Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = two-stroke diesel engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4356 KiB  
Article
Impact of High-Concentration Biofuels on Cylinder Lubricating Oil Performance in Low-Speed Two-Stroke Marine Diesel Engines
by Enrui Zhao, Guichen Zhang, Qiuyu Li and Saihao Zhu
J. Mar. Sci. Eng. 2025, 13(6), 1189; https://doi.org/10.3390/jmse13061189 - 18 Jun 2025
Viewed by 1066
Abstract
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In [...] Read more.
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In this study, catering waste oil was blended with 180 cSt low-sulfur fuel oil (LSFO) to prepare biofuels with volume fractions of 24% (B24) and 50% (B50). These biofuels were evaluated in a MAN marine diesel engine under load conditions of 25%, 50%, 75%, and 90%. The experimental results showed that, at the same engine load, the use of B50 biofuel led to lower kinematic viscosity and oxidation degree of the cylinder residual oil, but higher total base number (TBN), nitration level, PQ index, and concentrations of wear elements (Fe, Cu, Cr, Mo). These results indicate that the wear of the cylinder liner–piston ring interface was more severe when using B50 biofuel than when using B24 biofuel. For the same type of fuel, as the engine load increased, the kinematic viscosity and TBN of the residual oil decreased, while the PQ index and the concentrations of Fe, Cu, Cr, and Mo increased, reflecting the aggravated wear severity. Ferrographic analysis further revealed that ferromagnetic wear particles in the oil mainly consisted of normal wear debris. When using B50 biodiesel, a small amount of fatigue wear particles were detected. These findings offer crucial insights for optimizing biofuel utilization and improving cylinder lubrication systems in marine engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 3106 KiB  
Article
Integrated Control Strategies of EGR System and Fuel Injection Pressure to Reduce Emissions and Fuel Consumption in a DI Engine Fueled with Diesel-WCOME Blends and Neat Biodiesel
by Giorgio Zamboni and Massimo Capobianco
Energies 2025, 18(11), 2791; https://doi.org/10.3390/en18112791 - 27 May 2025
Viewed by 380
Abstract
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, [...] Read more.
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, included 40 and 70% of WCOME, on a volumetric basis. The influence of biodiesel was analyzed by testing the engine in two part-load operating conditions, applying proper control strategies to the exhaust gas recirculation (EGR) circuit and rail pressure, to assess the interactions between the engine management and the tested fuels. The variable nozzle turbine (VNT) was controlled to obtain a constant level of intake pressure in the two experimental points. Referring to biodiesel effects at constant operating mode, higher WCOME content generally resulted in better efficiency and soot emission, while NOX emission was negatively affected. EGR activation allowed for limited NO formation but with penalties in soot emission. Furthermore, interactions between the EGR circuit and turbocharger operations and control led to higher fuel consumption and lower efficiency. Finally, the increase in rail pressure corresponded to better soot emission and penalties in NOX emission. Combining all these effects, the selection of EGR rate and rail pressure values higher than the standard levels resulted in better efficiency, NOX, and soot emissions when comparing blends and neat biodiesel to conventional B7, granting advantages not only with regard to greenhouse gas emissions. Combustion parameters were also assessed, showing that combustion stability and combustion noise were not negatively affected by biodiesel use. Combustion duration was reduced when using WCOME and its blend, even if the center of combustion was slightly shifted along the expansion stroke. The main contribution of this investigation to the scientific and technical knowledge on biodiesel application to internal combustion engines is related to the development of tests on diesel–biodiesel blends with high WCOME content or neat WCOME, identifying their effects on NOX emissions, the definition of integrated strategies of HP EGR system, fuel rail pressure, and VNT for the simultaneous reduction in NOX and soot emissions, and the detailed assessment of the influence of biodiesel on a wide range of combustion parameters. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

18 pages, 10182 KiB  
Article
Numerical Simulation Study on Combustion Characteristics of a Low-Speed Marine Engine Using Biodiesel
by Guohe Jiang, Yuhao Yuan, Hao Guo, Gang Wu, Jiachen Chen and Yuanyuan Liu
J. Mar. Sci. Eng. 2025, 13(4), 824; https://doi.org/10.3390/jmse13040824 - 21 Apr 2025
Cited by 2 | Viewed by 561
Abstract
The growth of global trade has fueled a booming shipping industry, but high pollutant emissions from low-speed marine diesel engines have become a global concern. In this study, it is hypothesized that the combustion efficiency of biodiesel B10 in low-speed two-stroke diesel engines [...] Read more.
The growth of global trade has fueled a booming shipping industry, but high pollutant emissions from low-speed marine diesel engines have become a global concern. In this study, it is hypothesized that the combustion efficiency of biodiesel B10 in low-speed two-stroke diesel engines can be improved and pollutant emissions can be reduced by optimizing the exhaust gas recirculation (EGR) rate and injection time. This study systematically analyzed the effects of EGR rate (5%, 10%, and 20%) and injection time (0 °CA to 6 °CA delay) on combustion and emission characteristics using numerical simulation combined with experimental validation. The results showed that the in-cylinder combustion temperature and NOx emission decreased significantly with the increase in EGR rate, but the soot emission increased. Specifically, NOx emissions decreased by 35.13%, 59.95%, and 85.21% at EGR rates of 5%, 10%, and 15%, respectively, while soot emissions increased by 12.25%, 26.75%, and 58.18%, respectively. Delaying the injection time decreases the in-cylinder pressure and temperature peaks, decreasing NOx emissions but increasing soot emissions. Delaying the injection time from 2 °CA to 4 °CA and 6 °CA decreased NOx emission by 16.01% and 25.44%, while increasing soot emission by 4.98% and 11.64%, respectively. By combining numerical simulation and experimental validation, this study provides theoretical support for the combustion optimization of a low-speed two-stroke diesel engine when using biodiesel, and is of great significance for the green development of the shipping industry. Full article
Show Figures

Figure 1

17 pages, 7106 KiB  
Article
Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport
by Tao Sun, Zhijun Yan, Lixia Xue, Yuanyuan Jiang and Shibo Wu
Biomimetics 2025, 10(4), 248; https://doi.org/10.3390/biomimetics10040248 - 17 Apr 2025
Viewed by 468
Abstract
Focusing on the difficulty of lubrication in the scavenging port area of a cylinder liner of an actual marine two-stroke diesel engine, the transportation of interface lubricating oil was studied. In this paper, a biomimetic fish scale texture composed of fan-shaped and arc-shaped [...] Read more.
Focusing on the difficulty of lubrication in the scavenging port area of a cylinder liner of an actual marine two-stroke diesel engine, the transportation of interface lubricating oil was studied. In this paper, a biomimetic fish scale texture composed of fan-shaped and arc-shaped curves is designed, and the numerical simulation model is established according to this texture. Through simulation research, the variation rules of pressure distribution, interfacial velocity, and outlet volume flow rate on the biomimetic fish scale texture surface at different velocities and temperatures are obtained. Moreover, the biomimetic fish scale texture is machined on the surface of a reciprocating friction pair by laser etching, and the oil transport speed of the interface is tested under different conditions. The results show that the existence of the biomimetic fish scale texture on the friction pair can effectively improve the pressure difference between interfaces during reciprocating motion. The pressure difference enhances the flow properties of interfacial lubricating oil, thereby improving its mass transport capacity. In addition, increasing the movement speed and oil temperature can increase the oil transport speed of interfacial lubricating oil. The results of the experiment suggest that, under continuous and discontinuous interface conditions, compared with a friction pair without texture, the improvement rate of the lubricating oil transport speed at the interface of the friction pair with the biomimetic fish scale texture can reach 40.7% and 69.1%, respectively. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

27 pages, 1497 KiB  
Article
Methodological Development for Studying the Chemical Composition of Exhaust Particle Emissions: Application to a Passenger Vessel Operating on Marine Gas Oil
by Ridha Mahi, Aurélie Joubert, Audrey Villot, Benoit Sagot and Laurence Le Coq
Atmosphere 2025, 16(2), 126; https://doi.org/10.3390/atmos16020126 - 24 Jan 2025
Cited by 1 | Viewed by 710
Abstract
On-board emission measurements were conducted at the exhaust of a passenger ship operating under real-world conditions. The chemical composition of exhaust particulate emissions from a turbocharged four-stroke marine diesel engine, operated on Marine Gas Oil was studied. A variety of organic compounds, including [...] Read more.
On-board emission measurements were conducted at the exhaust of a passenger ship operating under real-world conditions. The chemical composition of exhaust particulate emissions from a turbocharged four-stroke marine diesel engine, operated on Marine Gas Oil was studied. A variety of organic compounds, including alkanes, alkenes, alcohols, cycloalkanes, cycloalkenes, esters, ketones, carboxylic acids, etc., were analyzed. Alkanes were the most abundant organic compounds, followed by alkenes, esters, and alcohols. Emission factors for these compounds were determined under two operating conditions: low engine load (at berth at 400 rpm/4% load, and during port maneuvers at 800 rpm/14% load) and high engine load (during cruising at 1000 rpm, 68% load). A clear increase in organic-compound emission factors was observed at lower loads. The total particulate matter emission factors were between 0.02 and 0.03 g/kWh at high-load points and exhibited significant variability under low-load conditions, from 0.02 to 2.83 g/kWh. The effect of a marine fuel additive was evaluated in this study. Using this fuel additive resulted in a significant decrease in both particulate matter and organic-compound emission factors, especially at low engine loads. Furthermore, the marine fuel additive decreased the total emission factors (EFTOCs) by a factor of 56 under low-load conditions. For high loads, the additive had no effect on the EFTOCs. Full article
Show Figures

Figure 1

41 pages, 16927 KiB  
Article
Numerical Investigation on the Applicability of Variable Compression Ratio in a Marine Two-Stroke Dual-Fuel Engine for Fuel Economy Improvement
by Haosheng Shen and Daoyi Lu
Energies 2025, 18(1), 108; https://doi.org/10.3390/en18010108 - 30 Dec 2024
Cited by 2 | Viewed by 855
Abstract
Marine two-stroke dual-fuel (DF) engines with a low-pressure gas concept normally face the problem of inferior fuel economy in diesel mode, mainly due to their lower compression ratio. To address this issue, a numerical study is performed to investigate the applicability of variable [...] Read more.
Marine two-stroke dual-fuel (DF) engines with a low-pressure gas concept normally face the problem of inferior fuel economy in diesel mode, mainly due to their lower compression ratio. To address this issue, a numerical study is performed to investigate the applicability of variable compression ratio (VCR) in a marine two-stroke DF engine, aiming at improving fuel economy in diesel mode. First, an engine simulation model is established and validated. Then, parametric investigation is performed to obtain insights on the effects of VCR on engine combustion, performance, and emissions. Finally, regression models of selected engine response variables are determined based on the response surface methodology (RSM), which are then optimized by particle swarm optimization (PSO) to obtain the optimal solution of engine setting parameters. The results show that with the application of VCR, the brake specific fuel consumption (BSFC) decreases by 9.65, 11.38, 11.13, and 11.27% at 25, 50, 75, and 100% maximum continuous rating (MCR), respectively. Meanwhile, the nitrogen oxides (NOx) emissions are maintained at the original levels, and the engine’s operating parameters are within specified limits. This study contributes to the delineation of the benefits and limits of VCR and provides a feasible method to facilitate the implementation of VCR in marine engines. Full article
Show Figures

Figure 1

20 pages, 9746 KiB  
Article
Computational Analysis of an Ammonia Combustion System for Future Two-Stroke Low-Speed Marine Engines
by Jose R. Serrano, Ricardo Novella, Héctor Climent, Francisco José Arnau, Alejandro Calvo and Lauge Thorsen
J. Mar. Sci. Eng. 2025, 13(1), 39; https://doi.org/10.3390/jmse13010039 - 30 Dec 2024
Cited by 1 | Viewed by 1579
Abstract
Ammonia, being 17.6% hydrogen by mass, is regarded as a hydrogen carrier and carbon-free fuel as long as its production methods rely on renewable energy sources. The production and combustion of green ammonia do not generate carbon dioxide, offering a promising avenue for [...] Read more.
Ammonia, being 17.6% hydrogen by mass, is regarded as a hydrogen carrier and carbon-free fuel as long as its production methods rely on renewable energy sources. The production and combustion of green ammonia do not generate carbon dioxide, offering a promising avenue for substantial reductions in greenhouse gas (GHG) emissions from a well-to-wake perspective. This paper presents a comprehensive methodology for the development and validation of a thermodynamic model for a two-stroke low-speed marine engine incorporating a hybrid ammonia-diesel diffusion combustion system. The simulation tools are rigorously validated using experimental data obtained during diesel operation. Subsequently, the study explores various aspects of the novel ammonia-diesel combustion system, addressing combustion and emissions characteristics. The investigation incorporates diverse simulation scenarios involving direct fuel injection through dedicated valves into the cylinder head of a six-cylinder, turbocharged compression-ignition engine. The engine features two diesel injection valves, employed to initiate the combustion process, and two ammonia injection valves. Simulation scenarios include variations in the injection timing of the pilot diesel injector and the relative orientation of diesel and ammonia sprays. Case C emerges as the preferred configuration, demonstrating superior metrics in terms of combustion stability, air-fuel mixing, and emissions profile compared to other cases. The results indicate a reduction of CO2 emissions of approximately 95% in mass compared to the baseline diesel operation. Furthermore, notable reductions in NOx emissions are observed, preliminarily attributed to the lower flame temperature of ammonia. Despite the appearance of N2O emissions as a result of ammonia oxidation, the overall potential reduction in GHG emissions, in CO2-equivalent terms, exceeds 85% at selected operating points. This work contributes valuable insights into the optimization of cleaner propulsion systems for maritime applications, facilitating the industry’s transition toward more sustainable and environmentally friendly practices. Full article
Show Figures

Figure 1

23 pages, 5505 KiB  
Article
Simulation Approach as an Educational Tool for Comparing NOx Emission Reductions in Two-Stroke Marine Diesel Engines During Low-Load Operation: Water–Fuel Emulsion vs. Late Injection
by Mario Stipanov, Josip Dujmović, Vladimir Pelić and Radoslav Radonja
Sustainability 2024, 16(24), 10833; https://doi.org/10.3390/su162410833 - 11 Dec 2024
Cited by 1 | Viewed by 1222
Abstract
Shipping, as the most efficient, cheapest, and most widespread mode of transporting goods, also generates significant exhaust emissions. This has led to the adoption of stringent regulatory restrictions on emissions from ship propulsion systems. Consequently, the education and training of marine engineers can [...] Read more.
Shipping, as the most efficient, cheapest, and most widespread mode of transporting goods, also generates significant exhaust emissions. This has led to the adoption of stringent regulatory restrictions on emissions from ship propulsion systems. Consequently, the education and training of marine engineers can significantly impact their understanding of how emissions are generated and their potential for reduction. The engine room simulator is an indispensable tool in the training of marine engineers. Since operating conditions and parameters have the greatest impact on NOx emissions, this forms the primary focus of this research. This study tests the accuracy and precision of the engine room simulator in simulating emissions and evaluating the influence of operating conditions on them. Furthermore, the implementation and testing of NOx emission reduction technologies are vital for promoting sustainable shipping, ensuring regulatory compliance, and training personnel to support environmentally conscious maritime operations. Using the example of a two-stroke marine diesel engine, the results obtained are compared with test bench data from similar engines. Special emphasis is placed on simulating the operation of a two-stroke diesel engine at low speed, or low load, where secondary NOx reduction methods cannot be used. Therefore, the simulator is tested using two available technologies: water–fuel emulsion and altering the fuel injection timing to reduce NOx emissions. The simulation results for the water–fuel emulsion show high accuracy in predicting NOx emission trends when changing the water content in the emulsion at nominal power. However, at low load, the results show significant deviations. Testing the effect of altering fuel injection timing under low load using the engine room simulator shows significant differences compared to available research. Nonetheless, research on NOx emissions in this engine mode is limited, presenting a potential area for further study. When comparing the results for nominal power operation, the simulation provides more accurate results, particularly in terms of the influence of fuel injection timing on NOx emissions. However, engine tests on the test bench still reveal more substantial changes in emissions than those obtained using the engine room simulator. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

32 pages, 21135 KiB  
Article
Parametric Investigation on the Influence of Turbocharger Performance Decay on the Performance and Emission Characteristics of a Marine Large Two-Stroke Dual Fuel Engine
by Haosheng Shen, Fumiao Yang, Dingyu Jiang, Daoyi Lu, Baozhu Jia, Qingjiang Liu and Xiaochi Zhang
J. Mar. Sci. Eng. 2024, 12(8), 1298; https://doi.org/10.3390/jmse12081298 - 1 Aug 2024
Cited by 5 | Viewed by 1785
Abstract
Identifying and analyzing the engine performance and emission characteristics under the condition of performance decay is of significant reference value for fault diagnosis, condition-based maintenance, and health status monitoring. However, there is a lack of relevant research on the currently popular marine large [...] Read more.
Identifying and analyzing the engine performance and emission characteristics under the condition of performance decay is of significant reference value for fault diagnosis, condition-based maintenance, and health status monitoring. However, there is a lack of relevant research on the currently popular marine large two-stroke dual fuel (DF) engines. To fill the research gap, a detailed zero-/one-dimensional (0D/1D) model of a marine two-stroke DF engine employing the low-pressure gas concept is first established in GT-Power (Version 2020) and validated by comparing the simulation and measured results. Then, three typical types of turbocharger performance decays are defined including turbine efficiency decay, turbine nozzle ring area decay, and turbocharger shaft mechanical efficiency decay. Finally, the three types of decays are introduced to the engine simulation model and parametric runs are performed in both diesel and gas modes to identify and analyze their impacts on the performance and emission characteristics of the investigated marine DF engine. The results reveal that turbocharger performance decay has a significant impact on engine performance parameters, such as brake efficiency, engine speed, boost pressure, etc., as well as CO2 and NOx emissions, and the specified limit value on certain engine operational parameters will be exceeded when turbocharger performance decays to a certain extent. The changing trend of engine performance and emission parameters as turbocharger performance deteriorates are generally consistent in both operating modes but with significant differences in the extent and magnitude, mainly due to the distinct combustion process (Diesel cycle versus Otto cycle). Furthermore, considering the relative decline in brake efficiency, engine speed drop, and relative increase in CO2 emission, the investigated engine is less sensitive to the turbocharger performance decay in gas mode. The simulation results also imply that employing a variable geometry turbine (VGT) is capable of improving the brake efficiency of the investigated marine DF engine. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

18 pages, 6015 KiB  
Article
A Twice-Open Control Method for a Hydraulic Variable Valve System in a Diesel Engine
by Degaoxuan Guo, Juan Tang, Zongfa Xie, Xiaoxia Li and Xinzheng Cao
Processes 2024, 12(7), 1526; https://doi.org/10.3390/pr12071526 - 19 Jul 2024
Viewed by 1561
Abstract
In order to solve the cold-starting problem and improve the intake and exhaust pipe temperatures of diesel engines under cold-starting and low- and medium-speed conditions, this paper proposes a twice-open control method for a hydraulic variable valve system. First, a hydraulic variable valve [...] Read more.
In order to solve the cold-starting problem and improve the intake and exhaust pipe temperatures of diesel engines under cold-starting and low- and medium-speed conditions, this paper proposes a twice-open control method for a hydraulic variable valve system. First, a hydraulic variable valve system that can realize a fully variable valve lift and phase angle is applied to replace the original intake system in order to meet the air intake requirements of different conditions. Then, a twice-open control method in which the intake valve opens two times at the exhaust stroke and intake stroke is proposed to improve the intake pipe temperature and solve the cold-starting problem. This paper contains a numerical work analysis. A GT-POWER model is constructed to validate the intake valve twice-open control method. The cylinder pressure, cylinder temperature, intake pipe pressure, and intake pipe temperature are obtained and compared between the original intake valve system and the hydraulic variable valve system with the proposed intake valve twice-open control method. The results show that the twice-open control method can increase the intake pipe temperature to 260 K or even higher, which can improve the cold-starting performance and the exhaust temperature at low and medium speeds. At the same time, the performance under low- and medium-speed conditions is improved. Full article
Show Figures

Figure 1

21 pages, 2622 KiB  
Article
Particulate and Gaseous Emissions from a Large Two-Stroke Slow-Speed Marine Engine Equipped with Open-Loop Scrubber under Real Sailing Conditions
by Achilleas Grigoriadis, Nikolaos Kousias, Anastasios Raptopoulos-Chatzistefanou, Håkan Salberg, Jana Moldanová, Anna-Lunde Hermansson, Yingying Cha, Anastasios Kontses, Zisimos Toumasatos, Sokratis Mamarikas and Leonidas Ntziachristos
Atmosphere 2024, 15(7), 845; https://doi.org/10.3390/atmos15070845 - 17 Jul 2024
Cited by 3 | Viewed by 2001
Abstract
Particulate and gaseous emissions were studied from a large two-stroke slow-speed diesel engine equipped with an open-loop scrubber, installed on a 78,200 metric tonnes (deadweight) containership, under real operation. This paper presents the on-board emission measurements conducted upstream and downstream of the scrubber [...] Read more.
Particulate and gaseous emissions were studied from a large two-stroke slow-speed diesel engine equipped with an open-loop scrubber, installed on a 78,200 metric tonnes (deadweight) containership, under real operation. This paper presents the on-board emission measurements conducted upstream and downstream of the scrubber with heavy fuel oil (HFO) and ultra-low sulfur fuel oil (ULSFO). Particle emissions were examined under various dilution ratios and temperature conditions, and with two thermal treatment setups, involving a thermodenuder (TD) and a catalytic stripper (CS). Our results show a 75% SO2 reduction downstream of the scrubber with the HFO to emission-compliant levels, while the use of the ULSFO further decreased SO2 levels. The operation of the scrubber produced higher particle number levels compared to engine-out, attributed to the condensational growth of nanometer particle cores, salt and the formation of sulfuric acid particles in the smaller size range, induced by the scrubber. The use of a TD and a CS eliminates volatiles but can generate new particles when used in high-sulfur conditions. The results of this study contribute to the generally limited understanding of the particulate and gaseous emission performance of open-loop scrubbers in ships and could feed into emission and air quality models for estimating marine pollution impacts. Full article
(This article belongs to the Special Issue Engine Emissions: Assessment and Control)
Show Figures

Figure 1

16 pages, 4097 KiB  
Article
Study of Effects on Performances and Emissions of a Large Marine Diesel Engine Partially Fuelled with Biodiesel B20 and Methanol
by Nicolae Adrian Visan, Dan Catalin Niculescu, Radu Ionescu, Ernst Dahlin, Magnus Eriksson and Radu Chiriac
J. Mar. Sci. Eng. 2024, 12(6), 952; https://doi.org/10.3390/jmse12060952 - 5 Jun 2024
Cited by 7 | Viewed by 1827
Abstract
The impact of fossil fuel utilisation in different combustion systems on climate change due to greenhouse gas accumulation in the atmosphere is rather evident. A part of these gases comes from the large engines used for propulsion in marine applications. In the continuous [...] Read more.
The impact of fossil fuel utilisation in different combustion systems on climate change due to greenhouse gas accumulation in the atmosphere is rather evident. A part of these gases comes from the large engines used for propulsion in marine applications. In the continuous global effort made by engine manufacturers to mitigate this negative impact, one way is represented by the utilisation of alternative fuels such as biodiesel and methanol, based on dedicated research to fulfil the more stringent regulations concerning pollutant emissions issued by piston heat engines. In this study, a numerical investigation was conducted on a four-stroke large marine diesel engine (ALCO 16V 251C) at several engine speeds and full load conditions. Different blends of diesel–methanol and biodiesel B20–methanol with methanol mass fractions of 10% and 20% were considered for theoretical analysis in two techniques of methanol supply: direct injection mode of a blend of base fuel diesel/biodiesel B20 with methanol and injection of methanol after the intercooler, and direct injection of the base fuel. The results show that, if 10% in power loss can be acceptable, then for diesel–methanol 10%, in the direct injection technology, the NOx emission can be reduced up to 19%, but with a compromise of an 8% increase in SOOT emission, while for biodiesel B20–methanol 10%, with the same direct injection method, the NOx emissions increase by up to 58% with the benefit of reducing SOOT by up to 23% relative to the original diesel fuel operation. For a 20% methanol fraction in blend fuel, the drop in power is more than 10% regardless of the method of methanol supply and the base fuel, diesel, or B20 used. Full article
(This article belongs to the Special Issue Advanced Technologies for New (Clean) Energy Ships)
Show Figures

Figure 1

19 pages, 6989 KiB  
Article
Research on the Ignition Strategy of Diesel Direct Injection Combined with Jet Flame on the Combustion Character of Natural Gas in a Dual-Fuel Marine Engine
by Long Liu, Shihai Liu and Dai Liu
J. Mar. Sci. Eng. 2024, 12(6), 857; https://doi.org/10.3390/jmse12060857 - 22 May 2024
Cited by 1 | Viewed by 1586
Abstract
In large-bore two-stroke diesel/nature gas dual-fuel marine engines, a certain quantity of diesel is injected into the cylinder to satisfy the full-power output engine rated power of the gas mixture. However, the ignition and flame propagation process based on the injection strategy of [...] Read more.
In large-bore two-stroke diesel/nature gas dual-fuel marine engines, a certain quantity of diesel is injected into the cylinder to satisfy the full-power output engine rated power of the gas mixture. However, the ignition and flame propagation process based on the injection strategy of diesel direct injection combined with diesel jet flame on the ignition and combustion of natural gas is unclear, which directly affects the power and the thermal efficiency of engine and emissions. Therefore, this work numerically investigates the flame propagation characteristic under the strategy of the main and pilot diesel modes. The influence of the injection timing and proportion of diesel on combustion and emission performance are further analyzed. The results show that the influence of the injection timing of main diesel (MDIT) on the combustion process and emission performance is more obvious than that of the injection timing of pilot diesel (PDIT). The results indicate that the MDIT increased from −2°CA to −8°CA, the power increased by 316 kW, and the thermal efficiency improved by 1.5%. However, the CO2 emissions increased by 10.5 g/kWh, and the NOx emissions increased by 0.7 g/kWh. Additionally, an early PDIT is not conducive to the rapid organization of combustion, resulting in decreased engine power and thermal efficiency. Furthermore, it was found that the power improved by 50 kW and the thermal efficiency improved by 0.6%, with a decrease in the main diesel ratio (MDR) from 100% to 90%. Meanwhile, the CO2 emissions decreased by 4 g/kWh, although there was no obvious change in NOx emissions with the advance of MDR. Full article
Show Figures

Figure 1

19 pages, 5944 KiB  
Article
Biodiesel Production through the Transesterification of Non-Edible Plant Oils Using Glycerol Separation Technique with AC High Voltage
by Saad S. Almady, Ali I. Moussa, Mohammed M. Deef, Moamen F. Zayed, Saleh M. Al-Sager and Abdulwahed M. Aboukarima
Sustainability 2024, 16(7), 2896; https://doi.org/10.3390/su16072896 - 30 Mar 2024
Cited by 3 | Viewed by 2646
Abstract
The biodiesel industry is a promising field globally, and is expanding significantly and quickly. To create a biodiesel business that is both sustainable and commercially feasible, a number of studies have been conducted on the use of non-edible oils to produce biodiesel. Thus, [...] Read more.
The biodiesel industry is a promising field globally, and is expanding significantly and quickly. To create a biodiesel business that is both sustainable and commercially feasible, a number of studies have been conducted on the use of non-edible oils to produce biodiesel. Thus, this study highlights biodiesel synthesis from non-edible plant oils such as pongamia and jatropha using a glycerol separation technique with an AC high voltage method through the transesterification reaction. In this context, non-edible plant oil has emerged as an alternative with a high potential for making the biodiesel process sustainable. Moreover, the study introduces how the created biodiesel fuel behaves when burned in a diesel engine. The results showed that the optimum conditions for creating biodiesel were a temperature of 60 °C, a potassium hydroxide catalyst percentage by weight of oils of 1%, and a stirring time of 60 min at a 5:1 (v/v) ratio of methanol to oil. A high-voltage procedure was used to separate glycerol and biodiesel using two electrodes of copper with different distances between them and different high voltages. The results showed that, for a batch of 15 L, the minimum separating time was 10 min when the distance between the copper electrodes was 2.5 cm, and the high voltage was 15 kV. The density, kinematic viscosity, and flash point of jatropha oil were reduced from 0.920 to 0.881 g/cm3 at 15 °C, from 37.1 to 4.38 cSt at 40 °C, and from 211 to 162 °C, respectively, for the production of biodiesel. Additionally, the density, kinematic viscosity, and flash point of pongamia oil were reduced from 0.924 to 0.888 g/cm3 at 15 °C, from 27.8 to 5.23 cSt at 40 °C, and from 222 to 158 °C, respectively, for the production of biodiesel. The calorific value of jatropha oil was increased from 38.08 to 39.65 MJ/kg for the production of biodiesel, while that of pongamia oil was increased from 36.61 to 36.94 MJ/kg. The cetane number increased from 21 for oil to 50 for biodiesel and from 32 for oil to 52 for jatropha and pongamia biodiesel, respectively. In order to run an air-cooled, single-cylinder, four-stroke diesel engine at full load, the produced biodiesel fuel was blended with diesel fuel at different percentages—10, 20, and 30%—for jatropha and pongamia methyl esters. The produced engine power values were 3.91, 3.69, and 3.29 kW for B10, B20, and B30, respectively, compared with the engine power value of jatropha methyl ester, which was 4.12 kW for diesel fuel (B00); meanwhile, the values were 3.70, 3.36, and 3.07 kW for B10, B20 and B30, respectively, for pongamia methyl ester. The findings suggest that the biodiesel derived from non-edible oils, such as pongamia and jatropha, could be a good alternative to diesel fuel. Full article
(This article belongs to the Special Issue Advanced Clean Energy Systems)
Show Figures

Figure 1

33 pages, 32167 KiB  
Article
Crankcase Explosions in Marine Diesel Engines: A Computational Study of Unvented and Vented Explosions of Lubricating Oil Mist
by Vladislav S. Ivanov, Sergey M. Frolov, Ilya V. Semenov and Marina S. Belotserkovskaya
J. Mar. Sci. Eng. 2024, 12(1), 82; https://doi.org/10.3390/jmse12010082 - 29 Dec 2023
Cited by 2 | Viewed by 3212
Abstract
Accidental crankcase explosions in marine diesel engines are presumably caused by the inflammation of lubricating oil in air followed by flame propagation and pressure buildup. This manuscript deals with the numerical simulation of internal unvented and vented crankcase explosions of lubricating oil mist [...] Read more.
Accidental crankcase explosions in marine diesel engines are presumably caused by the inflammation of lubricating oil in air followed by flame propagation and pressure buildup. This manuscript deals with the numerical simulation of internal unvented and vented crankcase explosions of lubricating oil mist using the 3D CFD approach for two-phase turbulent reactive flow with finite-rate turbulent/molecular mixing and chemistry. The lubricating oil mist was treated as either monodispersed with a droplet size of 60 μm or polydispersed with a trimodal droplet size distribution (10 μm (10 wt%), 250 μm (10 wt%), and 500 μm (80 wt%)). The mist was partly pre-evaporated with pre-evaporation degrees of 60%, 70%, and 80%. As an example, a typical low-speed two-stroke six-cylinder marine diesel engine was considered. Four possible accidental ignition sites were considered in different linked segments of the crankcase, namely the leakage of hot blow-by gases through the faulty stuffing box, a hot spot on the crankpin bearing, electrostatic discharge in the open space at the A-frame, and a hot spot on the main bearing. Calculations show that the most important parameter affecting the dynamics of crankcase explosion is the pre-evaporation degree of the oil mist, whereas the oil droplet size distribution plays a minor role. The most severe unvented explosion was caused by the hot spot ignition of the oil mist on the main bearing and flame breaking through the windows connecting the crankcase segments. The predicted maximum rate of pressure rise in the crankcase attained 0.6–0.7 bar/s, whereas the apparent turbulent burning velocity attained 7–8 m/s. The rate of heat release attained a value of 13 MW. Explosion venting caused the rate of pressure rise to decrease and become negative. However, vent opening does not lead to an immediate pressure drop in the crankcase: the pressure keeps growing for a certain time and attains a maximum value that can be a factor of 2 higher than the vent opening pressure. Full article
(This article belongs to the Special Issue Two-Phase Flows in Marine Propulsion and Engineering)
Show Figures

Figure 1

Back to TopTop