Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = turbulent premixed combustion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5629 KiB  
Article
A Numerical Investigation of the Flame Characteristics of a CH4/NH3 Blend Under Different Swirl Intensity and Diffusion Models
by Ahmed Adam, Ayman Elbaz, Reo Kai and Hiroaki Watanabe
Energies 2025, 18(15), 3921; https://doi.org/10.3390/en18153921 - 23 Jul 2025
Viewed by 180
Abstract
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios [...] Read more.
This study investigates the effects of diffusion modeling and swirl intensity on flow fields and NO emissions in CH4/NH3 non-premixed swirling flames using large eddy simulations (LESs). Simulations are performed for a 50/50 ammonia–methane blend at three global equivalence ratios of 0.77, 0.54, and 0.46 and two swirl numbers of 8 and 12, comparing the unity Lewis number (ULN) and mixture-averaged diffusion (MAD) models against the experimental data includes OH-PLIF and ON-PLIF reported in a prior study by the KAUST group. Both models produce similar flow fields, but the MAD model alters the flame structure and species distributions due to differential diffusion (DD) and limitations in its Flamelet library. Notably, the MAD library lacks unstable flame branch solutions, leading to extensive interpolation between extinction and stable branches. This results in overpredicted progress variable source terms and reactive scalars, both within and beyond the flame zone. The ULN model better reproduces experimental OH profiles and localizes NO formation near the flame front, whereas the MAD model predicts broader NO distributions due to nitrogen species diffusion. Higher swirl intensities shorten the flame and shift NO production upstream. While a low equivalence ratio provides enough air for good mixing, lower ammonia and higher NO contents in exhaust gases, respectively. Full article
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 286
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

18 pages, 2250 KiB  
Article
Combustion Characteristics of Liquid Ammonia Direct Injection Under High-Pressure Conditions Using DNS
by Ziwei Huang, Haiou Wang, Qian Meng, Kun Luo and Jianren Fan
Energies 2025, 18(9), 2228; https://doi.org/10.3390/en18092228 - 27 Apr 2025
Viewed by 521
Abstract
As a zero-carbon fuel, ammonia can be directly employed in its liquid form. However, its unique physical and chemical properties pose challenges to its application in engines. The direct injection of liquid ammonia is considered a promising technique for internal combustion engines, yet [...] Read more.
As a zero-carbon fuel, ammonia can be directly employed in its liquid form. However, its unique physical and chemical properties pose challenges to its application in engines. The direct injection of liquid ammonia is considered a promising technique for internal combustion engines, yet its combustion behavior is still not well understood. In this work, the combustion characteristics of liquid ammonia direct injection under high-pressure conditions were investigated using direct numerical simulation (DNS) in a Eulerian–Lagrangian framework. The ammonia spray was injected via a circular nozzle and underwent combustion under high-temperature and high-pressure conditions, resulting in complex turbulent spray combustion. It was found that the peaks of mass fraction of important species, heat release rate, and gaseous temperature increase with increasing axial distance, and the peaks shifted to richer mixtures. The distribution of scalar dissipation rate at various locations is nearly log-normal. The budget analysis of species transport equations shows that the reaction term is much larger than the diffusion term, suggesting that auto-ignition plays a predominant role in turbulent ammonia spray flame stabilization. It can be observed that both non-premixed and premixed combustion modes co-exist in the ammonia spray combustion. Moreover, the contribution of premixed combustion becomes more significant as the axial distance increases. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

29 pages, 9390 KiB  
Article
Investigation of Sustainable Combustion Processes of the Industrial Gas Turbine Injector
by Hafiz Ali Haider Sehole, Ghazanfar Mehdi, Rizwan Riaz and Adnan Maqsood
Processes 2025, 13(4), 960; https://doi.org/10.3390/pr13040960 - 24 Mar 2025
Viewed by 506
Abstract
This study investigates the combustion dynamics of methane in a dual swirl combustor, focusing on improving combustion efficiency and understanding flow features. Methane, as a conventional fuel, offers high energy content and relatively low carbon emissions compared to other hydrocarbons, making it a [...] Read more.
This study investigates the combustion dynamics of methane in a dual swirl combustor, focusing on improving combustion efficiency and understanding flow features. Methane, as a conventional fuel, offers high energy content and relatively low carbon emissions compared to other hydrocarbons, making it a promising choice for sustainable energy solutions. Accurate numerical models are essential for the optimization of combustion processes, particularly in the design of combustion engines utilizing methane. In this work, we employ a partially premixed combustion model based on a mixture fraction and progress-variable approach to simulate methane combustion dynamics. Turbulent behavior is modeled using Detached-Eddy Simulation (DES), with the DLR dual swirl combustor serving as the geometric model. The simulations are performed at a global equivalence ratio of 0.65 for partially premixed methane. The results show good validation against experimental data, including time-averaged velocity components, turbulent fluctuations, mixture fraction, and temperature profiles. Additionally, the analysis of instantaneous flow features reveals the presence of a precessing vortex core. This study provides a robust numerical methodology, validated against experimental data, offering valuable insights into the combustion behavior of methane in dual swirl combustors and its industrial applicability. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Figure 1

42 pages, 25798 KiB  
Article
CFD Simulation of Pre-Chamber Spark-Ignition Large Bore CNG Engine: Model Development, Practical Applications, and Experimental Validation
by Soo-Jin Jeong, Seokpan Seo and Seong-Joon Moon
Energies 2025, 18(7), 1600; https://doi.org/10.3390/en18071600 - 23 Mar 2025
Viewed by 702
Abstract
This study develops and validates a three-dimensional CFD model for a 12 L large-bore active-type pre-chamber spark-ignition (PCSI) engine fueled by natural gas. The model incorporates an advanced Extended Coherent Flamelet Model (ECFM-3Z) with a tuned stretch factor to capture complex turbulence–flame interactions, [...] Read more.
This study develops and validates a three-dimensional CFD model for a 12 L large-bore active-type pre-chamber spark-ignition (PCSI) engine fueled by natural gas. The model incorporates an advanced Extended Coherent Flamelet Model (ECFM-3Z) with a tuned stretch factor to capture complex turbulence–flame interactions, flame propagation, and pollutant formation under ultra-lean conditions. By systematically varying pre-chamber geometries—specifically the orifice diameter, cone angle, diverging tapered nozzle, and volume—the simulations assess their effects on combustion dynamics, heat release rates, turbulent jet penetration, and emissions (NOx and CO). Model predictions of in-cylinder and pre-chamber pressure profiles, combustion phasing, and emission trends are validated against experimental data. The results demonstrate that optimizing pre-chamber and orifice configurations enhances turbulent mixing, accelerates flame development, and reduces local high-temperature zones, thereby suppressing NOx and CO formation. Although some discrepancies in NOx predictions persist due to limitations in current turbulence–chemistry models, the findings offer valuable insights for the design of high-efficiency, low-emission PCSI engines. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology)
Show Figures

Figure 1

21 pages, 4819 KiB  
Article
Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators
by Fatemeh Bagherighajari, Mohammadmahdi Abdollahzadehsangroudi and José C. Páscoa
Actuators 2025, 14(2), 47; https://doi.org/10.3390/act14020047 - 22 Jan 2025
Viewed by 936
Abstract
Enhancing the combustion efficiency and flame stability in conventional systems is essential for reducing carbon emissions and advancing sustainable energy solutions. In this context, electrohydrodynamic plasma actuators offer a promising active control method for modifying and regulating flame characteristics. This study presents a [...] Read more.
Enhancing the combustion efficiency and flame stability in conventional systems is essential for reducing carbon emissions and advancing sustainable energy solutions. In this context, electrohydrodynamic plasma actuators offer a promising active control method for modifying and regulating flame characteristics. This study presents a numerical investigation into the effects of a ring-type plasma actuator positioned on the co-flow air side of a non-premixed turbulent methane/air combustion system—an approach not previously reported in the literature. The ring-type plasma actuator was designed by placing electrodes along the perimeter of the small diameter wall of the air duct. The impact of the plasma actuator on the reacting flow field within the burner was analyzed, with a focus on its influence on the flow dynamics and flame structure. The results, visualized through velocity and temperature contours, as well as flow streamlines, provide insight into the actuator’s effect on flame behavior. Two operating modes of the plasma actuators were evaluated: co-flow mode, where the aerodynamic effect of the plasma actuators was directed downstream; and counter-flow mode, where the effects were directed upstream. The findings indicate that the co-flow actuation positively reduces the flame height and enhances the flame anchoring at the root, whereas counter-flow actuation slightly weakens the flame root. Numerical simulations further revealed that co-flow actuation marginally increases the energy release by approximately 0.13%, while counter-flow actuation reduces the energy release by around 7.8%. Full article
Show Figures

Figure 1

49 pages, 10447 KiB  
Review
A Comprehensive Review of Flamelet Methods: Future Directions and Emerging Challenges
by Mohammed Niyasdeen Nejaamtheen and Jeong-Yeol Choi
Energies 2025, 18(1), 45; https://doi.org/10.3390/en18010045 - 26 Dec 2024
Cited by 3 | Viewed by 1999
Abstract
Understanding and accurately modeling combustion processes in engines across a wide range of operating conditions is critical for advancing both subsonic and supersonic propulsion technologies. These engines, characterized by highly complex flow fields, varying degrees of compressibility, and intricate chemical reaction mechanisms, present [...] Read more.
Understanding and accurately modeling combustion processes in engines across a wide range of operating conditions is critical for advancing both subsonic and supersonic propulsion technologies. These engines, characterized by highly complex flow fields, varying degrees of compressibility, and intricate chemical reaction mechanisms, present unique challenges for computational combustion models. Among the various approaches, flamelet models have gained prominence due to their efficiency and intuitive nature. However, traditional flamelet models, which often assume fixed boundary conditions, face significant difficulties. This review article provides a comprehensive overview of the current state of incompressible flamelet modeling, with a focus on recent advancements and their implications for turbulent combustion simulations. The discussion extends to advanced topics such as the modeling of partially premixed combustion, the definition of reaction progress variables, efficient temperature computation, and the handling of mixture fraction variance. Despite the inherent challenges and limitations of flamelet modeling, particularly in 1D applications, the approach remains an attractive option due to its computational efficiency and applicability across a wide range of combustion scenarios. The review also highlights ongoing debates within the research community regarding the validity of the flamelet approach, particularly in high-speed flows, and suggests that while alternative methods may offer more detailed modeling, they often come with prohibitive computational costs. By synthesizing historical context, recent developments, and future directions, this article serves as a valuable resource for both novice and experienced combustion modelers. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

18 pages, 42509 KiB  
Article
Effect of Ultrafine Water Mist with K2CO3 Additives on the Combustion and Explosion Characteristics of Methane/Hydrogen/Air Premixed Flames
by Haoliang Zhang, Hongfu Mi, Peng Shao, Nan Luo, Kaixuan Liao, Wenhe Wang, Yulong Duan and Yihui Niu
Processes 2024, 12(12), 2918; https://doi.org/10.3390/pr12122918 - 20 Dec 2024
Viewed by 1158
Abstract
To ensure the safe utilization of hydrogen-enriched natural gas (HENG), it is essential to explore effective explosion suppressants to prevent and mitigate potential explosions. This study experimentally investigates the impact of ultrafine water mist containing K2CO3 additives on the explosion [...] Read more.
To ensure the safe utilization of hydrogen-enriched natural gas (HENG), it is essential to explore effective explosion suppressants to prevent and mitigate potential explosions. This study experimentally investigates the impact of ultrafine water mist containing K2CO3 additives on the explosion characteristics of methane/hydrogen/air premixed combustion. The influence of varying K2CO3 concentrations on pressure rise rates and flame propagation was analyzed across different hydrogen blending ratios. The results demonstrate that the addition of K2CO3 to ultrafine water mist significantly enhances its suppression effects. The peak overpressure decreased by 41.60%, 56.15%, 64.94%, and 72.98%, the flame speed decreased by 30.66%, 70.56%, 46.72%, and 65.65%, and the flame propagation time was prolonged by 25%, 20.83%, 22.92%, and 18.75%, respectively, for different hydrogen blending ratios, showing a similar trend. However, the suppression effectiveness diminishes under high hydrogen blending ratios and low K2CO3 concentrations. Further analysis using thermogravimetric infrared spectroscopy and chemical kinetics simulations revealed that the heat release rate and the generation rate of active free radicals significantly decrease after the addition of K2CO3 to the ultrafine water mist. The recombination cycle of KOH → K → KOH, formed by reactions (R211: K + OH + M = KOH + M) and (R259: H + KOH = K + H2O), continuously combines active free radicals (·O, ·OH) into stable product molecules, such as H2O. However, at low K2CO3 concentrations, reaction R211, which suppresses laminar combustion sensitivity and consumes a larger quantity of active free radicals, does not dominate, leading to a reduced suppression effect of K2CO3 ultrafine water mist. Several factors during the reaction process also adversely affect the performance of K2CO3-containing ultrafine water mist. These factors include the premature onset of laminar flame instability at low K2CO3 concentrations, the increased flame-front propagation speed due to the addition of hydrogen to methane, which shortens the residence time of K2CO3 in the reaction zone, and the turbulence caused by unvaporized droplets. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 11896 KiB  
Article
Composition and Injection Angle Effects on Combustion of an NH3/H2/N2 Jet in an Air Crossflow
by Donato Cecere, Matteo Cimini, Simone Carpenella, Jan Caldarelli and Eugenio Giacomazzi
Energies 2024, 17(20), 5032; https://doi.org/10.3390/en17205032 - 10 Oct 2024
Viewed by 1408
Abstract
This study explores the combined effects of fuel composition and injection angle on the combustion behavior of an NH3/H2/N2 jet in an air crossflow by means of high-fidelity Large Eddy Simulations (LESs). Four distinct fuel mixtures [...] Read more.
This study explores the combined effects of fuel composition and injection angle on the combustion behavior of an NH3/H2/N2 jet in an air crossflow by means of high-fidelity Large Eddy Simulations (LESs). Four distinct fuel mixtures derived from ammonia partial decomposition, with hydrogen concentrations ranging from 15% to 60% by volume, are injected at angles of 90° and 75° relative to the crossflow, and at operating conditions frequently encountered in micro-gas turbines. The influence of strain on peak flame temperature and NO formation in non-premixed, counter-flow laminar flames is first examined. Then, the instantaneous flow features of each configuration are analyzed focusing on key turbulent structures, and time-averaged spatial distributions of temperature and NO in the reacting region are provided. In addition, statistical analysis on the formation pathways of NO and H2 is performed, revealing unexpected trends: in particular, the lowest hydrogen content flame yields higher temperatures and NO production due to the enhancement of the ammonia-to-hydrogen conversion chemical mechanism, thus promoting flame stability. As the hydrogen concentration increases, this conversion decreases, leading to lower NO emissions and unburned fuel, particularly at the 75° injection angle. Flames with a 90° injection angle exhibit a more pronounced high-temperature recirculation zone, further driving NO production compared with the 75° cases. These findings provide valuable insights into optimizing ammonia–hydrogen fuel blends for high-efficiency, low-emission combustion in gas turbines and other applications, highlighting the need for a careful balance between fuel composition and injection angle. Full article
Show Figures

Figure 1

16 pages, 3632 KiB  
Article
Numerical Study of High-g Combustion Characteristics in a Channel with Backward-Facing Steps
by Zhen Gong and Hao Tang
Aerospace 2024, 11(9), 767; https://doi.org/10.3390/aerospace11090767 - 19 Sep 2024
Cited by 2 | Viewed by 945
Abstract
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of [...] Read more.
High gravity (high-g) combustion can significantly increase flame propagation speed, thereby potentially shortening the axial length of aero-engines and increasing their thrust-to-weight ratio. In this study, we utilized the large eddy simulation model to investigate the combustion characteristics and flame morphology evolution of premixed propane–air flames in a channel with a backward-facing step. The study reveals that both the increase in centrifugal force and flow velocity can enhance pressure fluctuations during combustion and increase the turbulence intensity. The presence of centrifugal force promotes the occurrence of Rayleigh–Taylor instability (RTI) between hot and cold fluids. The combined effects of RTI and Kelvin–Helmholtz instability (KHI) enhance the disturbance between hot and cold fluids, shorten the fuel combustion time, and intensify the dissipation of large-scale vortices. The increase in fluid flow velocity can raise the flame front’s hydrodynamic stretch rate, thereby enhancing the turbulence level during combustion to a certain extent and increasing the fuel consumption rate. When a strong centrifugal force is applied, the global flame propagation speed can be more than doubled. Within a certain range, the increase in high-g field strength can enhance the intensity of RTI and accelerate the transition of RTI to the nonlinear stage. Full article
Show Figures

Figure 1

14 pages, 1561 KiB  
Article
Effects of Partial Premixing and Coflow Temperature on Flame Stabilization of Lifted Jet Flames of Dimethyl Ether in a Vitiated Coflow Based on Stochastic Multiple Mapping Conditioning Approach
by Sanjeev Kumar Ghai, Rajat Gupta and Santanu De
Fluids 2024, 9(6), 125; https://doi.org/10.3390/fluids9060125 - 26 May 2024
Viewed by 1165
Abstract
The Reynolds-averaged Navier–Stokes (RANS)-based stochastic multiple mapping conditioning (MMC) approach has been used to study partially premixed jet flames of dimethyl ether (DME) introduced into a vitiated coflowing oxidizer stream. This study investigates DME flames with varying degrees of partial premixing within a [...] Read more.
The Reynolds-averaged Navier–Stokes (RANS)-based stochastic multiple mapping conditioning (MMC) approach has been used to study partially premixed jet flames of dimethyl ether (DME) introduced into a vitiated coflowing oxidizer stream. This study investigates DME flames with varying degrees of partial premixing within a fuel jet across different coflow temperatures, delving into the underlying flame structure and stabilization mechanisms. Employing a turbulence k-ε model with a customized set of constants, the MMC technique utilizes a mixture fraction as the primary scalar, mapped to the reference variable. Solving a set of ordinary differential equations for the evolution of Lagrangian stochastic particles’ position and composition, the molecular mixing of these particles is executed using the modified Curl’s model. The lift-off height (LOH) derived from RANS-MMC simulations are juxtaposed with experimental data for different degrees of partial premixing of fuel jets and various coflow temperatures. The RANS-MMC methodology adeptly captures LOH for pure DME jets but exhibits an underestimation of flame LOH for partially premixed jet scenarios. Notably, as the degree of premixing escalates, a conspicuous underprediction in LOH becomes apparent. Conditional scatter and contour plots of OH and CH2O unveil that the propagation of partially premixed flames emerges as the dominant mechanism at high coflow temperatures, while autoignition governs flame stabilization at lower coflow temperatures in partially premixed flames. Additionally, for pure DME flames, autoignition remains the primary flame stabilization mechanism across all coflow temperature conditions. The study underscores the importance of considering the degree of premixing in partially premixed jet flames, as it significantly impacts flame stabilization mechanisms and LOH, thereby providing crucial insights into combustion dynamics for various practical applications. Full article
Show Figures

Figure 1

14 pages, 5755 KiB  
Article
Influence of Side Duct Position and Venting Position on the Explosion and Combustion Characteristics of Premixed Methane/Air
by Junping Cheng, Yongmei Hao, Zhixiang Xing, Rui Song, Fan Wu and Sunqi Zhuang
Processes 2024, 12(3), 538; https://doi.org/10.3390/pr12030538 - 8 Mar 2024
Cited by 2 | Viewed by 1035
Abstract
In order to explore the influence of the side duct position and venting position on the premixed combustion and explosion characteristics of methane/air, a premixed combustion and explosion experiment of methane/air and a simulation of an explosion of the same size were carried [...] Read more.
In order to explore the influence of the side duct position and venting position on the premixed combustion and explosion characteristics of methane/air, a premixed combustion and explosion experiment of methane/air and a simulation of an explosion of the same size were carried out in a tube with an internal size of 2000 mm × 110 mm × 110 mm. The results showed that the side duct could change the flame structure and accelerate the flame inside the tube. The maximum increase ratio of the flame propagation speed was 106.1%. The side duct had a certain venting effect on the explosion pressure. For different position cases, when the venting film was placed over the bottom section, the maximum overpressure first decreased and then increased. When the venting film was placed over the middle section and the top section, the maximum overpressure first increased and then decreased, and the change trend of the top section was stronger. Turbulence mostly occurred inside the side duct when the venting film of the side duct ruptured. There is no linear relationship between the maximum flame propagation velocity within the tube and the maximum turbulent kinetic energy inside the side duct. The two had a relationship that could be fitted to the Gauss function; the correlation coefficient R2 was 0.836, and the minimum value was at (4767.72, 17.918), suggesting that the side duct had the best venting effect on the flame inside the duct at this maximum turbulent kinetic energy. The analysis results of the influence of the location of the vent on the maximum flame propagation velocity inside the tube are helpful for optimizing the layout design of the underground space, reducing the combustion efficiency, and ensuring the safety of the process. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 4266 KiB  
Article
Timescales Associated with the Evolution of Reactive Scalar Gradient in Premixed Turbulent Combustion: A Direct Numerical Simulation Analysis
by Nilanjan Chakraborty and Cesar Dopazo
Fire 2024, 7(3), 73; https://doi.org/10.3390/fire7030073 - 29 Feb 2024
Cited by 1 | Viewed by 1663
Abstract
The fractional change in the reaction progress variable gradient depends on the flow normal straining within the flame and also upon the corresponding normal gradients of the reaction rate and its molecular diffusion transport. The statistical behaviours of the normal strain rate and [...] Read more.
The fractional change in the reaction progress variable gradient depends on the flow normal straining within the flame and also upon the corresponding normal gradients of the reaction rate and its molecular diffusion transport. The statistical behaviours of the normal strain rate and the contributions arising from the normal gradients of the reaction rate and molecular diffusion rate within the flame were analysed by means of a Direct Numerical Simulation (DNS) database of statistically planar turbulent premixed flames ranging from the wrinkled/corrugated flamelets regime to the thin reaction zones regime. The interaction of flame-normal straining with the flame-normal gradient of molecular diffusion rate was found to govern the reactive scalar gradient transport in the preheat zone, where comparable timescales for turbulent straining and molecular diffusion are obtained for small values of Karlovitz numbers. However, the molecular diffusion timescale turns out to be smaller than the turbulent straining timescale for high values of Karlovitz numbers. By contrast, the reaction and hot product zones of the flame remain mostly unaffected by turbulence, and the reactive scalar gradient transport in this zone is determined by the interaction between the flame-normal gradients of molecular diffusion and chemical reaction rates. Full article
(This article belongs to the Special Issue Combustion and Fire I)
Show Figures

Figure 1

14 pages, 2351 KiB  
Article
NO and CO Emission Characteristics of Laminar and Turbulent Counterflow Premixed Hydrogen-Rich Syngas/Air Flames
by Lei Cheng, Yanming Chen, Yebin Pei, Guozhen Sun, Jun Zou, Shiyao Peng and Yang Zhang
Processes 2024, 12(3), 475; https://doi.org/10.3390/pr12030475 - 26 Feb 2024
Cited by 2 | Viewed by 1564
Abstract
Burning hydrogen-rich syngas fuels derived from various sources in combustion equipment is an effective pathway to enhance energy security and of significant practical implications. Emissions from the combustion of hydrogen-rich fuels have been a main concern in both academia and industry. In this [...] Read more.
Burning hydrogen-rich syngas fuels derived from various sources in combustion equipment is an effective pathway to enhance energy security and of significant practical implications. Emissions from the combustion of hydrogen-rich fuels have been a main concern in both academia and industry. In this study, the NO and CO emission characteristics of both laminar and turbulent counterflow premixed hydrogen-rich syngas/air flames were experimentally and numerically studied. The results showed that for both laminar and turbulent counterflow premixed flames, the peak NO mole fraction increased as the equivalence ratio increased from 0.6 to 1.0 and decreased as the strain rate increased. Compared with the laminar flames at the same bulk flow velocity, turbulent flames demonstrated a lower peak NO mole fraction but broader NO formation region. Using the analogy theorem, a one-dimensional turbulent counterflow flame model was established, and the numerical results indicated that the small-scale turbulence-induced heat and mass transport enhancements significantly affected NO emission. Considering NO formation at the same level of fuel consumption, the NO formation of the turbulent flame was significantly lower than that of the laminar flame at the same level of fuel consumption, implying that the turbulence-induced heat and mass transfer enhancement favored NOx suppression. Full article
(This article belongs to the Special Issue Modeling and Optimization of Gas-Solid Reaction Vessels)
Show Figures

Figure 1

19 pages, 12987 KiB  
Article
Large Eddy Simulation of the Effect of Hydrogen Ratio on the Flame Stabilization and Blow-Off Dynamics of a Lean CH4/H2/Air Bluff-Body Flame
by Lei Cheng, Meng Zhang, Shiyao Peng, Jinhua Wang and Zuohua Huang
Appl. Sci. 2024, 14(5), 1846; https://doi.org/10.3390/app14051846 - 23 Feb 2024
Cited by 3 | Viewed by 1811
Abstract
This study investigated the flame structure and dynamics of a bluff-body flame when numerically close to blow-off conditions. This includes the impact of the hydrogen ratio on lean CH4/H2/air flame stabilization and blow-off characteristics. In this study, we assessed [...] Read more.
This study investigated the flame structure and dynamics of a bluff-body flame when numerically close to blow-off conditions. This includes the impact of the hydrogen ratio on lean CH4/H2/air flame stabilization and blow-off characteristics. In this study, we assessed the impacts of four different hydrogen ratios: 0%, 30%, 60%, and 90%. Large eddy simulation (LES) was coupled with a thickened flame (TF) model to determine the turbulent combustion using a 30-species skeletal mechanism. The numerical results were progressively validated using OH-PLIF and PIV techniques. The results obtained from the numerical simulations showed minor differences with the experimental data on the velocity field and flame structure for all conditions. The presented results reveal that the flame is stabilized in higher-strain-rate spots more easily in the presence of high hydrogen ratios. Moreover, the flame location moves away from the concentrated vortex area with an increasing hydrogen ratio. The results of our blow-off investigation indicate that the blow-off sequence of a premixed bluff-body flame can be separated into two stages. The entire blow-off process becomes shorter with an increase in the hydrogen ratio. The primary reason for global extinction is a reduction in the heat release rate, and enstrophy analysis implies that blending hydrogen can reduce the enstrophy values of flames at the downstream locations. The dilatation and baroclinic torque terms decrease close to blow-off, but their decline is not significant in high-hydrogen-ratio conditions. Full article
(This article belongs to the Special Issue Advances in Combustion and Renewable Energy)
Show Figures

Figure 1

Back to TopTop