Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = turbojet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4562 KB  
Article
A Hybrid Algorithm Modeling on Test-Bench Data for Light-Duty Afterburning Turbojet Engine
by Tong Xin, Jiaxian Sun, Chunyan Hu, Chenchen Wang and Haoran Pan
Aerospace 2026, 13(1), 28; https://doi.org/10.3390/aerospace13010028 - 26 Dec 2025
Viewed by 109
Abstract
For highly maneuverable aircraft, the afterburning engine serves as a core and critical component. Due to the complex structure of the afterburner and the strong coupling among parameters, mechanism-based modeling of afterburning engines remains extremely challenging. To address this problem, this paper proposes [...] Read more.
For highly maneuverable aircraft, the afterburning engine serves as a core and critical component. Due to the complex structure of the afterburner and the strong coupling among parameters, mechanism-based modeling of afterburning engines remains extremely challenging. To address this problem, this paper proposes a data-driven hybrid algorithm modeling framework for a light-duty afterburning turbojet engine. Using test-bench data from the TWP220L light-duty afterburning turbojet, two hybrid algorithm models were developed: (i) PSO-DNN and (ii) NGO-LSSVM. Four models, DNN, PSO-DNN, LSSVM, and NGO-LSSVM, were compared by mapping engine input parameters (altitude, Mach number, rotor speed, and fuel flow rate) to two key performance outputs (thrust and turbine pressure ratio). Based on visual error analysis and regression evaluation metrics, it was found that the optimized algorithm significantly reduced the prediction error. The NGO-LSSVM model achieved the highest accuracy in both performance indicators, increasing R2 by 5.3% for thrust, and increasing R2 by 6.8% for turbine pressure ratio. This framework offers a practical and high-precision approach for light-duty afterburning engine performance prediction and lays a foundation for the development of model-based and data-driven onboard control strategies. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 3005 KB  
Article
ISWO-LADRC: Improved Spider Wasp Optimization Algorithm-Based Rotational Speed Control for Micro-Aero-Engine
by Huigui Long, Kui Chen, Zhuojie Nong and Haozhong Huang
Aerospace 2025, 12(12), 1068; https://doi.org/10.3390/aerospace12121068 - 30 Nov 2025
Viewed by 245
Abstract
Rotational speed is a key performance parameter of aero-engines. As an indispensable parameter in control systems, rotational speed has received widespread attention. However, research on rotational speed control methods for micro-turbojet engines used in unmanned aerial vehicles is relatively limited. Therefore, this paper [...] Read more.
Rotational speed is a key performance parameter of aero-engines. As an indispensable parameter in control systems, rotational speed has received widespread attention. However, research on rotational speed control methods for micro-turbojet engines used in unmanned aerial vehicles is relatively limited. Therefore, this paper proposes a rotational speed controller for micro-turbojet engines based on the Improved Spider Wasp Optimization (ISWO) algorithm, which adopts Linear Active Disturbance Rejection Control (LADRC) technology. Data from the actual operation of the micro-turbojet engine were collected, and the engine rotational speed models under three operating conditions were obtained through system identification. The proposed controller was applied to these rotational speed models, along with the classic Proportional–Integral–Derivative (PID) controller, the LADRC controller, and the LADRC controller based on the original Spider Wasp Optimization (SWO) algorithm. Simulation experiments and comparisons of the controllers were conducted based on performance indicators. The simulation results show that under the three operating conditions, the ISWO-LADRC controller outperforms the other three controllers in indicators such as rise time, overshoot, and settling time, all of which are smaller. Thus, ISWO-LADRC exhibits better comprehensive control performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 4691 KB  
Review
Comprehensive Survey of Micro Turbojet Experimentation: Sensor Technologies, Methodologies, and Research Trends
by Ahmed M. Shehata and Marco P. Schoen
Machines 2025, 13(11), 989; https://doi.org/10.3390/machines13110989 - 28 Oct 2025
Viewed by 981
Abstract
From advanced research platforms to Unmanned Aerial Vehicles (UAVs), Micro Turbojet Engines (MTEs) have grown to be essential parts in many different kinds of applications. Extensive testing, encompassing analysis, alternative fuel suitability, performance characterization, and control system validation, supports their development. This survey [...] Read more.
From advanced research platforms to Unmanned Aerial Vehicles (UAVs), Micro Turbojet Engines (MTEs) have grown to be essential parts in many different kinds of applications. Extensive testing, encompassing analysis, alternative fuel suitability, performance characterization, and control system validation, supports their development. This survey examines the current state of MTE experimentation, along with information on experimental methods, sensor technologies, and new directions in corresponding research. Measurement techniques, alternative fuel effects, characterization of gaseous and particle emissions, and the utilization of experimental data to validate control systems and sophisticated engine models are among the recent advances in test bed design discussed here. Presenting an overall view, the aim is to highlight current challenges and inspire more MTE technology advancement. Full article
Show Figures

Figure 1

21 pages, 1270 KB  
Article
Performance and Uncertainty Analysis of Digital vs. Analog Pressure Scanners Under Static and Dynamic Conditions
by Roxana Nicolae, Constantin-Daniel Oancea, Rares Secareanu and Daniel Lale
Eng 2025, 6(10), 263; https://doi.org/10.3390/eng6100263 - 4 Oct 2025
Viewed by 556
Abstract
Dynamic pressure measurement is an important component in the turbo engine testing process. This paper presents a comparative analysis between two types of multichannel electronic pressure measurement systems, commonly known as pressure scanners, used for this purpose: ZOC17/8Px, with analog amplification per channel, [...] Read more.
Dynamic pressure measurement is an important component in the turbo engine testing process. This paper presents a comparative analysis between two types of multichannel electronic pressure measurement systems, commonly known as pressure scanners, used for this purpose: ZOC17/8Px, with analog amplification per channel, and MPS4264, a modern digital system with integrated A/D conversion. The study was conducted in two stages: a metrological verification and validation in static mode, using a high-precision pressure standard, and an experimental stage in dynamic mode, where data was acquired from a turbojet engine test stand, in constant engine speed mode. The signal stability of the pressure scanners was statistically analyzed by determining the coefficient of variation in the signal and the frequency spectrum (FFT) for each channel of the pressure scanners. Furthermore, comprehensive uncertainty budgets were calculated for both systems. The results highlight the superior stability and reduced uncertainty of the MPS4264 pressure scanner, attributing its enhanced performance to digital integration and a higher resilience to external noise. The findings support the adoption of modern digital systems for dynamic applications and provide a robust metrological basis for the optimal selection of measurement systems. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

17 pages, 4749 KB  
Article
Numerical Analyses of Surge Process in a Small-Scale Turbojet Engine by Three-Dimensional Full-Engine Simulation
by Mengyang Wen, Heli Yang, Xuedong Zheng, Weihan Kong, Zechen Ding, Rusheng Li, Lei Jin, Baotong Wang and Xinqian Zheng
Aerospace 2025, 12(10), 878; https://doi.org/10.3390/aerospace12100878 - 29 Sep 2025
Viewed by 565
Abstract
Surge is a typical aerodynamic instability phenomenon in the compressors of aeroengines. The surge can lead to severe performance degradation and even structural damage to the engine and the air vehicle, making it a longstanding critical concern in the industry. Analyzing and understanding [...] Read more.
Surge is a typical aerodynamic instability phenomenon in the compressors of aeroengines. The surge can lead to severe performance degradation and even structural damage to the engine and the air vehicle, making it a longstanding critical concern in the industry. Analyzing and understanding the surge process contributes to enhancing the aerodynamic stability of designed compressors. Previous research in this field often focuses solely on the compressor itself while neglecting the mutual interaction between the compressor and other components in the entire engine system. This study investigates the compressor surge process within an integrated engine environment using a full-engine three-dimensional Unsteady Reynolds-averaged Navier–Stokes (URANS) simulation method for the entire engine system, validated through variable geometry turbine experiments on a small turbojet engine. The result demonstrates that the integrated three-dimensional simulation approach can capture the primary flow characteristics of the compression system during surge within an integrated engine environment. Under the influence of the variable geometry turbine, the studied small turbojet engine enters a state of mild surge. This paper also investigates the changes in aerodynamic forces during surge and reveals the two-regime surge phenomenon that exists during the engine surge. Full article
(This article belongs to the Special Issue Numerical Modelling of Aerospace Propulsion)
Show Figures

Figure 1

19 pages, 12119 KB  
Article
Multi-Disciplinary Optimization of Mixed-Flow Turbine for Additive Manufacturing
by Victor Loir, Bayindir H. Saracoglu and Tom Verstraete
Int. J. Turbomach. Propuls. Power 2025, 10(3), 26; https://doi.org/10.3390/ijtpp10030026 - 2 Sep 2025
Viewed by 931
Abstract
Additive manufacturing offers new perspectives for creating complex geometries with improved design features at lower cost and with reduced manufacturing time. It may even become possible to print a micro-turbojet engine in one single print, but then unconventional geometrical constraints on compressor and [...] Read more.
Additive manufacturing offers new perspectives for creating complex geometries with improved design features at lower cost and with reduced manufacturing time. It may even become possible to print a micro-turbojet engine in one single print, but then unconventional geometrical constraints on compressor and turbine designs are inevitable. If a radial machine were printed through additive manufacturing as a standalone component, the most logical print direction would be from the radial outlet/inlet to the axial inlet/outlet to ease the process and limit the supports, with limited additional constraints compared to traditional manufacturing methods. If the rotor comprising a radial compressor and turbine needs to be printed in one single print, one of the components will be printed in a direction that is not favorable. In the present work, the radial turbine is considered to be printed in the unfavorable direction, namely, from the axial outlet to the radial inlet. These geometrical constraints orient the geometry towards a mixed-flow configuration with a trailing-edge cutback. Such design features reduce the available design space for improvement and will clearly have an unfavorable impact on performance. Therefore, a multi-disciplinary gradient-based adjoint optimization of the mixed-flow turbine is performed, striving to limit the adverse impact on total-to-total efficiency while respecting the mass flow rate and power matching with the upstream compressor. The structural constraint limits the p-Norm von Mises stress to a maximum threshold based on the material yield strength at the operating temperature. The results show that a satisfactory compromise can be found between manufacturability constraints, material limits and aerodynamic performance. Full article
Show Figures

Figure 1

33 pages, 4628 KB  
Article
A Robust Aerodynamic Design Optimization Methodology for UAV Airfoils Based on Stochastic Surrogate Model and PPO-Clip Algorithm
by Yiyu Wang, Yuxin Huo, Zhilong Zhong, Renxing Ji, Yang Chen, Bo Wang and Xiaoping Ma
Drones 2025, 9(9), 607; https://doi.org/10.3390/drones9090607 - 28 Aug 2025
Viewed by 1301
Abstract
Unmanned Aerial Vehicles (UAVs) are widely used in meteorology and logistics due to their unique advantages nowadays. During their lifecycle, uncertainties—such as flight condition variations—can significantly affect both design and performance, making Robust Aerodynamic Design Optimization (RADO) essential. However, existing RADO methodologies face [...] Read more.
Unmanned Aerial Vehicles (UAVs) are widely used in meteorology and logistics due to their unique advantages nowadays. During their lifecycle, uncertainties—such as flight condition variations—can significantly affect both design and performance, making Robust Aerodynamic Design Optimization (RADO) essential. However, existing RADO methodologies face high computational cost of uncertainty analysis and inefficiency of conventional optimization algorithms. To address these challenges, this paper proposed a novel RADO methodology integrating a Stochastic Kriging (SK) surrogate model with the PPO-Clip reinforcement learning algorithm, targeting atmospheric uncertainties encountered by turbojet-powered UAVs in transonic cruise. The SK surrogate model, constructed via Maximin Latin Hypercube Sampling and refined using the Expected Improvement infill criterion, enabled efficient uncertainty quantification. Based on the trained surrogate model, a PPO-Clip-based RADO framework with tailored reward and state transition functions was established. Applied to the RAE2822 airfoil under Mach number perturbations, the methodology demonstrated superior reliability and efficiency compared with L-BFGS-B and PSO algorithms. Full article
Show Figures

Figure 1

18 pages, 13864 KB  
Article
Thermomechanical Analysis of the GTM 400 MOD Turbojet Engine Nozzle During Kerosene and Hydrogen Co-Combustion
by Łukasz Brodzik, Bartosz Ciupek, Andrzej Frąckowiak and Dominik Schroeder
Energies 2025, 18(16), 4382; https://doi.org/10.3390/en18164382 - 17 Aug 2025
Cited by 1 | Viewed by 923
Abstract
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging [...] Read more.
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging from 31,630 rpm to 65,830 rpm, providing data on the temperature and dynamic pressure at the nozzle outlet. These data served as input to numerical analyses using the ANSYS Fluent, Steady-State Thermal, and Static Structural modules to evaluate exhaust gas flow, temperature distribution, and stress and strain states. The paper performed a basic analysis with additional simplifications, and an extended analysis that took into account, among other things, thermal radiation in the flow. The results of the basic analysis show that, at comparable thrust levels, co-firing and pure kerosene combustion yield similar nozzle temperature distributions, with maximum wall temperatures ranging from 978 K to 1090 K, which remain below the allowable limit of 1193 K (920 °C). Maximum stresses reached approximately 261 MPa, close to but not exceeding the yield strength of 316 stainless steel. Maximum nozzle deformation did not exceed 0.8 mm. Small dynamic pressure fluctuations were observed; For example, at 31,630 rpm, co-firing increased the maximum dynamic pressure from 1.56 × 104 Pa to 1.63 × 104 Pa, while at 47,110 rpm, it decreased from 4.05 × 104 Pa to 3.89 × 104 Pa. The extended analysis yielded similar values for the nozzle temperature and pressure distributions. Stress and strain increased by more than 76% and 78%, respectively, compared to the baseline analysis. The results confirm that hydrogen co-firing does not significantly alter the nozzle thermomechanical loads, suggesting that this emission-free fuel can be used without negatively impacting the nozzle’s structural integrity under the tested conditions. The methodology, combining targeted experimental measurements with coupled CFD and FEM simulations, provides a reliable framework for assessing material safety margins in alternative fuel applications in small turbojet engines. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

24 pages, 7102 KB  
Article
Comparing a New Passive Lining Method for Jet Noise Reduction Using 3M™ Nextel™ Ceramic Fabrics Against Ejector Nozzles
by Alina Bogoi, Grigore Cican, Laurențiu Cristea, Daniel-Eugeniu Crunțeanu, Constantin Levențiu and Andrei-George Totu
Technologies 2025, 13(7), 295; https://doi.org/10.3390/technologies13070295 - 9 Jul 2025
Viewed by 1370
Abstract
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three [...] Read more.
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three nozzle configurations, baseline, ejector, and Nextel-treated, were evaluated under realistic operating conditions using traditional and advanced acoustic diagnostics applied to data from a five-microphone circular array. The results show that while the ejector provides superior directional suppression and low-frequency redistribution, making it ideal for far-field noise control, it maintains high total energy levels and requires structural modifications. In contrast, the Nextel lining achieves comparable reductions in overall noise, especially in high-frequency ranges, while minimizing structural impact and promoting spatial energy dissipation. Analyses in both the time-frequency and spatial–spectral domains demonstrate that the Nextel configuration not only lowers acoustic energy but also disrupts coherent noise patterns, making it particularly effective for near-field protection in compact propulsion systems. A POD analysis further shows that NEXTEL more evenly distributes energy across mid-order modes, indicating its role in smoothing spatial variations and dampening localized acoustic concentrations. According to these results, ceramic fabric linings offer a lightweight, cost-effective solution for reducing the high noise levels typically associated with drones and UAVs powered by small turbojets. When combined with ejectors, they could enhance acoustic suppression in compact propulsion systems where space and weight are critical. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

25 pages, 7850 KB  
Article
A Novel Curve-and-Surface Fitting-Based Extrapolation Method for Sub-Idle Component Characteristics of Aeroengines
by Yibo Cui, Tianhong Zhang, Zhaohui Cen, Younes Al-Younes and Elias Tsoutsanis
Aerospace 2025, 12(6), 538; https://doi.org/10.3390/aerospace12060538 - 14 Jun 2025
Viewed by 773
Abstract
The component characteristics of an aeroengine below idle speed are fundamental for start-up process simulations. However, due to experimental limitations, these characteristics must be extrapolated from data above idle speed. Existing extrapolation methods often suffer from insufficient utilization of available data, reliance on [...] Read more.
The component characteristics of an aeroengine below idle speed are fundamental for start-up process simulations. However, due to experimental limitations, these characteristics must be extrapolated from data above idle speed. Existing extrapolation methods often suffer from insufficient utilization of available data, reliance on specific prior conditions, and an inability to capture unique operating modes (e.g., the stirring mode and turbine mode of compressor). To address these limitations, this study proposes a novel curve-and-surface fitting-based extrapolation method. The key innovations include: (1) extrapolating sub-idle characteristics through constrained curve/surface fitting of limited above-idle data, preserving their continuous and smooth nature; (2) transforming discontinuous isentropic efficiency into a continuous specific enthalpy change coefficient (SECC), ensuring physically meaningful extrapolation across all operating modes; (3) applying constraints during fitting to guarantee reasonable and smooth extrapolation results. Validation on a micro-turbojet engine demonstrates that the proposed method requires only conventional performance parameters (corrected flow, pressure/expansion ratio, and isentropic efficiency) above idle speed, yet successfully supports ground-starting simulations under varying inlet conditions. The results confirm that the proposed method not only overcomes the limitations of existing approaches but also demonstrates broader applicability in practical aeroengine simulations. Full article
(This article belongs to the Special Issue Numerical Modelling of Aerospace Propulsion)
Show Figures

Figure 1

18 pages, 30834 KB  
Article
Study on Influence of Evaporation Tube Flow Distribution on Combustion Characteristics of Micro Combustion Chamber
by Yu Fu, Han Lin, Junli Yu, Aoju Song, Qing Guo, Zhenhua Wen and Wei Wu
Processes 2025, 13(6), 1691; https://doi.org/10.3390/pr13061691 - 28 May 2025
Cited by 1 | Viewed by 1027
Abstract
The combustion chamber is a critical component of turbojet engines, and airflow distribution plays an essential role in ensuring flame stability and optimizing combustion efficiency. This study investigates a miniature annular combustion chamber by employing SolidWorks 2022 software to model an evaporative tube [...] Read more.
The combustion chamber is a critical component of turbojet engines, and airflow distribution plays an essential role in ensuring flame stability and optimizing combustion efficiency. This study investigates a miniature annular combustion chamber by employing SolidWorks 2022 software to model an evaporative tube combustion chamber. A dedicated combustion test platform was constructed for the proposed miniature combustion chamber. By adjusting the air and fuel flow ratios entering the evaporative tube, the temperature at the flame tube outlet was measured, and the combustion efficiency was subsequently calculated. In addition, numerical analysis was conducted using ANSYS/CFX software to simulate the flow field in the combustion chamber. The following conclusions were drawn from an analysis of the variations in the flow field and temperature field during the simulation process: When the flow rates in the ignition and dilution zones of the miniature annular combustion chamber remained constant, modifying the air-fuel flow ratio within the evaporative tube significantly enhanced the combustion characteristics within the chamber. Specifically, the combustion efficiency is closely related to the ratio of the air mass flow rate to the fuel mass flow rate within the evaporation tube. The highest combustion efficiency was achieved when the ratio fell within the range of 4.20 to 4.96. Furthermore, the area-averaged velocity at the combustion chamber outlet was independent of the air-fuel flow ratio but exhibited a positive correlation with the fuel flow entering the combustion chamber. Full article
Show Figures

Figure 1

22 pages, 6274 KB  
Article
Performance and Emissions Assessment of a Micro-Turbojet Engine Fueled with Jet A and Blends of Propanol, Butanol, Pentanol, Hexanol, Heptanol, and Octanol
by Grigore Cican, Valentin Silivestru, Radu Mirea, Sibel Osman, Florin Popescu, Olga Valerica Sapunaru and Razvan Ene
Fire 2025, 8(4), 150; https://doi.org/10.3390/fire8040150 - 8 Apr 2025
Cited by 4 | Viewed by 1568
Abstract
This study examines the impact of alcohol blends on the performance and emissions of aviation micro-turbojet engines. Thus, propanol, butanol, pentanol, hexanol, heptanol, and octanol were tested at 10%, 20%, and 30% concentrations and mixed with Jet A, as well as with an [...] Read more.
This study examines the impact of alcohol blends on the performance and emissions of aviation micro-turbojet engines. Thus, propanol, butanol, pentanol, hexanol, heptanol, and octanol were tested at 10%, 20%, and 30% concentrations and mixed with Jet A, as well as with an additional 5% heptanol blend to preserve base fuel properties, to fuel a JetCat P80 micro-turbojet. Physicochemical properties such as density, viscosity, and elemental composition were analyzed before engine testing. Carbon dioxide (CO2) emissions from 1 kg of fuel combustion varied, with propanol yielding the lowest at 3.02 kg CO2 per kg of fuel and octanol yielding the highest at 3.22 kg CO2 per kg of fuel. The following results were obtained: alcohol blends lowered exhaust gas temperature by up to 7.5% at idle and intermediate thrust but slightly increased it at maximum power; fuel mass flow increased with alcohol concentration, peaking at 20.4% above Jet A for 30% propanol; and thrust varied from −4.92% to +7.4%. While specific fuel consumption increased by up to 12.8% for propanol, thermal efficiency declined by 1.8–5.6% and combustion efficiency remained within ±2% of Jet A. Butanol and octanol emerged as viable alternatives, balancing emissions reduction and efficiency. The results emphasize the need for an optimal trade-off between environmental impact and engine performance. Full article
Show Figures

Figure 1

28 pages, 15925 KB  
Article
Comparative Study of Noise Control in Micro Turbojet Engines with Chevron and Ejector Nozzles Through Statistical, Acoustic and Imaging Insight
by Alina Bogoi, Grigore Cican, Mihnea Gall, Andrei Totu, Daniel Eugeniu Crunțeanu and Constantin Levențiu
Appl. Sci. 2025, 15(1), 394; https://doi.org/10.3390/app15010394 - 3 Jan 2025
Cited by 5 | Viewed by 2114
Abstract
In connection with subsonic jet noise production, this study investigates acoustic noise reduction in micro turbojet engines by comparing ejector and chevron nozzle configurations to a baseline. Through detailed statistical analysis, including assessments of stationarity and ergodicity, the current work validates that the [...] Read more.
In connection with subsonic jet noise production, this study investigates acoustic noise reduction in micro turbojet engines by comparing ejector and chevron nozzle configurations to a baseline. Through detailed statistical analysis, including assessments of stationarity and ergodicity, the current work validates that the noise signals from turbojet engines could be treated as wide-sense ergodic. This further allows to use time averages in acoustic measurements. Acoustic analysis reveals that the chevron nozzle reduces overall SPL by 1.28%, outperforming the ejector’s 0.51% reduction. Despite the inherent challenges of Schlieren imaging, an in-house code enabled a more refined analysis. By examining the fine-scale turbulent structures, one concludes that chevrons promote higher mixing rates and smaller vortices, aligning with the statistical findings of noise reduction. Schlieren imaging provided visual insight into turbulence behavior across operational regimes, showing that chevrons generate smaller, controlled vortices near the nozzle, which improve mixing and reduce noise. At high speeds, chevrons maintain a confined, high-frequency turbulence that attenuated noise more effectively, while the ejector creates larger structures that contribute to low-frequency noise propagation. Comparison underscores the superior noise-reduction capabilities of chevrons with respect to the ejector, particularly at high-speed. The enhanced Schlieren analysis allowed for new frame-specific insights into turbulence patterns based on density gradients, providing a valuable tool for identifying turbulence features and understanding jet flow dynamics. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

27 pages, 3974 KB  
Article
Evaluation of Turbojet Engine with Water Injection for Aircraft Use as Controlled Object
by Alexandru-Nicolae Tudosie and Mihai Lungu
Aerospace 2025, 12(1), 13; https://doi.org/10.3390/aerospace12010013 - 30 Dec 2024
Viewed by 1951
Abstract
This study addresses an under-represented topic in turbojets’ design—the characterizing of this type of engine as an entity subject to automatic control. This study’s subject is a medium-size turbojet, improved with a water injection system for thrust augmentation, and evaluated as a controlled [...] Read more.
This study addresses an under-represented topic in turbojets’ design—the characterizing of this type of engine as an entity subject to automatic control. This study’s subject is a medium-size turbojet, improved with a water injection system for thrust augmentation, and evaluated as a controlled object. The method of coolant injection in the compressor and/or in the combustion chamber of the aviation engine has been intensively studied and applied for the temporary increase in thrust. After a period of abandonment, the method seems to be returning in a version that also produces a reduction in pollutant emissions. Starting from determining turbojet performances on the test rig and establishing the equations that define the turbojet as a system, the mathematical model for both versions (basic and with a water injection) was issued. In order to correlate the basic engine operation with the water injection, a version of control architecture was designed, containing two controllers (for engine’s speed and for the injected water flow rate). An embedded control system was described by its mathematical model; based on its equations, its block diagram with transfer functions was issued. The system’s quality was evaluated by performing studies that concern the turbojet’s main parameters (speed and combustor temperature) and time behavior (system response at step input), which led to some results and conclusions regarding how the water injection changed the properties of the engine as a controlled object: the engine has become slower with bigger static errors for the studied parameters (affecting the stabilization at their values imposed by the new operating regime). The proposed method, based on the characterization of the engine as a controlled object (with and without coolant injection), can be very useful as a method of predicting the behavior of any turbojet when the addition of coolant injection system is desired; obviously, the appropriate modeling of both the turbojet and the injection system is necessary. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

20 pages, 4418 KB  
Article
Vibroacoustic Study of a Miniature Jet Engine Under Blade-Casing Rubbing Condition
by Bartłomiej Cywka, Wojciech Prokopowicz, Bartosz Ciupek, Grzegorz M. Szymański, Daniel Mokrzan and Andrzej Frąckowiak
Energies 2025, 18(1), 27; https://doi.org/10.3390/en18010027 - 25 Dec 2024
Cited by 1 | Viewed by 1287
Abstract
Turbine engines are currently one of the most important and expensive aircraft components. Both for economic and safety reasons, high engine reliability is required. Therefore, sophisticated methods are needed to determine their current condition. Diagnostics of turbine engines allow for the detection of [...] Read more.
Turbine engines are currently one of the most important and expensive aircraft components. Both for economic and safety reasons, high engine reliability is required. Therefore, sophisticated methods are needed to determine their current condition. Diagnostics of turbine engines allow for the detection of faults before they lead to damage. The article presents methods and results of vibroacoustic diagnostics of a miniature GTM400 jet engine adapted to kerosene and hydrogen fuel supply. During thermal and vibroacoustic tests of engine parameters powered by hydrogen fuel supply, the engine seized up in the initial start-up phase due to improper control and rapid thermal changes in the gas line. The cause of the undesirable technical condition of the engine was a significantly higher temperature of gases (exhaust gases) affecting the working elements of the engine (turbine shaft, rotor, and blades), which consequently led to engine damage. This phenomenon and the results obtained from the unexpected technical condition constitute a valuable premise for considering the issue of proper operation of the turbojet engine during fuel changes, especially following current trends related to the decarbonization of the aviation sector. The obtained research results and the resulting observations and conclusions make it necessary to perform technical analyses and pre-implementation tests each time before allowing the use of a conventional engine if it undergoes the process of reconstruction in terms of using a new fuel (especially if its technical parameters are different from the originally used one). The presented method of conducting tests allows for a detailed determination of the causes of damage to the cooperating elements of the engine structure under the influence of changes in operating parameters. Full article
Show Figures

Figure 1

Back to TopTop