Effect of Ultrafine Water Mist with K2CO3 Additives on the Combustion and Explosion Characteristics of Methane/Hydrogen/Air Premixed Flames
Abstract
:1. Introduction
2. Experimental and Simulation Methods
2.1. Experimental Setup and Procedure
2.2. Numerical Methods
3. Results and Discussion
3.1. Explosion Pressure
3.2. Flame Propagation Velocity
3.3. Deflagration Flame Structure
3.4. Thermodynamic and Kinetic Characteristics
3.4.1. Thermogravimetric Infrared Analysis of K2CO3
3.4.2. Sensitivity Analysis of Laminar Burning Velocity
3.4.3. Analysis of Heat Release Rate
3.4.4. Analysis of Explosion Products
4. Mechanism of Ultrafine Water Mist with K2CO3 Additives
5. Conclusions
- (a)
- Ultrafine water mist containing K2CO3 additives exhibits a significantly better suppression performance on methane–hydrogen–air mixtures compared to ultrafine water mist alone, resulting in a reduction in the explosion overpressure, a decrease in the flame propagation speed, and an extension of the flame propagation time. Specifically, the peak overpressure decreased by 41.60%, 56.15%, 64.94%, and 72.98%, the flame speed was reduced by 30.66%, 70.56%, 46.72%, and 65.65%, and the flame propagation time was prolonged by 25%, 20.83%, 22.92%, and 18.75% at different hydrogen blending ratios. The suppression effectiveness decreases in the following order: the addition of 15% K2CO3 > the addition of 9% K2CO3 > the addition of 3% K2CO3 > no K2CO3 additive.
- (b)
- The ultrafine water mist with K2CO3 provides both physical and chemical suppression. Physical suppression includes energy absorption through droplet fragmentation and heat absorption through evaporation, thereby reducing the flame temperature. The introduction of water vapor consumes combustible gas components. Chemical suppression is reflected in the recombination cycle of KOH → K → KOH, formed by the reactions (R211: K + OH + M = KOH + M) and (R259: H + KOH = K + H2O), which continuously combine active free radicals (·O, ·OH) into stable product molecules, such as H2O. The CO2 generated by the thermal decomposition of K2CO3 acts as a new third-body diluent, further reducing the collision probability between reactants and active free radicals.
- (c)
- The promoting effect of ultrafine water mist on flame propagation at high hydrogen blending ratios and low K2CO3 concentrations can be attributed to the following factors: Firstly, the addition of hydrogen to methane increases the flame front propagation speed and reduces the residence time of K2CO3 droplets in the reaction zone. Secondly, unvaporized droplets increase thermal diffusion instability and hydrodynamic instability, which, under the influence of turbulence, promotes flame propagation. Thirdly, the addition of K2CO3 leads to the premature onset of laminar flame instability, resulting in the formation of distinct cellular structures in the flame. Finally, at low K2CO3 concentrations, the absence of reaction R259 (H + KOH → K + H2O) and the limited impact of reaction R211 (K + OH + M → KOH + M) on laminar combustion result in a weaker suppression effect of K2CO3 ultrafine water mist on hydrogen–methane–air mixtures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, B.; Streimikiene, D.; Agnusdei, G.P.; Balezentis, T. Is sustainable energy development ensured in the EU agriculture? Structural shifts and the energy-related greenhouse gas emission intensity. J. Clean. Prod. 2024, 445, 141325. [Google Scholar] [CrossRef]
- Lambert, L.A.; Tayah, J.; Lee-Schmid, C.; Abdalla, M.; Abdallah, I.; Ali, A.H.M.; Esmail, S.; Ahmed, W. The EU’s natural gas Cold War and diversification challenges. Energy Strategy Rev. 2022, 43, 100934. [Google Scholar] [CrossRef]
- Di Lullo, G.; Giwa, T.; Okunlola, A.; Davis, M.; Mehedi, T.; Oni, A.O.; Kumar, A. Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment. Int. J. Hydrogen Energy 2022, 47, 35293–35319. [Google Scholar] [CrossRef]
- Li, H.; Niu, R.; Li, W.; Lu, H.; Cairney, J.; Chen, Y.-S. Hydrogen in pipeline steels: Recent advances in characterization and embrittlement mitigation. J. Nat. Gas Sci. Eng. 2022, 105, 104709. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, Y.; Li, Y.; Wang, S.; Pei, B. Study on the explosion characteristics of methane/air premixed gas under the inhibition of sliding airtight device. Energy Sources Part Recovery Util. Environ. Eff. 2020, 46, 9419–9435. [Google Scholar] [CrossRef]
- Su, B.; Luo, Z.; Wang, T.; Xie, C.; Cheng, F. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J. Hazard. Mater. 2021, 403, 123680. [Google Scholar] [CrossRef]
- Emami, S.D.; Rajabi, M.; Che Hassan, C.R.; Hamid, M.D.A.; Kasmani, R.M.; Mazangi, M. Experimental study on premixed hydrogen/air and hydrogen–methane/air mixtures explosion in 90 degree bend pipeline. Int. J. Hydrogen Energy 2013, 38, 14115–14120. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Chen, J.; Huang, Y.; Shi, Y. Effects of hydrogen on combustion characteristics of methane in air. Int. J. Hydrogen Energy 2014, 39, 11291–11298. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, X.; Zhang, Q.; Lu, C. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions. J. Hazard. Mater. 2020, 394, 122561. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Q. Quantitative research on gas explosion inhibition by water mist. J. Hazard. Mater. 2019, 363, 16–25. [Google Scholar] [CrossRef]
- Yoshida, A.; Okawa, T.; Ebina, W.; Naito, H. Experimental and numerical investigation of flame speed retardation by water mist. Combust. Flame 2015, 162, 1772–1777. [Google Scholar] [CrossRef]
- Rajasekar, K.; Kumar, A.; Chakravarthy, S. Experimental Study of a Downward Directed Water Mist suppressing a Diffusion Flame. J. Phys. Conf. Ser. 2018, 1107, 062009. [Google Scholar] [CrossRef]
- Heskestad, G. Extinction of gas and liquid pool fires with water sprays. Fire Saf. J. 2003, 38, 301–317. [Google Scholar] [CrossRef]
- Gai, G.; Kudriakov, S.; Hadjadj, A.; Studer, E.; Thomine, O. Modeling pressure loads during a premixed hydrogen combustion in the presence of water spray. Int. J. Hydrogen Energy 2019, 44, 4592–4607. [Google Scholar] [CrossRef]
- Cao, X.; Wang, C.; Wang, Y.; Wang, Z.; Wei, H.; Lu, Y. Research on the inhibition characteristics of ultrafine water mist on gas/dust two-phase mixture explosions. Fuel 2024, 357, 129967. [Google Scholar] [CrossRef]
- Thomas, G.O. On the Conditions Required for Explosion Mitigation by Water Sprays. Process Saf. Environ. Prot. 2000, 78, 339–354. [Google Scholar] [CrossRef]
- van Wingerden, K.; Wilkins, B.; Bakken, J.; Pedersen, G. The influence of water sprays on gas explosions. Part 2: Mitigation. J. Loss Prev. Process Ind. 1995, 8, 61–70. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, B.; Zhang, J.; Wang, B.; Chen, L.; Wang, R.; Bekele, A.G.; Shi, J.; Wu, W.; Wang, Z. Experimental research on combined effect of obstacle and local spraying water fog on hydrogen/air premixed explosion. Int. J. Hydrogen Energy 2022, 47, 40099–40115. [Google Scholar] [CrossRef]
- Gieras, M. Flame acceleration due to water droplets action. J. Loss Prev. Process Ind. 2008, 21, 472–477. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Z.; Lu, Y.; Wang, Y. Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space. Tunn. Undergr. Space Technol. 2021, 109, 103777. [Google Scholar] [CrossRef]
- Shimizu, H.; Tsuzuki, M.; Yamazaki, Y.; Koichi Hayashi, A. Experiments and numerical simulation on methane flame quenching by water mist. J. Loss Prev. Process Ind. 2001, 14, 603–608. [Google Scholar] [CrossRef]
- Zhang, T.W.; Liu, H.; Han, Z.Y.; Du, Z.M.; Guo, Z.D. Numerical Model for the Chemical Kinetics of Potassium Species in Methane/Air Cup-Burner Flames. Energy Fuels 2017, 31, 4520–4530. [Google Scholar] [CrossRef]
- Liu, J.; Cong, B. Experimental evaluation of water mist with metal chloride additives for suppressing CH4/air cup-burner flames. J. Therm. Sci. 2013, 22, 269–274. [Google Scholar] [CrossRef]
- Mitani, T.; Niioka, T. Extinction phenomenon of premixed flames with alkali metal compounds. Combust. Flame 1984, 55, 13–21. [Google Scholar] [CrossRef]
- Shmakov, A.G.; Korobeinichev, O.P.; Shvartsberg, V.M.; Yakimov, S.A.; Knyazkov, D.A.; Komarov, V.F.; Sakovich, G.V. Testing ogranophosphorus, organofluorine, and metal-containing compounds and solid-propellant gas-generating compositions doped with phosphorus-containing additives as effective fire suppressants. Combust. Explos. Shock Waves 2006, 42, 678–687. [Google Scholar] [CrossRef]
- Shmakov, A.G.; Korobeinichev, O.P.; Shvartsberg, V.M.; Knyazkov, D.A.; Bolshova, T.A.; Rybitskaya, I.V. Inhibition of premixed and nonpremixed flames with phosphorus-containing compounds. Proc. Combust. Inst. 2005, 30, 2345–2352. [Google Scholar] [CrossRef]
- Cao, X.; Ren, J.; Zhou, Y.; Wang, Q.; Gao, X.; Bi, M. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive. J. Hazard. Mater. 2015, 285, 311–318. [Google Scholar] [CrossRef]
- Cao, X.; Wei, H.; Wang, Z.; Fan, L.; Zhou, Y.; Wang, Z. Experimental research on the inhibition of methane/coal dust hybrid explosions by the ultrafine water mist. Fuel 2023, 331, 125937. [Google Scholar] [CrossRef]
- Joseph, P.; Nichols, E.; Novozhilov, V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Saf. J. 2013, 58, 221–225. [Google Scholar] [CrossRef]
- Slack, M.; Cox, J.W.; Grillo, A.; Ryan, R.; Smith, O. Potassium kinetics in heavily seeded atmospheric pressure laminar methane flames. Combust. Flame 1989, 77, 311–320. [Google Scholar] [CrossRef]
- Badhuk, P.; Ravikrishna, R.V. A numerical study on the response of chemically active flame inhibitors to strain rate variations. Proc. Combust. Inst. 2021, 38, 4615–4623. [Google Scholar] [CrossRef]
- Badhuk, P.; Ravikrishna, R.V. A study on the extinction condition in counterflow diffusion flames of methane and LPG under the influence of polydisperse water mist. Fuel 2022, 318, 123620. [Google Scholar] [CrossRef]
- Badhuk, P.; Ravikrishna, R.V. Flame inhibition by aqueous solution of Alkali salts in methane and LPG laminar diffusion flames. Fire Saf. J. 2022, 130, 103586. [Google Scholar] [CrossRef]
- Schiavetti, M.; Carcassi, M. Analysis of acoustic pressure oscillation during vented deflagration and proposed model for the interaction with the flame front. Int. J. Hydrogen Energy 2017, 42, 7707–7715. [Google Scholar] [CrossRef]
- O’Connor, J.; Acharya, V.; Lieuwen, T. Transverse combustion instabilities: Acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 2015, 49, 1–39. [Google Scholar] [CrossRef]
- Shibue, K.; Sugiyama, Y.; Matsuo, A. Numerical study of the effect on blast-wave mitigation of the quasi-steady drag force from a layer of water droplets sprayed into a confined geometry. Process Saf. Environ. Prot. 2022, 160, 491–501. [Google Scholar] [CrossRef]
- Cheng, L.; Li, W.; Peng, S.; Chai, C.; Wang, W.; Tian, C.; Zhang, J.; Liu, L.; Zhang, H.; Zhang, Y. Study of combustion characteristics of hydrogen-doped natural gas in industrial boilers. Int. J. Hydrogen Energy 2024, 92, 590–604. [Google Scholar] [CrossRef]
- Bayramoğlu, K.; Bahlekeh, A.; Masera, K. Numerical investigation of the hydrogen, ammonia and methane fuel blends on the combustion emissions and performance. Int. J. Hydrogen Energy 2023, 48, 39586–39598. [Google Scholar] [CrossRef]
- Pei, B.; Li, S.; Yang, S.; Yu, M.; Chen, L.; Pan, R. Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives. J. Loss Prev. Process Ind. 2022, 78, 104817. [Google Scholar] [CrossRef]
- van Wingerden, K.; Wilkins, B. The influence of water sprays on gas explosions. Part 1: Water-spray-generated turbulence. J. Loss Prev. Process Ind. 1995, 8, 53–59. [Google Scholar] [CrossRef]
- Cai, X.; Wang, J.; Bian, Z.; Zhao, H.; Li, Z.; Huang, Z. Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames. Proc. Combust. Inst. 2021, 38, 2013–2021. [Google Scholar] [CrossRef]
- Tianwei, Z.; Hao, L.; Zhiyue, H.; Zhiming, D.; Yong, W. Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics. Appl. Therm. Eng. 2017, 122, 429–438. [Google Scholar] [CrossRef]
- Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame. Fuel 2020, 264, 116862. [CrossRef]
- Xiao, H.; Duan, Q.; Sun, J. Premixed flame propagation in hydrogen explosions. Renew. Sustain. Energy Rev. 2018, 81, 1988–2001. [Google Scholar] [CrossRef]
- Mandilas, C.; Ormsby, M.P.; Sheppard, C.G.W.; Woolley, R. Effects of hydrogen addition on laminar and turbulent premixed methane and iso-octane–air flames. Proc. Combust. Inst. 2007, 31, 1443–1450. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, H.; Wu, D.; Yang, J.; Morsy, M.E.; Jangi, M.; Cracknell, R.; Kim, W. Deep learning-driven analysis for cellular structure characteristics of spherical premixed hydrogen-air flames. Int. J. Hydrogen Energy 2024, 68, 63–73. [Google Scholar] [CrossRef]
- Pei, B.; Lyu, H.; Wu, Z.; Jia, C.; Xu, T.; Li, R. Study on the synergistic effect of inert gas and ultrafine water mist on hydrogen explosion suppression. Int. J. Hydrogen Energy 2024, 82, 531–543. [Google Scholar] [CrossRef]
- Cao, X.; Bi, M.; Ren, J.; Chen, B. Experimental research on explosion suppression affected by ultrafine water mist containing different additives. J. Hazard. Mater. 2019, 368, 613–620. [Google Scholar] [CrossRef]
- Ding, L.; Dai, Z.; Wei, J.; Zhou, Z.; Yu, G. Catalytic effects of alkali carbonates on coal char gasification. J. Energy Inst. 2017, 90, 588–601. [Google Scholar] [CrossRef]
- Liu, L.; Luo, Z.; Wang, T.; Yang, X.; Su, B.; Su, Y. Inhibitory effects of water mist containing alkali metal salts on hydrogen–natural gas diffusion flames. Int. J. Hydrogen Energy 2024, 51, 754–764. [Google Scholar] [CrossRef]
Additives Concentration | Particle Sizes/μm | ||||||
---|---|---|---|---|---|---|---|
D10 | D25 | D50 | D75 | D90 | D(3, 2) | D(4, 3) | |
Pure water | 25.03 | 25.88 | 26.65 | 27.27 | 27.72 | 26.25 | 26.31 |
3% K2CO3 | 23.73 | 24.56 | 25.31 | 25.92 | 26.38 | 25.34 | 25.46 |
9% K2CO3 | 23.24 | 24.03 | 24.74 | 25.32 | 25.75 | 24.70 | 24.85 |
15% K2CO3 | 24.06 | 24.90 | 25.66 | 26.27 | 26.72 | 25.64 | 25.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Mi, H.; Shao, P.; Luo, N.; Liao, K.; Wang, W.; Duan, Y.; Niu, Y. Effect of Ultrafine Water Mist with K2CO3 Additives on the Combustion and Explosion Characteristics of Methane/Hydrogen/Air Premixed Flames. Processes 2024, 12, 2918. https://doi.org/10.3390/pr12122918
Zhang H, Mi H, Shao P, Luo N, Liao K, Wang W, Duan Y, Niu Y. Effect of Ultrafine Water Mist with K2CO3 Additives on the Combustion and Explosion Characteristics of Methane/Hydrogen/Air Premixed Flames. Processes. 2024; 12(12):2918. https://doi.org/10.3390/pr12122918
Chicago/Turabian StyleZhang, Haoliang, Hongfu Mi, Peng Shao, Nan Luo, Kaixuan Liao, Wenhe Wang, Yulong Duan, and Yihui Niu. 2024. "Effect of Ultrafine Water Mist with K2CO3 Additives on the Combustion and Explosion Characteristics of Methane/Hydrogen/Air Premixed Flames" Processes 12, no. 12: 2918. https://doi.org/10.3390/pr12122918
APA StyleZhang, H., Mi, H., Shao, P., Luo, N., Liao, K., Wang, W., Duan, Y., & Niu, Y. (2024). Effect of Ultrafine Water Mist with K2CO3 Additives on the Combustion and Explosion Characteristics of Methane/Hydrogen/Air Premixed Flames. Processes, 12(12), 2918. https://doi.org/10.3390/pr12122918