Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,759)

Search Parameters:
Keywords = tunneling time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6085 KiB  
Article
Earthquake Precursors Based on Rock Acoustic Emission and Deep Learning
by Zihan Jiang, Zhiwen Zhu, Giuseppe Lacidogna, Leandro F. Friedrich and Ignacio Iturrioz
Sci 2025, 7(3), 103; https://doi.org/10.3390/sci7030103 (registering DOI) - 1 Aug 2025
Abstract
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods [...] Read more.
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods to facilitate real-time monitoring and advance earthquake precursor detection. The AE equipment and seismometers were installed in a granite tunnel 150 m deep in the mountains of eastern Guangdong, China, allowing for the collection of experimental data on the correlation between rock AE and seismic activity. The deep learning model uses features from rock AE time series, including AE events, rate, frequency, and amplitude, as inputs, and estimates the likelihood of seismic events as the output. Precursor features are extracted to create the AE and seismic dataset, and three deep learning models are trained using neural networks, with validation and testing. The results show that after 1000 training cycles, the deep learning model achieves an accuracy of 98.7% on the validation set. On the test set, it reaches a recognition accuracy of 97.6%, with a recall rate of 99.6% and an F1 score of 0.975. Additionally, it successfully identified the two biggest seismic events during the monitoring period, confirming its effectiveness in practical applications. Compared to traditional analysis methods, the deep learning model can automatically process and analyse recorded massive AE data, enabling real-time monitoring of seismic events and timely earthquake warning in the future. This study serves as a valuable reference for earthquake disaster prevention and intelligent early warning. Full article
Show Figures

Figure 1

15 pages, 24344 KiB  
Article
The Influence of Dimensional Parameters on the Characteristics of Magnetic Flux Concentrators Used in Tunneling Magnetoresistance Devices
by Ran Bi, Huiquan Zhang, Shi Pan, Xinting Liu, Ruiying Chen, Shilin Wu and Jun Hu
Sensors 2025, 25(15), 4739; https://doi.org/10.3390/s25154739 (registering DOI) - 31 Jul 2025
Abstract
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing [...] Read more.
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing magnetic flux concentrators (MFCs) offers an effective approach to enhance TMR sensitivity. In this study, the finite element method was employed to analyze the effects of different MFC geometric structures on the uniformity of the magnetic field in the air gap and the magnetic circuit gain (MCG). It was determined that the MCG of the MFC is not directly related to the absolute values of its parameters but rather to their ratios. Simulation analyses evaluated the impact of these parameter ratios on both the MCG and its spatial distribution uniformity, leading to the formulation of MFC design optimization principles. Building on these simulation-derived principles, several MFCs were fabricated using the 1J85 material, and an experimental platform was established to validate the simulation findings. The fabricated MFCs achieved an MCG of 7.325 times. Based on the previously developed TMR devices, a detection sensitivity of 2.46 nT/Hz @1Hz was obtained. By optimizing parameter configurations, this work provides theoretical guidance for further enhancing the performance of TMR sensors in magnetic field measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 3817 KiB  
Article
The Distribution Characteristics of Frost Heaving Forces on Tunnels in Cold Regions Based on Thermo-Mechanical Coupling
by Yujia Sun, Lei Peng and Qionglin Li
Appl. Sci. 2025, 15(15), 8537; https://doi.org/10.3390/app15158537 (registering DOI) - 31 Jul 2025
Abstract
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall [...] Read more.
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall frost heaves in a freeze–thaw cycle. Using a COMSOL Multiphysics 6.0 platform and the sequential coupling method, the temperature field evolution of tunnel-surrounding rock, freezing cycle development, and distribution characteristics of the frost heaving force of a tunnel lining under different minimum temperatures, numbers of negative temperature days, frost heave ratios, and anisotropy coefficients of frost heave deformation were systematically simulated. The results revealed that the response of the temperature field of tunnel-surrounding rock to the external temperature varies spatially with time lags, the shallow surface temperatures and the area around the lining fluctuate with the climate, and the temperature of the deep surrounding rock is dominated by the geothermal gradient. The extent of the freezing cycle and the frost heaving force increase significantly when lowering the minimum temperature. The maximum frost heaving force usually occurs in the region of the side wall and the spring line, and tensile stress is prone to be generated at the spring line; the influence of slight fluctuations in the minimum temperature or the short shift in the coldest day on the frost heaving force is limited. A substantial increase in frost heaving force is observed with higher frost heave ratios; for example, an increase from 0.25% to 2.0% results in a 116% rise at the sidewall. Although the increase in the anisotropy coefficient of frost heave deformation does not change the overall distribution pattern of frost heaving force, it can exacerbate the directional concentration of frost heave strain, which can increase the frost heaving force at the periphery of the top arch of the lining. This study revealed the distribution pattern and key influencing factors of the freezing cycle and frost heaving force for tunnels, providing a theoretical basis and data reference for the frost resistance design of tunnels in cold regions. Full article
Show Figures

Figure 1

22 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

21 pages, 2149 KiB  
Article
An Improved Optimal Cloud Entropy Extension Cloud Model for the Risk Assessment of Soft Rock Tunnels in Fault Fracture Zones
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(15), 2700; https://doi.org/10.3390/buildings15152700 (registering DOI) - 31 Jul 2025
Abstract
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with [...] Read more.
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with an optimized cloud entropy extension cloud model. Initially, a comprehensive indicator system encompassing geological (surrounding rock grade, groundwater conditions, fault thickness, dip, and strike), design (excavation cross-section shape, excavation span, and tunnel cross-sectional area), and support (initial support stiffness, support installation timing, and construction step length) parameters is established. Subjective weights obtained via the analytic hierarchy process (AHP) are combined with objective weights calculated using the entropy, coefficient of variation, and CRITIC methods and subsequently balanced through a game theoretic approach to mitigate bias and reconcile expert judgment with data objectivity. Subsequently, the optimized cloud entropy extension cloud algorithm quantifies the fuzzy relationships between indicators and risk levels, yielding a cloud association evaluation matrix for precise classification. A case study of a representative soft rock tunnel in a fault-fractured zone validates this method’s enhanced accuracy, stability, and rationality, offering a robust tool for risk management and design decision making in complex geological settings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 2622 KiB  
Article
A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree
by Zhihong Sun, Yuanke Wu, Hao Xiao, Panpan Hu, Zhenyong Weng, Shunhai Xu and Wei Sun
Sensors 2025, 25(15), 4715; https://doi.org/10.3390/s25154715 (registering DOI) - 31 Jul 2025
Abstract
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM [...] Read more.
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM main bearings, and a comprehensive testing and evaluation system has yet to be established. This study presents an experimental investigation using a self-developed, full-scale TBM main bearing test bench. Based on a representative load spectrum, both operational condition tests and life cycle tests are conducted alternately, during which the signals of the main bearing are collected. The observed vibration signals are weak, with significant vibration attenuation occurring in the large structural components. Compared with the test bearing, which reaches a vibration amplitude of 10 g in scale tests, the difference is several orders of magnitude smaller. To effectively utilize the selected evaluation indicators, the entropy weight method is employed to assign weights to the indicators, and a comprehensive analysis is conducted using grey relational analysis. This strategy results in the development of a comprehensive evaluation method based on entropy weighting and grey relational analysis. The main bearing performance is evaluated under various working conditions and the same working conditions in different time periods. The results show that the greater the bearing load, the lower the comprehensive evaluation coefficient of bearing performance. A multistage evaluation method is adopted to evaluate the performance and condition of the main bearing across multiple working scenarios. With the increase of the test duration, the bearing performance exhibits gradual degradation, aligning with the expected outcomes. The findings demonstrate that the proposed performance evaluation method can effectively and accurately evaluate the performance of TBM main bearings, providing theoretical and technical support for the safe operation of TBMs. Full article
Show Figures

Figure 1

16 pages, 2242 KiB  
Article
Comparative Effectiveness of Tunneling vs. Coronally Advanced Flap Techniques for Root Coverage: A 6–12-Month Randomized Clinical Trial
by Luis Chauca-Bajaña, Pedro Samuel Vásquez González, María José Alban Guijarro, Carlos Andrés Guim Martínez, Byron Velásquez Ron, Patricio Proaño Yela, Alejandro Ismael Lorenzo-Pouso, Alba Pérez-Jardón and Andrea Ordoñez Balladares
Bioengineering 2025, 12(8), 824; https://doi.org/10.3390/bioengineering12080824 - 30 Jul 2025
Abstract
Background: Gingival recession is a common condition involving apical displacement of the gingival margin, leading to root surface exposure and associated complications such as dentin hypersensitivity and root caries. Among the most effective treatment options are the tunneling technique (TUN) and the coronally [...] Read more.
Background: Gingival recession is a common condition involving apical displacement of the gingival margin, leading to root surface exposure and associated complications such as dentin hypersensitivity and root caries. Among the most effective treatment options are the tunneling technique (TUN) and the coronally advanced flap (CAF), both combined with connective tissue grafts (CTGs). This study aimed to evaluate and compare the clinical outcomes of TUN + CTG and CAF + CTG in terms of root coverage and keratinized tissue width (KTW) over a 6–12-month follow-up. Methods: A randomized, double-blind clinical trial was conducted following CONSORT guidelines (ClinicalTrials.gov ID: NCT06228534). Participants were randomly assigned to receive either TUN + CTG or CAF + CTG. Clinical parameters, including gingival recession depth (REC) and KTW, were assessed at baseline as well as 6 months and 12 months postoperatively using a calibrated periodontal probe. Statistical analysis was performed using descriptive statistics and linear mixed models to compare outcomes over time, with a significance level set at 5%. Results: Both techniques demonstrated significant clinical improvements. At 6 months, mean root coverage was 100% in CAF + CTG cases and 97% in TUN + CTG cases, while complete root coverage (REC = 0) was observed in 100% and 89% of cases, respectively. At 12 months, root coverage remained stable, at 99% in the CAF + CTG group and 97% in the TUN + CTG group. KTW increased in both groups, with higher values observed in the CAF + CTG group (3.53 mm vs. 3.11 mm in TUN + CTG at 12 months). No significant postoperative complications were reported. Conclusions: Both TUN + CTG and CAF + CTG are safe and effective techniques for treating RT1 and RT2 gingival recession, offering high percentages of root coverage and increased KTW. While CAF + CTG achieved slightly superior coverage and tissue gain, the TUN was associated with better aesthetic outcomes and faster recovery, making it a valuable alternative in clinical practice. Full article
(This article belongs to the Special Issue Biomaterials and Technology for Oral and Dental Health)
Show Figures

Figure 1

17 pages, 3966 KiB  
Article
Beyond the Detour: Modeling Traffic System Shocks After the Francis Scott Key Bridge Failure
by Daeyeol Chang, Niyeyesh Meimandi Nejad, Mansoureh Jeihani and Mansha Swami
Sustainability 2025, 17(15), 6916; https://doi.org/10.3390/su17156916 - 30 Jul 2025
Viewed by 93
Abstract
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines [...] Read more.
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines the impacts of congestion across Immediate, Fall, and Winter periods, distinctly separating AM and PM peak patterns. Significant findings include severe PM peak congestion, up to four times greater than AM peak congestion, particularly on critical corridors such as the Harbor Tunnel Thruway northbound and MD-295 northbound. Initial route-level impacts were heterogeneous, gradually becoming uniform as the network adapted. The causal DiD analysis provides strong evidence that increased congestion is causally linked to proximity to the collapse. It is anticipated that incorporating the suggested framework will yield insightful information for stakeholders and decision-makers, such as targeted freight restriction, peak-hour dynamic pricing, corridor-specific signal adjustments, and investments in real-time traffic monitoring systems to strengthen transportation network resilience. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

15 pages, 6014 KiB  
Article
Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method
by Yun Peng, Shunchuan Wu, Yongjun Li, Lei He and Pengfei Wang
Processes 2025, 13(8), 2415; https://doi.org/10.3390/pr13082415 - 30 Jul 2025
Viewed by 144
Abstract
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field [...] Read more.
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field measurements. Numerical simulation was employed to investigate airflow movement and dust migration in the tunneling roadway, and the fundamental features of airflow field and dust diffusion laws after tunnel blasting operations in the fully mechanized excavation face were revealed. The effects of three main factors included airflow rate (Q), ventilation distance (S), and tunnel length (L) on the dust removal time after tunnel blasting operations were investigated based on the orthogonal design method. Results indicated that reducing the dust concentration in the roadway to 10 mg/m3 required 53 min. The primary factors influencing dust removal time, in order of significance, were determined to be L, Q, and S. The lowest dust concentration occurs when the ventilation distance was 25 m. A predictive model for dust removal time after tunnel blasting operations was developed, establishing the relationship between dust removal time and the three factors as T = 20.7Q−0.73S0.19L0.86. Subsequent on-site validation confirmed the high accuracy of the predictive model, demonstrating its efficacy for practical applications. This study contributes a novel integration of orthogonal experimental design and validated CFD modeling to predict ventilation dust removal time, offering a practical and theoretically grounded approach for tunnel ventilation optimization. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

18 pages, 2748 KiB  
Article
Clinical Efficacy of Er,Cr:YSGG Laser for Deepithelialization of Free Gingival Grafts in Gingival Recession Treatment: A Randomized, Split-Mouth Clinical Trial
by Artur Banyś, Jakub Fiegler-Rudol, Zuzanna Grzech-Leśniak, Rafał Wiench, Jacek Matys, Jamil A. Shibli and Kinga Grzech-Leśniak
J. Clin. Med. 2025, 14(15), 5335; https://doi.org/10.3390/jcm14155335 - 29 Jul 2025
Viewed by 145
Abstract
Bcakground: The deepithelialized free gingival graft (DGG) technique provides high-quality connective tissue grafts (CTGs) with predictable outcomes for recession coverage. This study evaluates a novel method of free gingival graft (FGG) deepithelialization using an Er,Cr:YSGG laser (LDEE) for treating multiple gingival recessions. [...] Read more.
Bcakground: The deepithelialized free gingival graft (DGG) technique provides high-quality connective tissue grafts (CTGs) with predictable outcomes for recession coverage. This study evaluates a novel method of free gingival graft (FGG) deepithelialization using an Er,Cr:YSGG laser (LDEE) for treating multiple gingival recessions. Methods: A split-mouth study was conducted on 46 (n = 46) recessions in nine patients (23 per test and control group). Sites were randomized. Full-thickness palatal grafts were harvested with a scalpel. In the test group (LDEE), deepithelialization was performed extraorally using an Er,Cr:YSGG laser (2780 nm; 2.5 W, 83.3 mJ, 30 Hz, 600 µm tip). In the control group (DEE), a 15c scalpel was used. All CTGs were applied using the modified coronally advanced tunnel (TUN) technique. Clinical parameters—recession depth (RD), keratinized tissue width (KT), gingival thickness (GT), pocket depth (PD), clinical attachment loss (CAL), pink esthetic score (PES), approximal plaque index (API), mean root coverage (MRC), and complete root coverage (CRC)—were assessed at baseline (T0), 3 months (T1), and 6 months (T2). Results: Both LDEE and DEE groups showed significant improvements in RD, KT, GT, PD, and CAL over time (p < 0.001). At T1 and T2, KT was significantly higher in the LDEE group (T1: 3.73 ± 0.72 mm; T2: 3.98 ± 0.76 mm) compared to the DEE group (T1: 3.21 ± 0.61 mm; T2: 3.44 ± 0.74 mm; p < 0.05). Other parameters (RD, GT, PD, CAL) showed no statistically significant intergroup differences at any time point (p > 0.05). After 6 months, MRC was 95% and CRC 82.6% for LDEE, compared to 94.8% and 82.6% for DEE (p > 0.05). PES scores were similar between groups at all time points (p > 0.05). Conclusions: Both laser- and scalpel-deepithelialized grafts effectively treated gingival recessions. LDEE combined with TUN resulted in significantly greater KT width compared to DEE + TUN. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

22 pages, 5844 KiB  
Article
Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors
by Weixu Gong, Zhengyang Cai, Shengcheng Geng, Zhi Gan, Junqiao Li, Tian Qiang, Yanfeng Jiang and Mengye Cai
Nanomaterials 2025, 15(15), 1168; https://doi.org/10.3390/nano15151168 - 28 Jul 2025
Viewed by 223
Abstract
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit [...] Read more.
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit obvious bipolarity, and gate-induced drain leakage (GIDL) contributes significantly to the off-state leakage current. Although the asymmetric gate strategy and feedback gate (FBG) structures proposed so far have shown the potential to suppress CNT FET leakage currents, the devices still lack scalability. Based on the analysis of the conduction mechanism of existing self-aligned gate structures, this study innovatively proposed a design strategy to extend the length of the source–drain epitaxial region (Lext) under a vertically stacked architecture. While maintaining a high drive current, this structure effectively suppresses the quantum tunneling effect on the drain side, thereby reducing the off-state leakage current (Ioff = 10−10 A), and has good scaling characteristics and leakage current suppression characteristics between gate lengths of 200 nm and 25 nm. For the sidewall gate architecture, this work also uses single-walled carbon nanotubes (SWCNTs) as the channel material and uses metal source and drain electrodes with good work function matching to achieve low-resistance ohmic contact. This solution has significant advantages in structural adjustability and contact quality and can significantly reduce the off-state current (Ioff = 10−14 A). At the same time, it can solve the problem of off-state current suppression failure when the gate length of the vertical stacking structure is 10 nm (the total channel length is 30 nm) and has good scalability. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 146
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

13 pages, 3887 KiB  
Article
Exploring 3D Roadway Modeling Techniques Using CAD and Unity3D
by Yingbing Yang, Yunchuan Sun and Yuhong Wang
Processes 2025, 13(8), 2399; https://doi.org/10.3390/pr13082399 - 28 Jul 2025
Viewed by 169
Abstract
To tackle the inefficiencies in 3D mine tunnel modeling and the tedious task of drawing centerlines, this study introduces a faster method for generating centerlines using CAD secondary development. Starting with the tunnel centerline, the research then dives into techniques for creating detailed [...] Read more.
To tackle the inefficiencies in 3D mine tunnel modeling and the tedious task of drawing centerlines, this study introduces a faster method for generating centerlines using CAD secondary development. Starting with the tunnel centerline, the research then dives into techniques for creating detailed 3D tunnel models. The team first broke down the steps and logic behind tunnel modeling, designing a 3D tunnel framework and its data structure—complete with key geometric components like traverse points, junctions, nodes, and centerlines. By refining older centerline drawing techniques, they built a CAD-powered tool that slashes time and effort. The study also harnessed advanced algorithms, such as surface fitting and curve lofting, to swiftly model tricky tunnel sections like curves and crossings. This method fixes common problems like warped or incomplete surfaces in linked tunnel models, delivering precise and lifelike 3D scenes for VR-based mining safety drills and simulations. Full article
Show Figures

Figure 1

23 pages, 9610 KiB  
Article
Research on the Design and Application of a Novel Curved-Mesh Circumferential Drainage Blind Pipe for Tunnels in Water-Rich Areas
by Wenti Deng, Xiabing Liu, Shaohui He and Jianfei Ma
Infrastructures 2025, 10(8), 199; https://doi.org/10.3390/infrastructures10080199 - 28 Jul 2025
Viewed by 220
Abstract
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering [...] Read more.
To address the issues of low permeability, clogging susceptibility, and insufficient circumferential bearing capacity of traditional drainage blind pipes behind tunnel linings in water-rich areas, this study proposes a novel curved-mesh circumferential drainage blind pipe specifically designed for such environments. First, through engineering surveys and comparative analysis, the limitations and application demands of conventional circumferential annular drainage blind pipes in highway tunnels were identified. Based on this, the key parameters of the new blind pipe—including material, wall thickness, and aperture size—were determined. Laboratory tests were then conducted to evaluate the performance of the newly developed pipe. Subsequently, the pipe was applied in a real-world tunnel project, where a construction process and an in-service blockage inspection method for circumferential drainage pipes were proposed. Field application results indicate that, compared to commonly used FH50 soft permeable pipes and F100 semi-split spring pipes, the novel curved-mesh drainage blind pipe exhibits superior circumferential load-bearing capacity, anti-clogging performance, and deformation resistance. The proposed structure provides a total permeable area exceeding 17,500 mm2, three to four times larger than that of conventional drainage pipes, effectively meeting the drainage requirements behind tunnel linings in high-water-content zones. The use of four-way connectors enhanced integration with other drainage systems, and inspection of the internal conditions confirmed that the pipe remained free of clogging and deformation. Furthermore, the curved-mesh design offers better conformity with the primary support and demonstrates stronger adaptability to complex installation conditions. Full article
Show Figures

Figure 1

20 pages, 3560 KiB  
Article
Study on Vibration Effects and Optimal Delay Time for Tunnel Cut-Blasting Beneath Existing Railways
by Ruifeng Huang, Wenqing Li, Yongxiang Zheng and Zhong Li
Appl. Sci. 2025, 15(15), 8365; https://doi.org/10.3390/app15158365 - 28 Jul 2025
Viewed by 152
Abstract
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, [...] Read more.
With the development of underground space in urban areas, the demand for tunneling through existing railways is increasing. The adverse effects of cut-blasting during the construction of tunnels under crossing existing railways are investigated. Combined with the principle of blasting seismic wave superposition, LS-DYNA numerical simulation is used to analyze the seismic wave superposition law under different superposition methods. This study also investigates the vibration reduction effect of millisecond blasting for cut-blasting under the different classes of surrounding rocks. The results show that the vibration reduction forms of millisecond blasting can be divided into separation and interference of waveform. Based on the principle of superposition of blasting seismic waves, vibration reduction through wave interference is further divided. At the same time, a new vibration reduction mode is proposed. This vibration reduction mode can significantly improve construction efficiency while improving damping efficiency. The new vibration reduction mode can increase the vibration reduction to 80% while improving construction efficiency. Additionally, there is a significant difference in the damping effect of different classes of surrounding rock on the blasting seismic wave. Poor-quality surrounding rock enhances the attenuation of seismic wave velocity and peak stress in the surrounding rock. In the Zhongliangshan Tunnel, a tunnel cut-blasting construction at a depth of 42 m, the best vibration reduction plan of Class III is 3 ms millisecond blasting, in which the surface points achieve separation vibration reduction. The best vibration reduction plan of Class V is 1 ms millisecond blasting, in which the surface points achieve a new vibration reduction mode. During the tunnel blasting construction process, electronic detonators are used for millisecond blasting of the cut-blasting. This method can reduce the vibration effects generated by blasting. The stability of the existing railway is ultimately guaranteed. This can improve construction efficiency while ensuring construction safety. This study can provide significant guidance for the blasting construction of the tunnel through the railway. Full article
Show Figures

Figure 1

Back to TopTop