Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = two-electrode configuration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 (registering DOI) - 31 Jul 2025
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

15 pages, 2563 KiB  
Communication
H2O2 Sensitivity of Kv Channels in Hypoxic Pulmonary Vasoconstriction: Experimental Conditions Matter
by Ornella Tchokondu Yamdjeu, Anouk Begerow, Natascha Sommer, Martin Diener, Norbert Weissmann and Fenja Knoepp
Int. J. Mol. Sci. 2025, 26(14), 6857; https://doi.org/10.3390/ijms26146857 - 17 Jul 2025
Viewed by 224
Abstract
Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange but, when impaired, can result in life-threatening hypoxemia. Moreover, under conditions of generalized alveolar hypoxia, HPV can result in pulmonary hypertension. Voltage-gated K+ channels (Kv channels) are key to HPV: a change in the [...] Read more.
Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange but, when impaired, can result in life-threatening hypoxemia. Moreover, under conditions of generalized alveolar hypoxia, HPV can result in pulmonary hypertension. Voltage-gated K+ channels (Kv channels) are key to HPV: a change in the intracellular hydrogen peroxide (H2O2) levels during acute hypoxia is assumed to modulate these channels’ activity to trigger HPV. However, there are longstanding conflicting findings on whether H2O2 inhibits or activates Kv channels. Therefore, we hypothesized that H2O2 affects Kv channels depending on the experimental conditions, i.e., the H2O2 concentration, the channel’s subunit configuration or the experimental clamping potential in electrophysiological recordings. Therefore, cRNAs encoding the Kv1.5 channel and the auxiliary Kvβ subunits (Kvβ1.1, Kvβ1.4) were generated via in vitro transcription before being injected into Xenopus laevis oocytes for heterologous expression. The K+ currents of homomeric (Kv1.5) or heteromeric (Kv1.5/Kvβ1.1 or Kv1.5/Kvβ1.4) channels were assessed by two-electrode voltage clamp. The response of the Kv channels to H2O2 was markedly dependent on (a) the clamping potential, (b) the H2O2 concentration, and (c) the Kv channel’s subunit composition. In conclusion, our data highlight the importance of the choice of experimental conditions when assessing the H2O2 sensitivity of Kv channels in the context of HPV, thus providing an explanation for the long-lasting controversial findings reported in the literature. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

22 pages, 5030 KiB  
Article
Flexible Screen-Printed Gold Electrode Array on Polyimide/PET for Nickel(II) Electrochemistry and Sensing
by Norica Godja, Saied Assadollahi, Melanie Hütter, Pooyan Mehrabi, Narges Khajehmeymandi, Thomas Schalkhammer and Florentina-Daniela Munteanu
Sensors 2025, 25(13), 3959; https://doi.org/10.3390/s25133959 - 25 Jun 2025
Viewed by 450
Abstract
Nickel’s durability and catalytic properties make it essential in the aerospace, automotive, electronics, and fuel cell technology industries. Wastewater analysis typically relies on sensitive but costly techniques such as ICP-MS, AAS, and ICP-AES, which require complex equipment and are unsuitable for on-site testing. [...] Read more.
Nickel’s durability and catalytic properties make it essential in the aerospace, automotive, electronics, and fuel cell technology industries. Wastewater analysis typically relies on sensitive but costly techniques such as ICP-MS, AAS, and ICP-AES, which require complex equipment and are unsuitable for on-site testing. This study introduces a novel screen-printed electrode array with 16 chemically and, optionally, electrochemically coated Au electrodes. Its electrochemical response to Ni2+ was tested using Na2SO3 and ChCl-EG deep eutectic solvents as electrolytes. Ni2+ solutions were prepared from NiCl2·6H2O, NiSO4·6H2O, and dry NiCl2. In Na2SO3, the linear detection ranges were 20–196 mM for NiCl2·6H2O and 89–329 mM for NiSO4·6H2O. High Ni2+ concentrations (10–500 mM) were used to simulate industrial conditions. Two linear ranges were observed, likely due to differences in electrochemical behaviour between NiCl2·6H2O and NiSO4·6H2O, despite the identical Na2SO3 electrolyte. Anion effects (Cl vs. SO42−) may influence response via complexation or ion pairing. In ChCl-EG, a linear range of 0.5–10 mM (R2 = 0.9995) and a detection limit of 1.6 µM were achieved. With a small electrolyte volume (100–200 µL), nickel detection in the nanomole range is possible. A key advantage is the array’s ability to analyze multiple analytes simultaneously via customizable electrode configurations. Future research will focus on nickel detection in industrial wastewater and its potential in the multiplexed analysis of toxic metals. The array also holds promise for medical diagnostics and food safety applications using thiol/Au-based capture molecules. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 3061 KiB  
Article
A Tool for the Assessment of Electromagnetic Compatibility in Active Implantable Devices: The Pacemaker Physical Twin
by Cecilia Vivarelli, Eugenio Mattei, Federica Ricci, Sara D'Eramo and Giovanni Calcagnini
Bioengineering 2025, 12(7), 689; https://doi.org/10.3390/bioengineering12070689 - 24 Jun 2025
Viewed by 470
Abstract
Background: The increasing use of technologies operating between 10 and 200 kHz, such as RFID, wireless power transfer systems, and induction cooktops, raises concerns about electromagnetic interference (EMI) with cardiac implantable electronic devices (CIEDs). The mechanisms of interaction within this frequency range have [...] Read more.
Background: The increasing use of technologies operating between 10 and 200 kHz, such as RFID, wireless power transfer systems, and induction cooktops, raises concerns about electromagnetic interference (EMI) with cardiac implantable electronic devices (CIEDs). The mechanisms of interaction within this frequency range have been only partially addressed by both the scientific and regulatory communities. Methods: A physical twin of a pacemaker/implantable defibrillator (PM/ICD) was developed to experimentally assess voltages induced at the input stage by low-to-mid-frequency magnetic fields. The setup simulates the two sensing modalities programmable in PMs/ICDs and allows for the analysis of different implant configurations, lead geometries, and positions within a human body phantom. Results: Characterization of the physical twin demonstrated its capability to reliably measure induced voltages in the range of 5 mV to 1.5 V. Its application enabled the identification of factors beyond the implant’s induction area that contribute to the induced voltage, such as the electrode-tissue interface and body-induced currents. Conclusions: This physical twin represents a valuable tool for experimentally validating the mechanisms of EMI in CIEDs, providing insights beyond current standards. The data obtained can serve as a reference for the validation of numerical models and patient-specific digital twins. Moreover, it offers valuable information to guide future updates and revisions of international electromagnetic compatibility standards for CIEDs. Full article
Show Figures

Figure 1

21 pages, 4620 KiB  
Article
PVP-Engineered WO3/TiO2 Heterostructures for High-Performance Electrochromic Applications with Enhanced Optical Modulation and Stability
by Pritam J. Morankar, Rutuja U. Amate, Mrunal K. Bhosale and Chan-Wook Jeon
Polymers 2025, 17(12), 1683; https://doi.org/10.3390/polym17121683 - 17 Jun 2025
Viewed by 386
Abstract
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic [...] Read more.
In response to escalating global energy demands and environmental challenges, electrochromic (EC) smart windows have emerged as a transformative technology for adaptive solar modulation. Herein, we report the rational design and fabrication of a bilayer WO3/TiO2 heterostructure via a synergistic two-step strategy involving the electrochemical deposition of amorphous WO3 and the controlled hydrothermal crystallization of TiO2. Structural and morphological analyses confirm the formation of phase-pure heterostructures with a tunable TiO2 crystallinity governed by reaction time. The optimized WTi-5 configuration exhibits a hierarchically organized nanostructure that couples the fast ion intercalation dynamics of amorphous WO3 with the interfacial stability and electrochemical modulation capability of crystalline TiO2. Electrochromic characterization reveals pronounced redox activity, a high charge reversibility (98.48%), and superior coloration efficiency (128.93 cm2/C). Optical analysis confirms an exceptional transmittance modulation (ΔT = 82.16% at 600 nm) and rapid switching kinetics (coloration/bleaching times of 15.4 s and 6.2 s, respectively). A large-area EC device constructed with the WTi-5 electrode delivers durable performance, with only a 3.13% degradation over extended cycling. This study establishes interface-engineered WO3/TiO2 bilayers as a scalable platform for next-generation smart windows, highlighting the pivotal role of a heterostructure design in uniting a high contrast, speed, and longevity within a single EC architecture. Full article
(This article belongs to the Special Issue Smart Polymeric Materials for Electrochromic Energy Storage Systems)
Show Figures

Graphical abstract

19 pages, 5214 KiB  
Article
Application of Spread-Spectrum Induced Polarization (SSIP) Technology in W-Sn Mineral Exploration (Xitian Mining District, SE China)
by Xiaoqiang Li, Haifei Liu, Yingjie Zhao, Yuhao Zhang and Daowei Zhu
Appl. Sci. 2025, 15(12), 6480; https://doi.org/10.3390/app15126480 - 9 Jun 2025
Viewed by 362
Abstract
As strategic critical metals, tungsten (W) and tin (Sn) require efficient exploration methods for effective resource development. This study implemented an advanced spread-spectrum induced polarization (SSIP) method in the Xitian mining district of southern China. Through optimized survey system configuration (maximum current electrode [...] Read more.
As strategic critical metals, tungsten (W) and tin (Sn) require efficient exploration methods for effective resource development. This study implemented an advanced spread-spectrum induced polarization (SSIP) method in the Xitian mining district of southern China. Through optimized survey system configuration (maximum current electrode spacing of 5200 m, 12-channel acquisition, and five discrete frequency points), we achieved significant advancements: (1) a penetration depth of 1200 m, and (2) three- to five-times higher data acquisition efficiency compared to conventional symmetrical quadrupole arrays. Inversion results of resistivity and chargeability profiles from two parallel survey lines (total length 2.4 km) demonstrated an 85% spatial correlation between resistivity and chargeability anomalies, successfully identifying three mineralized veins. Drill-hole verification confirmed the presence of greisen veins (characterized by low resistivity <100 Ωm and high chargeability > 3%) and skarn veins (moderate resistivity 150–200 Ωm and chargeability 1.5–2%). The method exhibits a detection sensitivity of 0.5% chargeability contrast for deep-seated W-Sn polymetallic deposits, providing quantitative technical references for similar deposit exploration. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

43 pages, 9269 KiB  
Article
A Machine Learning Approach for Predicting Particle Spatial, Velocity, and Temperature Distributions in Cold Spray Additive Manufacturing
by Lurui Wang, Mehdi Jadidi and Ali Dolatabadi
Appl. Sci. 2025, 15(12), 6418; https://doi.org/10.3390/app15126418 - 7 Jun 2025
Viewed by 449
Abstract
Masked cold spray additive manufacturing (CSAM) is investigated for fabricating nickel-based electrodes with pyramidal pin-fins that enlarge the active area for the hydrogen-evolution reaction (HER). To bypass the high cost of purely CFD-driven optimization, we construct a two-stage machine learning (ML) framework trained [...] Read more.
Masked cold spray additive manufacturing (CSAM) is investigated for fabricating nickel-based electrodes with pyramidal pin-fins that enlarge the active area for the hydrogen-evolution reaction (HER). To bypass the high cost of purely CFD-driven optimization, we construct a two-stage machine learning (ML) framework trained on 48 high-fidelity CFD simulations. Stage 1 applies sampling and a K-nearest-neighbor kernel-density-estimation algorithm that predicts the spatial distribution of impacting particles and re-allocates weights in regions of under-estimation. Stage 2 combines sampling, interpolation and symbolic regression to extract key features, then uses a weighted random forest model to forecast particle velocity and temperature upon impact. The ML predictions closely match CFD outputs while reducing computation time by orders of magnitude, demonstrating that ML-CFD integration can accelerate CSAM process design. Although developed for a masked setup, the framework generalizes readily to unmasked cold spray configurations. Full article
Show Figures

Figure 1

41 pages, 6794 KiB  
Article
Effectiveness of Electrode Design Methodologies for Fast EDM Slotting of Thick Silicon Wafers
by Mahmud Anjir Karim and Muhammad Pervej Jahan
Appl. Sci. 2025, 15(11), 6374; https://doi.org/10.3390/app15116374 - 5 Jun 2025
Viewed by 452
Abstract
Silicon is the most commonly used material in the electronic industries due to its unique properties, which also make it very difficult to machine using conventional machining. Electrical discharge machining (EDM) is a non-traditional process that is gaining popularity for machining silicon, although [...] Read more.
Silicon is the most commonly used material in the electronic industries due to its unique properties, which also make it very difficult to machine using conventional machining. Electrical discharge machining (EDM) is a non-traditional process that is gaining popularity for machining silicon, although a slower machining rate is one of its limitations. This study investigates two electrode design strategies to enhance the efficiency of EDM by improving the material removal rates, reducing tool wear, and refining the quality of machined features. The first approach involves using graphite electrodes in various array configurations (1 × 4 to 6 × 4) and leg heights (0.2″ and 0.3″). The second approach employs hollow electrodes with differing wall thicknesses (0.04″, 0.08″, and 0.12″). The effects of these variables on performance were evaluated by maintaining constant EDM parameters. The results indicate that increasing the number of electrode legs improves the flushing conditions, resulting in shorter machining times. Meanwhile, the shorter electrode height outperforms the taller electrode, providing a higher machining speed. The thinnest wall thickness for hollow electrodes yielded the best performance due to the increased energy distribution. Both electrode design methodologies can be used for the mass fabrication of features with targeted profiles on silicon using the die-sinking EDM process. Full article
Show Figures

Figure 1

16 pages, 3324 KiB  
Article
Enhancing Automotive Performance: A Comparative Study of Spark Plug Electrode Configurations on Engine Behaviour and Emission Characteristics
by Essam B. Moustafa and Hossameldin Hussein
Vehicles 2025, 7(2), 55; https://doi.org/10.3390/vehicles7020055 - 4 Jun 2025
Viewed by 678
Abstract
This work systematically explores the impact of spark plug electrode number on engine performance and environmental effects, including noise, vibration, fuel consumption, and exhaust emissions. Indicators of combustion efficiency and mechanical health are engine vibration and noise; emissions directly affect ecological sustainability. Four-electrode [...] Read more.
This work systematically explores the impact of spark plug electrode number on engine performance and environmental effects, including noise, vibration, fuel consumption, and exhaust emissions. Indicators of combustion efficiency and mechanical health are engine vibration and noise; emissions directly affect ecological sustainability. Four-electrode spark plugs reduce vibration by 10%, noise by 5%, and fuel economy by 15%, according to experimental results showing they outperform single-electrode designs. Especially four-electrode designs also lower harmful hydrocarbon (HC) and carbon monoxide (CO) emissions by up to 20%, indicating more complete combustion and providing significant environmental benefits through lower air pollution and greenhouse gas emissions. Reduced exhaust temperatures of surface discharge plugs indicate better combustion efficiency and perhaps help with decarbonization. With poorer emission profiles, two- and three-electrode configurations raise fuel consumption, noise, and vibration. Reduced quenching effects, improved spark distribution, and accelerated flame propagation all help to explain enhanced combustion efficiency in multi-electrode designs and so affect the fundamental combustion chemistry. These results highlight the possibilities of four-electrode spark plugs to improve engine performance and reduce environmental impact, providing information for automotive engineers and legislators aiming at strict emissions standards (e.g., Euro 7) and sustainability targets. With an eye toward the chemical processes involved, additional study is required to investigate electrode geometry, material innovations, and lifetime environmental impacts. Full article
Show Figures

Figure 1

26 pages, 85427 KiB  
Article
Analysis of the Effects of Tandem Welding (Fronius TPS/i - TWIN) of S1100QL and S1300QL Steels
by Mateusz Karczewski, Krzysztof Mroczka, Sławomir Parzych, Piotr Bała, Grzegorz Cios, Janusz Mikuła and Grzegorz Jeż
Materials 2025, 18(11), 2577; https://doi.org/10.3390/ma18112577 - 31 May 2025
Viewed by 541
Abstract
S1100QL and S1300QL steels are classified as fine-grained steels with a low-carbon martensitic structure. Tandem welding is a method of creating a joint by melting two electrode wires in a one-behind-the-other configuration. This article presents the effects of creating dissimilar joints, elements of [...] Read more.
S1100QL and S1300QL steels are classified as fine-grained steels with a low-carbon martensitic structure. Tandem welding is a method of creating a joint by melting two electrode wires in a one-behind-the-other configuration. This article presents the effects of creating dissimilar joints, elements of varying thicknesses made from S1100QL and S1300QL steels. The analysis focused on temperature changes in the heat-affected zone (HAZ) during welding, as well as the macro and microstructure, and the properties of the joints created at welding speeds of 80, 90, and 100 cm/min. The shortest cooling time (t8/5) in the HAZ for S1300QL steel was 9.4 s, while the longest was 12.4 s. Thermal cycle simulations were performed for the analyzed materials, with a cooling time of 5 s. The test results demonstrated that TWIN welding was stable, and an optimum welding speed is 80 cm/min. The HAZ microstructure for the highest cooling speed (t8/5 = 5 s) of S1100QL steel contains, in addition to martensite, lower bainite, while S1300QL steel consists of martensite. Tempered martensite was also detected at slower cooling rates. For all speed variants, the impact energy is above 27 J at a test temperature of −40 °C. In turn, hardness tests showed that the base material for both steels has the highest hardness. However, the lowest hardness was found for the weld. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 1971 KiB  
Article
Safety of Simultaneous Scalp and Intracranial EEG and fMRI: Evaluation of RF-Induced Heating
by Hassan B. Hawsawi, Anastasia Papadaki, Vejay N. Vakharia, John S. Thornton, David W. Carmichael, Suchit Kumar and Louis Lemieux
Bioengineering 2025, 12(6), 564; https://doi.org/10.3390/bioengineering12060564 - 24 May 2025
Viewed by 662
Abstract
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue [...] Read more.
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue in the vicinity of electrodes. We have previously demonstrated that concurrent intracranial EEG (icEEG) and fMRI data acquisitions (icEEG-fMRI) can be performed with acceptable risk in specific conditions using a head RF transmit coil. Here, we estimate the potential additional heating associated with the addition of scalp EEG electrodes using a body transmit RF coil. In this study, electrodes were placed in clinically realistic positions on a phantom in two configurations: (1) icEEG electrodes only, and (2) following the addition of subdermal scalp electrodes. Heating was measured during MRI scans using a body transmit coil with a high specific absorption rate (SAR), TSE (turbo spin echo), and low SAR gradient-echo EPI (echo-planar imaging) sequences. During the application of the high-SAR sequence, the maximum temperature change for the intracranial electrodes was +2.8 °C. The addition of the subdural scalp EEG electrodes resulted in a maximum temperature change for the intracranial electrodes of 2.1 °C and +0.6 °C across the scalp electrodes. For the low-SAR sequence, the maximum temperature increase across all intracranial and scalp electrodes was +0.7 °C; in this condition, the temperature increases around the intracranial electrodes were below the detection level. Therefore, in the experimental conditions (MRI scanner, electrode, and wire configurations) used at our centre for icEEG-fMRI, adding six scalp EEG electrodes did not result in significant additional localised RF-induced heating compared to the model using icEEG electrodes only. Full article
(This article belongs to the Special Issue Multimodal Neuroimaging Techniques: Progress and Application)
Show Figures

Figure 1

11 pages, 947 KiB  
Article
Individualising Galvanic Vestibular Stimulation Further Improves Visuomotor Performance in Parkinson’s Disease
by Anjali Menon, Madhini Vigneswaran, Tina Zhang, Varsha Sreenivasan, Christina Kim and Martin J. McKeown
Bioengineering 2025, 12(5), 523; https://doi.org/10.3390/bioengineering12050523 - 14 May 2025
Viewed by 711
Abstract
Impaired motor function is a defining characteristic of Parkinson’s disease (PD). Galvanic vestibular stimulation (GVS) has been proposed as a potential non-invasive intervention to enhance motor performance; however, its efficacy depends on both stimulation parameters and electrode configuration. In this study, we examined [...] Read more.
Impaired motor function is a defining characteristic of Parkinson’s disease (PD). Galvanic vestibular stimulation (GVS) has been proposed as a potential non-invasive intervention to enhance motor performance; however, its efficacy depends on both stimulation parameters and electrode configuration. In this study, we examined the effects of two-pole and three-pole GVS configurations, utilising different stimulation parameters, on motor performance in individuals with PD. Twelve participants with PD were administered eight distinct subthreshold amplitude-modulated GVS stimuli, along with sham stimulation, while performing a visuomotor target tracking task. Analysis of tracking error demonstrated substantial inter-individual variability in response to different stimuli and electrode configurations. While the three-pole configuration yielded superior motor performance in some cases, the two-pole configuration was more effective in others. The most effective overall stimulus across all subjects, characterised by an envelope frequency of 30 Hz and a carrier frequency of 110 Hz, improved motor performance by 25% relative to the sham stimulus. Moreover, tailoring the stimulation parameters to the individual further enhanced performance by an additional 24%. These findings suggest that GVS can yield significant motor improvements in individuals with PD. Furthermore, individualised optimisation of stimulation parameters, including the selection of the appropriate electrode configuration, may further enhance therapeutic efficacy. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

20 pages, 6980 KiB  
Article
Electrodeposition of Au Nanoparticles on 2D Layered Materials and Their Applications in Electrocatalysis of Nitrite
by Oana Elena Carp, Mirela-Fernanda Zaltariov, Mariana Pinteala and Adina Arvinte
Chemosensors 2025, 13(5), 180; https://doi.org/10.3390/chemosensors13050180 - 12 May 2025
Viewed by 1002
Abstract
This study presents a comparative analysis of gold nanoparticles electrodeposited on different two-dimensional materials used as electrode substrates, graphene (Gr) and MoS2, or co-deposited with the metallic material MoS2. The morphological and electrochemical data demonstrate the efficiency of the [...] Read more.
This study presents a comparative analysis of gold nanoparticles electrodeposited on different two-dimensional materials used as electrode substrates, graphene (Gr) and MoS2, or co-deposited with the metallic material MoS2. The morphological and electrochemical data demonstrate the efficiency of the electrodeposition process and the preferability of gold nanoparticles for certain attachment sites depending on the nature of the material used as a substrate and the deposition method used. The electrocatalytic activity of the gold nanoparticles obtained in these configurations was evaluated via the oxidation of nitrite ions (NO2), using both qualitative and quantitative approaches, by cyclic voltammetry and amperometry techniques. The electrocatalytic activity of gold nanoparticles co-deposited with MoS2 is superior compared to that of gold nanoparticles deposited either on bare gold electrodes or on 2D materials (graphene and MoS2), showing good performance with a specific sensitivity of 1.043 μA µM−1 cm−2 on the linear range of 0.5–600 µM nitrite, with a limit of detection of 0.16 µM and good anti-interference ability. Full article
Show Figures

Figure 1

16 pages, 14359 KiB  
Article
eBoosterTM: The First Electrochemical Disinfection System to Reduce Microbial Contamination in Drinking Water Networks Without Maintenance
by Sergio Ferro, Daniel Vallelonga, Daniel Romeo, Basil Mondello, Gusius Gus, Paul Caruso and Tony Amorico
Water 2025, 17(9), 1361; https://doi.org/10.3390/w17091361 - 30 Apr 2025
Viewed by 569
Abstract
Ensuring microbial safety in drinking water distribution networks is a critical challenge, particularly in healthcare facilities where waterborne infections pose significant risks. This study presents the implementation of the eBoosterTM electrochemical disinfection system, developed by Ecas4 Australia, as a maintenance-free solution for [...] Read more.
Ensuring microbial safety in drinking water distribution networks is a critical challenge, particularly in healthcare facilities where waterborne infections pose significant risks. This study presents the implementation of the eBoosterTM electrochemical disinfection system, developed by Ecas4 Australia, as a maintenance-free solution for microbial control in hospital water supplies. Unlike previous electrochemical disinfection technologies, which suffered from scale buildup and required frequent maintenance, the eBoosterTM system utilizes periodic polarity reversal to prevent electrode fouling, enabling continuous operation without external intervention. The technology has been adopted by several regional hospitals in Queensland, Australia, and this paper focuses on Dalby Hospital, where two eBoosterTM systems were installed at water meters to provide residual disinfection in an in-line configuration. Performance data collected over nearly 2 years demonstrated consistent chlorine generation for microbial control with minimal energy consumption (less than 2 kWh/day). The system’s ability to adapt to fluctuating flow rates while maintaining consistent disinfectant levels highlights its reliability in real-world applications. This work emphasizes the potential of electrochemical disinfection as a sustainable alternative to chemical dosing in drinking water systems, offering a maintenance-free, cost-effective, and environmentally friendly solution for long-term microbial safety in healthcare and other critical settings. Full article
(This article belongs to the Special Issue Water Pollutants and Human Health: Challenges and Perspectives)
Show Figures

Figure 1

16 pages, 2090 KiB  
Article
Modeling an All-Copper Redox Flow Battery for Microgrid Applications: Impact of Current and Flow Rate on Capacity Fading and Deposition
by Mirko D’Adamo, Wouter Badenhorst, Lasse Murtomäki, Paula Cordoba, Mohamed Derbeli, Jose A. Saez-Zamora and Lluís Trilla
Energies 2025, 18(8), 2084; https://doi.org/10.3390/en18082084 - 17 Apr 2025
Viewed by 438
Abstract
The copper redox flow battery (CuRFB) stands out as a promising hybrid redox flow battery technology, offering significant advantages in electrolyte stability. Within the CuBER H-2020 project framework, this study addresses critical phenomena such as electrodeposition at the negative electrode during charging and [...] Read more.
The copper redox flow battery (CuRFB) stands out as a promising hybrid redox flow battery technology, offering significant advantages in electrolyte stability. Within the CuBER H-2020 project framework, this study addresses critical phenomena such as electrodeposition at the negative electrode during charging and copper crossover through the membrane, which influence capacity fading. A comprehensive two-dimensional physicochemical model of the CuRFB cell was developed using COMSOL Multiphysics, providing insights into the distribution of electroactive materials over time. The model was validated against experimental cycling data, demonstrating a Root Mean Square Error (RMSE) of 0.0212 in voltage estimation. Least-squares parameter estimation, utilizing Bound Optimization by Quadratic Approximation, was conducted to determine active material diffusivities and electron transfer coefficients. The results indicate that higher current densities and lower flow rates lead to increased copper deposition near the inlet, significantly impacting the battery’s State of Health (SoH). These findings highlight the importance of considering fluid dynamics and ion concentration distribution to improve battery performance and longevity. The study’s insights are crucial for optimizing and scaling up CuRFB operations, guiding potential cell-scale-up strategies into stack-level configurations. Full article
(This article belongs to the Special Issue Power Quality and Hosting Capacity in the Microgrids)
Show Figures

Figure 1

Back to TopTop