound healing. Full article
Show Figures

Figure 1

20 pages, 9663 KB  
Article
Early Chondrogenic Differentiation of Spheroids for Cartilage Regeneration: Investigation of the Structural and Biological Role of a Lactose-Modified Chitosan
by Marco Conz, Francesca Scognamiglio, Ivan Donati, Susi Zara, Gabriella Teti, Maurizio Romano and Eleonora Marsich
Polysaccharides 2025, 6(2), 47; https://doi.org/10.3390/polysaccharides6020047 - 3 Jun 2025
Viewed by 973
Abstract
Long-term solutions for cartilage repair after injury are currently being investigated, with most research aiming to exploit the regenerative and chondrogenic differentiation potential of stem-cell-based spheroids. The incorporation of the bioactive polymer CTL, a lactose-modified chitosan, into spheroids is a strategy to improve [...] Read more.
Long-term solutions for cartilage repair after injury are currently being investigated, with most research aiming to exploit the regenerative and chondrogenic differentiation potential of stem-cell-based spheroids. The incorporation of the bioactive polymer CTL, a lactose-modified chitosan, into spheroids is a strategy to improve cell viability and accelerate type II collagen gene expression. In this work, the role of CTL in influencing the dynamics of spheroid formation and its interplay with cell membrane adhesion molecules (integrins and cadherins) and cytoskeletal components is elucidated. The results indicate that CTL is actively involved in the reorganization of cells into spheroids. An analysis of the effects of physical form of CTL (rehydrated polymer coating or polymer solution) in stimulating peculiar biological responses indicates that CTL matrix in spheroids facilitates an early phase of chondrogenic differentiation. Once the CTL matrix is included in spheroids, there is an increase in COL2A1 gene expression and matrix deposition, regardless of the initial physical form of CTL. Overall, these results contribute to a better understanding of the dynamics of spheroid formation in the presence of the polymer and on its bioactive role in mesenchymal stem cell spheroids. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Graphical abstract

17 pages, 1910 KB  
Article
The Characterization of Serum-Free Media on Human Mesenchymal Stem Cell Fibrochondrogenesis
by Ka Yu Carissa Kwan, Ke Li, Yu Yang Wang, Wai Yi Tse, Chung Yan Tong, Xu Zhang, Dan Michelle Wang and Dai Fei Elmer Ker
Bioengineering 2025, 12(5), 546; https://doi.org/10.3390/bioengineering12050546 - 19 May 2025
Cited by 1 | Viewed by 1015
Abstract
Developing fibrochondrogenic serum-free media is important for regenerating diseased and injured fibrocartilage but no defined protocols exist. Towards this goal, we characterized the effect of four candidate fibrochondrogenic serum-free media containing transforming growth factor beta-3 (TGF-β3), insulin-like growth factor-1 (IGF-1), and fibroblast growth [...] Read more.
Developing fibrochondrogenic serum-free media is important for regenerating diseased and injured fibrocartilage but no defined protocols exist. Towards this goal, we characterized the effect of four candidate fibrochondrogenic serum-free media containing transforming growth factor beta-3 (TGF-β3), insulin-like growth factor-1 (IGF-1), and fibroblast growth factor-2 (FGF-2) with high/low glucose and with/without dexamethasone on human mesenchymal stem cells (hMSCs) via proliferation and differentiation assays. In Ki67 proliferation assays, serum-free media containing low glucose and dexamethasone exhibited the highest growth. In gene expression assays, serum-free media containing low glucose and commercially available chondrogenic media (COM) induced high fibrochondrogenic transcription factor expression (scleraxis/SCX and SRY-Box Transcription Factor 9/SOX9) and extracellular matrix (ECM) protein levels (aggrecan/ACAN, collagen type I/COL1A1, and collagen type II/COL2A1), respectively. In immunofluorescence staining, serum-free media containing high glucose and COM induced high fibrochondrogenic transcription factor (SCX and SOX9) and ECM protein (COL1A1, COL2A1, and collagen type X/COL10A1) levels, respectively. In cytochemical staining, COM and serum-free media containing dexamethasone showed a high collagen content whereas serum-free media containing high glucose and dexamethasone exhibited high glycosaminoglycan (GAG) levels. Altogether, defined serum-free media containing high glucose exhibited the highest fibrochondrogenic potential. In summary, this work studied conditions conducive for fibrochondrogenesis, which may be further optimized for potential applications in fibrocartilage tissue engineering. Full article
(This article belongs to the Special Issue Tendon/Ligament and Enthesis Injuries: Repair and Regeneration)
Show Figures

Graphical abstract

21 pages, 6568 KB  
Article
Effects of Oligomeric Proanthocyanidins on Cadmium-Induced Extracellular Matrix Damage via Inhibiting the ERK1/2 Signaling Pathway in Chicken Chondrocytes
by Jianhong Gu, Dan Liu, Anqing Gong, Xinrui Zhao, Jiatao Zhou, Panting Wang, Han Xia, Ruilong Song, Yonggang Ma, Hui Zou, Muhammad Azhar Memon, Yan Yuan, Xuezhong Liu, Jianchun Bian, Zongping Liu and Xishuai Tong
Vet. Sci. 2025, 12(4), 317; https://doi.org/10.3390/vetsci12040317 - 31 Mar 2025
Viewed by 744
Abstract
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic [...] Read more.
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic acid or oligomeric proanthocyanidins (OPCs), exhibit diverse biological and pharmacological activities. However, the mechanism of OPCs alleviates Cd-induced damage to chondrocytes in chickens remains to be further explored in vitro. Chondrocytes were isolated from both ends of the tibia of 17-day-old SPF chicken embryos, and then subsequently treated with various concentrations of Cd (0, 1, 2.5, 5, and 10 μmol/L) or OPCs (0, 5, 10, 20, and 40 μmol/L) to investigate the mechanism underlying extracellular matrix (ECM) degradation and damage. Cd reduced cell viability, glycosaminoglycan (GAG) secretion, and ECM degradation in chondrocytes by decreasing the expression of type II collagen alpha 1 (COL2A1) and aggrecan (ACAN) while increasing the release of cartilage oligomeric matrix protein (COMP), along with elevated levels of matrix-degrading enzymes, such as matrix metalloproteinases 1 (MMP1), MMP10, and MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5. Cd induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and the expression of matrix-degrading enzymes, impairing ECM synthesis, an effect that could be alleviated by ERK1/2 inhibitor U0126. Chondrocytes were treated with 5 μmol/L Cd and 10 μmol/L OPCs, and it was found that OPCs inhibited the activation of the ERK1/2 signaling pathway and the expression of matrix-degrading enzymes, while promoting ECM synthesis and alleviating Cd-induced ECM damage in chickens. This study provides a theoretical basis for clinical research on OPCs with respect to the prevention and treatment of Cd-induced chondrogenic diseases in poultry. Full article
Show Figures

Graphical abstract

20 pages, 10154 KB  
Article
Integrin-Linked Kinase (ILK) Promotes Mitochondrial Dysfunction by Decreasing CPT1A Expression in a Folic Acid-Based Model of Kidney Disease
by Mariano de la Serna-Soto, Laura Calleros, María Martos-Elvira, Ariadna Moreno-Piedra, Sergio García-Villoria, Mercedes Griera, Elena Alcalde-Estévez, Ana Asenjo-Bueno, Diego Rodríguez-Puyol, Sergio de Frutos and María Piedad Ruiz-Torres
Int. J. Mol. Sci. 2025, 26(5), 1861; https://doi.org/10.3390/ijms26051861 - 21 Feb 2025
Viewed by 1103
Abstract
Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK [...] Read more.
Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK and its downstream regulations in renal damage and mitochondria function both in vivo and vitro, using a folic acid (FA)-induced kidney disease model. Wild type (WT) and ILK conditional-knockdown (cKD-ILK) mice were injected with a single intraperitoneal dose of FA and studied after 15 days of chronic renal damage progression. Human Kidney tubular epithelial cells (HK2) were transfected with specific siRNAs targeting ILK, glycogen synthase kinase 3-β (GSK3β), or CCAAT/enhancer binding protein-β (C/EBPβ). The expressions and activities of renal ILK, GSK3β, C/EBPβ, mitochondrial oxidative phosphorylation enzymes, and mitochondrial membrane potential were assessed. Additionally, the expression of markers for fibrosis fibronectin (FN) and collagen 1 (COL1A1), for autophagy p62 and cytosolic light chain 3 (LC3B) isoforms II and I, and mitochondrial homeostasis marker carnitine palmitoyl-transferase 1A (CPT1A) were evaluated using immunoblotting, RT-qPCR, immunofluorescence, or colorimetric assays. FA upregulated ILK expression, leading to the decrease of GSK3β activity, increased tubular fibrosis, and produced mitochondrial dysfunction, both in vivo and vitro. These alterations were fully or partially reversed upon ILK depletion, mitigating FA-induced renal damage. The signaling axis composed by ILK, GSK3β, and C/EBPβ regulated CPT1A transcription as the limiting factor in the FA-based impaired mitochondrial activity. We highlight ILK as a potential therapeutical target for preserving mitochondrial function in kidney injury. Full article
(This article belongs to the Special Issue Exploring the Molecular Mechanisms of Chronic Kidney Disease)
Show Figures

Figure 1

12 pages, 3011 KB  
Article
Chondroprotective Effect of Campylaephora hypnaeoides Extract in Primary Chondrocytes and Rat OA Model
by Ji Yun Jang, Seul Ah Lee, Do Kyung Kim, Sook-Young Lee and Chun Sung Kim
Int. J. Mol. Sci. 2024, 25(24), 13391; https://doi.org/10.3390/ijms252413391 - 13 Dec 2024
Cited by 1 | Viewed by 1276
Abstract
Campylaephora hypnaeoides (C. hypnaeoides) was extracted using fermented ethanol. The effect of fermented ethanol extract of C. hypnaeoides (FeCH) on chondrocyte viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-iphenyltetrazolium bromide assay, which showed no cytotoxicity at 2 mg/mL. FeCH pretreatment in IL-1β-stimulated chondrocytes significantly [...] Read more.
Campylaephora hypnaeoides (C. hypnaeoides) was extracted using fermented ethanol. The effect of fermented ethanol extract of C. hypnaeoides (FeCH) on chondrocyte viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-iphenyltetrazolium bromide assay, which showed no cytotoxicity at 2 mg/mL. FeCH pretreatment in IL-1β-stimulated chondrocytes significantly inhibited the accumulation of nitric oxide and prostaglandin E2, which was analyzed using the ELISA assay. In addition, protein expression levels of inflammatory-related factors, such as inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, tumor necrosis factor-alpha, and cartilage-degrading-related enzymes, such as matrix metalloproteinases-1, -3, and -13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 and -5 were significantly decreased in IL-1β-stimulated chondrocytes pretreated with FeCH, which were analyzed using western blot analysis. In addition, as a result of analyzing the content of collagen type II (Col II) and proteoglycan through western blot analysis and alcian blue staining, FeCH pretreatment prevented the degradation of Col II and proteoglycan. It was analyzed through western blot analysis that the chondroprotective effect of FeCH may be mediated through MAPKs and NF-κB-signaling mechanisms. In an in vivo study, an osteoarthritis experimental animal model with damaged medial meniscus (DMM) was utilized and orally administered daily for 8 weeks after surgery. At the study end point, knee joints were harvested and subjected to histological analysis with safranin O staining. As a result, articular cartilage was significantly protected in the FeCH group compared to the DMM group. These results suggest FeCH as a candidate material for the development of pharmaceutical materials for the treatment or prevention of degenerative arthritis. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

12 pages, 3284 KB  
Article
Comprehensive Transcriptome Sequencing and Analysis of Euspira gilva: Insights into Aquaculture and Conservation
by Zhixing Su, Jiayuan Xu, Xiaokang Lv, Xuefeng Song, Yanming Sui, Benjian Wang, Xiaoshan Wang, Bianbian Zhang, Baojun Tang and Liguo Yang
Fishes 2024, 9(12), 483; https://doi.org/10.3390/fishes9120483 - 28 Nov 2024
Viewed by 765
Abstract
Euspira gilva, a member of the family Naticidae, is predominantly found in intertidal soft mud, sandy soil, and sandy seabeds along the coast of China, where it is valued for its nutritional richness and significant economic value. This study presents a comprehensive [...] Read more.
Euspira gilva, a member of the family Naticidae, is predominantly found in intertidal soft mud, sandy soil, and sandy seabeds along the coast of China, where it is valued for its nutritional richness and significant economic value. This study presents a comprehensive transcriptome sequencing and analysis of E. gilva specimens from the Lianyungang area, yielding 3385 high-quality isoform sequences and 3310 non-redundant transcripts. Annotation against various databases, including NR, Swiss-Prot, KEGG, KOG, eggNOG, GO, and Pfam, successfully annotated a significant number of transcripts. A total of 7929 simple sequence repeat (SSR) loci were identified, with single nucleotide repeats predominating at 85.0%. Predictive analysis of coding DNA sequences (CDS) resulted in 1340 BLAST comparisons, while ESTScan predicted 840. Further, 530 long non-coding RNAs (lncRNAs) were identified through the application of the CPC2, CNCI, Pfam, and PLEK algorithms. The highest overall sequence similarity in the NR database was observed with Pomacea canaliculata, a freshwater species, but with a similarity of only 36.6%, indicating a unique genetic makeup of E. gilva. The KEGG database annotation revealed a predominance of signal transduction pathways, particularly the PI3K-Akt signaling pathway, with 29 non-redundant transcripts encoding key genes such as IGH (immunoglobulin heavy chain), PCK (phosphoenolpyruvate carboxykinase), COL2A (collagen, type II, alpha), ITGB1 (integrin beta 1), and GNG7 (guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7). These genes play crucial roles in cellular processes, including cell growth, transcription, translation, proliferation, movement, and glycogen metabolism. The findings of this research elucidate the full-length transcriptome profile of E. gilva, thereby establishing a foundational dataset and providing valuable insights for the species’ aquaculture, health management, conservation efforts, and future molecular biological investigations. Full article
Show Figures

Figure 1

21 pages, 7631 KB  
Article
Pinus densiflora Root Extract Attenuates Osteoarthritis Progression by Inhibiting Inflammation and Cartilage Degradation in Interleukin-1β and Monosodium Iodoacetate-Induced Osteoarthritis Models
by Young Mi Park, Dong Yeop Shin, Hak Yong Lee, Hai Min Hwang, Jae Gon Kim, Byeong Soo Kim, Sang Ho Lee, Sang Choon Lee, Min Jung Kim, Hye Jeong Yang, Myung-Sunny Kim and Jun Sang Bae
Nutrients 2024, 16(22), 3882; https://doi.org/10.3390/nu16223882 - 14 Nov 2024
Viewed by 1801
Abstract
Background: Osteoarthritis (OA) is a common degenerative joint condition caused by an imbalance between cartilage synthesis and degradation, which disrupts joint homeostasis. This study investigated the anti-inflammatory and joint-improving effects of Pinus densiflora root extract powder (PDREP) in both in vitro and in [...] Read more.
Background: Osteoarthritis (OA) is a common degenerative joint condition caused by an imbalance between cartilage synthesis and degradation, which disrupts joint homeostasis. This study investigated the anti-inflammatory and joint-improving effects of Pinus densiflora root extract powder (PDREP) in both in vitro and in vivo OA models. Methods/Results: In an in vitro OA model, in which SW1353 human chondrosarcoma cells were treated with interleukin (IL)-1β, PDREP treatment significantly reduced the mRNA levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 while enhancing collagen type II alpha 1 (Col2a1) mRNA level, and decreased IL-6 and prostaglandin E2 (PGE2) levels. In addition, PDREP inhibited the phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), p38, nuclear factor-kappa B (NF-κB), and the expression of inducible nitric oxide synthase (iNOS). In a monosodium iodoacetate (MIA)-induced OA rat model, the administration of PDREP resulted in decreased OA clinical indices, improved weight-bearing indices and gait patterns, reduced histological damage, and lowered serum inflammatory cytokine and MMPs expression. Furthermore, PDREP downregulated the phosphorylation of ERK, JNK, p38, and NF-κB, as well as the expression of iNOS, consistent with the in vitro findings. Conclusions: These results suggest that PDREP exhibits anti-inflammatory and joint-improving effects and has potential as a therapeutic strategy or functional food for the treatment of OA. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

17 pages, 6314 KB  
Article
Is Exon Skipping a Viable Therapeutic Approach for Vascular Ehlers–Danlos Syndrome with Mutations in COL3A1 Exon 10 or 15?
by Sasiwimon Utama, Jessica M. Cale, Chalermchai Mitrpant, Sue Fletcher, Steve D. Wilton and May T. Aung-Htut
Int. J. Mol. Sci. 2024, 25(16), 8816; https://doi.org/10.3390/ijms25168816 - 13 Aug 2024
Viewed by 2082
Abstract
Vascular Ehlers–Danlos syndrome or Ehlers–Danlos syndrome type IV (vEDS) is a connective tissue disorder characterised by skin hyperextensibility, joint hypermobility and fatal vascular rupture caused by COL3A1 mutations that affect collagen III expression, homo-trimer assembly and secretion. Along with collagens I, II, V [...] Read more.
Vascular Ehlers–Danlos syndrome or Ehlers–Danlos syndrome type IV (vEDS) is a connective tissue disorder characterised by skin hyperextensibility, joint hypermobility and fatal vascular rupture caused by COL3A1 mutations that affect collagen III expression, homo-trimer assembly and secretion. Along with collagens I, II, V and XI, collagen III plays an important role in the extracellular matrix, particularly in the inner organs. To date, only symptomatic treatment for vEDS patients is available. Fibroblasts derived from vEDS patients carrying dominant negative and/or haploinsufficiency mutations in COL3A1 deposit reduced collagen III in the extracellular matrix. This study explored the potential of an antisense oligonucleotide (ASO)-mediated splice modulating strategy to bypass disease-causing COL3A1 mutations reported in the in-frame exons 10 and 15. Antisense oligonucleotides designed to redirect COL3A1 pre-mRNA processing and excise exons 10 or 15 were transfected into dermal fibroblasts derived from vEDS patients and a healthy control subject. Efficient exon 10 or 15 excision from the mature COL3A1 mRNA was achieved and intracellular collagen III expression was increased after treatment with ASOs; however, collagen III deposition into the extracellular matrix was reduced in patient cells. The region encoded by exon 10 includes a glycosylation site, and exon 15 encodes hydroxyproline and hydroxylysine-containing triplet repeats, predicted to be crucial for collagen III assembly. These results emphasize the importance of post-translational modification for collagen III homo-trimer assembly. In conclusion, while efficient skipping of target COL3A1 exons was achieved, the induced collagen III isoforms generated showed defects in extracellular matrix formation. While therapeutic ASO-mediated exon skipping is not indicated for the patients in this study, the observations are restricted to exons 10 and 15 and may not be applicable to other collagen III in-frame exons. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 8065 KB  
Article
Time-Dependent Effect of Eggshell Membrane on Monosodium-Iodoacetate-Induced Osteoarthritis: Early-Stage Inflammation Control and Late-Stage Cartilage Protection
by Min Yu, Cheoljin Park, Young Bae Son, So Eun Jo, Seong Hee Jeon, Ye Jin Kim, Sang Bae Han, Jin Tae Hong and Dong Ju Son
Nutrients 2024, 16(12), 1885; https://doi.org/10.3390/nu16121885 - 14 Jun 2024
Cited by 4 | Viewed by 3730
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects [...] Read more.
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

26 pages, 7871 KB  
Article
Melatonin Delays Arthritis Inflammation and Reduces Cartilage Matrix Degradation through the SIRT1-Mediated NF-κB/Nrf2/TGF-β/BMPs Pathway
by Mingchao Zhao, Di Qiu, Xue Miao, Wenyue Yang, Siyao Li, Xin Cheng, Jilang Tang, Hong Chen, Hongri Ruan, Ying Liu, Chengwei Wei and Jianhua Xiao
Int. J. Mol. Sci. 2024, 25(11), 6202; https://doi.org/10.3390/ijms25116202 - 4 Jun 2024
Cited by 7 | Viewed by 2447
Abstract
Cartilage, a flexible and smooth connective tissue that envelops the surfaces of synovial joints, relies on chondrocytes for extracellular matrix (ECM) production and the maintenance of its structural and functional integrity. Melatonin (MT), renowned for its anti-inflammatory and antioxidant properties, holds the potential [...] Read more.
Cartilage, a flexible and smooth connective tissue that envelops the surfaces of synovial joints, relies on chondrocytes for extracellular matrix (ECM) production and the maintenance of its structural and functional integrity. Melatonin (MT), renowned for its anti-inflammatory and antioxidant properties, holds the potential to modulate cartilage regeneration and degradation. Therefore, the present study was devoted to elucidating the mechanism of MT on chondrocytes. The in vivo experiment consisted of three groups: Sham (only the skin tissue was incised), Model (using the anterior cruciate ligament transection (ACLT) method), and MT (30 mg/kg), with sample extraction following 12 weeks of administration. Pathological alterations in articular cartilage, synovium, and subchondral bone were evaluated using Safranin O-fast green staining. Immunohistochemistry (ICH) analysis was employed to assess the expression of matrix degradation-related markers. The levels of serum cytokines were quantified via Enzyme-linked immunosorbent assay (ELISA) assays. In in vitro experiments, primary chondrocytes were divided into Control, Model, MT, negative control, and inhibitor groups. Western blotting (WB) and Quantitative RT-PCR (q-PCR) were used to detect Silent information regulator transcript-1 (SIRT1)/Nuclear factor kappa-B (NF-κB)/Nuclear factor erythroid-2-related factor 2 (Nrf2)/Transforming growth factor-beta (TGF-β)/Bone morphogenetic proteins (BMPs)-related indicators. Immunofluorescence (IF) analysis was employed to examine the status of type II collagen (COL2A1), SIRT1, phosphorylated NF-κB p65 (p-p65), and phosphorylated mothers against decapentaplegic homolog 2 (p-Smad2). In vivo results revealed that the MT group exhibited a relatively smooth cartilage surface, modest chondrocyte loss, mild synovial hyperplasia, and increased subchondral bone thickness. ICH results showed that MT downregulated the expression of components related to matrix degradation. ELISA results showed that MT reduced serum inflammatory cytokine levels. In vitro experiments confirmed that MT upregulated the expression of SIRT1/Nrf2/TGF-β/BMPs while inhibiting the NF-κB pathway and matrix degradation-related components. The introduction of the SIRT1 inhibitor Selisistat (EX527) reversed the effects of MT. Together, these findings suggest that MT has the potential to ameliorate inflammation, inhibit the release of matrix-degrading enzymes, and improve the cartilage condition. This study provides a new theoretical basis for understanding the role of MT in decelerating cartilage degradation and promoting chondrocyte repair in in vivo and in vitro cultured chondrocytes. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 17817 KB  
Article
Induction of Human Wharton’s Jelly of Umbilical Cord Derived Mesenchymal Stem Cells to Be Chondrocytes and Transplantation in Guinea Pig Model with Spontaneous Osteoarthritis
by Gulrez Nadeem, Kasem Theerakittayakorn, Sirilak Somredngan, Hong Thi Nguyen, Traimat Boonthai, Worawalan Samruan, Ponthep Tangkanjanavelukul and Rangsun Parnpai
Int. J. Mol. Sci. 2024, 25(11), 5673; https://doi.org/10.3390/ijms25115673 - 23 May 2024
Viewed by 1722
Abstract
Osteoarthritis (OA) is a degenerative joint disease commonly found in elderly people and obese patients. Currently, OA treatments are determined based on their condition severity and a medical professional’s advice. The aim of this study was to differentiate human Wharton’s jelly-derived mesenchymal stem [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease commonly found in elderly people and obese patients. Currently, OA treatments are determined based on their condition severity and a medical professional’s advice. The aim of this study was to differentiate human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) into chondrocytes for transplantation in OA-suffering guinea pigs. hWJ-MSCs were isolated using the explant culture method, and then, their proliferation, phenotypes, and differentiation ability were evaluated. Subsequently, hWJ-MSCs-derived chondrocytes were induced and characterized based on immunofluorescent staining, qPCR, and immunoblotting techniques. Then, early-OA-suffering guinea pigs were injected with hyaluronic acid (HA) containing either MSCs or 14-day-old hWJ-MSCs-derived chondrocytes. Results showed that hWJ-MSCs-derived chondrocytes expressed specific markers of chondrocytes including Aggrecan, type II collagen, and type X collagen proteins and β-catenin, Sox9, Runx2, Col2a1, Col10a1, and ACAN gene expression markers. Administration of HA plus hWJ-MSCs-derived chondrocytes (HA-CHON) produced a better recovery rate of degenerative cartilages than HA plus MSCs or only HA. Histological assessments demonstrated no significant difference in Mankin’s scores of recovered cartilages between HA-CHON-treated guinea pigs and normal articular cartilage guinea pigs. Transplantation of hWJ-MSCs-derived chondrocytes was more effective than undifferentiated hWJ-MSCs or hyaluronic acid for OA treatment in guinea pigs. This study provides a promising treatment to be used in early OA patients to promote recovery and prevent disease progression to severe osteoarthritis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 1206 KB  
Article
Cartilage Collagen Neoepitope C2C Expression in the Articular Cartilage and Its Relation to Joint Tissue Damage in Patients with Knee Osteoarthritis
by Taavi Torga, Siim Suutre, Kalle Kisand, Marina Aunapuu and Andres Arend
Biomedicines 2024, 12(5), 1063; https://doi.org/10.3390/biomedicines12051063 - 11 May 2024
Cited by 1 | Viewed by 1578
Abstract
Pathological cleavage of type II collagen (Col2) and generation of Col2 neoepitopes can serve as useful molecular markers of the progression of osteoarthritis (OA). One of such potential biomarkers is type II collagen neoepitope C2C. The aim of this study was to correlate [...] Read more.
Pathological cleavage of type II collagen (Col2) and generation of Col2 neoepitopes can serve as useful molecular markers of the progression of osteoarthritis (OA). One of such potential biomarkers is type II collagen neoepitope C2C. The aim of this study was to correlate the degree of articular cartilage damage in OA patients with C2C expression in histological samples of tissues removed during total knee replacement. Cartilage samples were obtained from 27 patients ranging in age from 55 to 66 years. In each patient, medial and lateral tibia plateau samples were analyzed according to the OARSI histopathology grading system. The C2C expression was evaluated on histological slides by semi-quantitative analysis using ImageJ Fiji 2.14.0 software. Spearman’s rank correlation analysis revealed a positive weak correlation (rho = 0.289, p = 0.0356) between the histological grade of tissue damage and the percentage of C2C staining. In addition, a highly significant positive correlation (rho = 0.388, p = 0.0041) was discovered between the osteoarthritis score (combining the histological grade of damage with the OA macroscopic stage) and the percentage of C2C staining in the samples. The C2C expression was detected in all the regions of the articular cartilage (i.e., the superficial zone, mid zone, deep zone and tidemark area, and the zone of calcified cartilage). Our findings imply that local expression of C2C correlates with the articular cartilage damage in OA-affected knees. This confirms that C2C can be used as a prospective marker for assessing pathological changes in the OA course and OA clinical trials. Full article
(This article belongs to the Special Issue Molecular Research on Osteoarthritis and Osteoporosis)
Show Figures

Figure 1

16 pages, 2676 KB  
Article
Alginate Improves the Chondrogenic Capacity of 3D PCL Scaffolds In Vitro: A Histological Approach
by Lara Milián, María Oliver-Ferrándiz, Ignacio Peregrín, María Sancho-Tello, José Javier Martín-de-Llano, Cristina Martínez-Ramos, Carmen Carda and Manuel Mata
Curr. Issues Mol. Biol. 2024, 46(4), 3563-3578; https://doi.org/10.3390/cimb46040223 - 19 Apr 2024
Cited by 2 | Viewed by 1797
Abstract
Polycaprolactone (PCL) scaffolds have demonstrated an effectiveness in articular cartilage regeneration due to their biomechanical properties. On the other hand, alginate hydrogels generate a 3D environment with great chondrogenic potential. Our aim is to generate a mixed PCL/alginate scaffold that combines the chondrogenic [...] Read more.
Polycaprolactone (PCL) scaffolds have demonstrated an effectiveness in articular cartilage regeneration due to their biomechanical properties. On the other hand, alginate hydrogels generate a 3D environment with great chondrogenic potential. Our aim is to generate a mixed PCL/alginate scaffold that combines the chondrogenic properties of the two biomaterials. Porous PCL scaffolds were manufactured using a modified salt-leaching method and embedded in a culture medium or alginate in the presence or absence of chondrocytes. The chondrogenic capacity was studied in vitro. Type II collagen and aggrecan were measured by immunofluorescence, cell morphology by F-actin fluorescence staining and gene expression of COL1A1, COL2A1, ACAN, COL10A1, VEGF, RUNX1 and SOX6 by reverse transcription polymerase chain reaction (RT-PCR). The biocompatibility of the scaffolds was determined in vivo using athymic nude mice and assessed by histopathological and morphometric analysis. Alginate improved the chondrogenic potential of PCL in vitro by increasing the expression of type II collagen and aggrecan, as well as other markers related to chondrogenesis. All scaffolds showed good biocompatibility in the in vivo model. The presence of cells in the scaffolds induced an increase in vascularization of the PCL/alginate scaffolds. The results presented here reinforce the benefits of the combined use of PCL and alginate for the regeneration of articular cartilage. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

Back to TopTop