Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,190)

Search Parameters:
Keywords = tumor-associated antigens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2609 KiB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

28 pages, 1877 KiB  
Review
Unconventional Immunotherapies in Cancer: Opportunities and Challenges
by Meshael Alturki, Abdullah A. Alshehri, Ahmad M. Aldossary, Mohannad M. Fallatah, Fahad A. Almughem, Nojoud Al Fayez, Majed A. Majrashi, Ibrahim A. Alradwan, Mohammad Alkhrayef, Mohammad N. Alomary and Essam A. Tawfik
Pharmaceuticals 2025, 18(8), 1154; https://doi.org/10.3390/ph18081154 - 4 Aug 2025
Viewed by 47
Abstract
Conventional immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, has revolutionized cancer therapy over the past decade. Yet, the efficacy of these therapies is limited by tumor resistance, antigen escape mechanisms, poor persistence, and T-cell exhaustion, particularly in the treatment [...] Read more.
Conventional immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, has revolutionized cancer therapy over the past decade. Yet, the efficacy of these therapies is limited by tumor resistance, antigen escape mechanisms, poor persistence, and T-cell exhaustion, particularly in the treatment of solid tumors. The emergence of unconventional immunotherapies offers novel opportunities by leveraging diverse immune cell subsets and synthetic biologics. This review explores various immunotherapy platforms, including gamma delta T cells, invariant natural killer T cells, mucosal-associated invariant T cells, engineered regulatory T cells, and universal CAR platforms. Additionally, it expands on biologics, including bispecific and multispecific antibodies, cytokine fusions, agonists, and oncolytic viruses, showcasing their potential for modular engineering and off-the-shelf applicability. Distinct features of unconventional platforms include independence from the major histocompatibility complex (MHC), tissue-homing capabilities, stress ligand sensing, and the ability to bridge adaptive and innate immunity. Their compatibility with engineering approaches highlights their potential as scalable, efficient, and cost-effective therapies. To overcome translational challenges such as functional heterogeneity, immune exhaustion, tumor microenvironment-mediated suppression, and limited persistence, novel strategies will be discussed, including metabolic and epigenetic reprogramming, immune cloaking, gene editing, and the utilization of artificial intelligence for patient stratification. Ultimately, unconventional immunotherapies extend the therapeutic horizon of cancer immunotherapy by breaking barriers in solid tumor treatment and increasing accessibility. Continued investments in research for mechanistic insights and scalable manufacturing are key to unlocking their full clinical potential. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 - 1 Aug 2025
Viewed by 252
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 355
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

14 pages, 1241 KiB  
Review
CD4/CD8–p56lck Induced T-Cell Receptor Signaling and Its Implications for Immunotherapy
by Andres Oroya and Christopher E. Rudd
Biomolecules 2025, 15(8), 1096; https://doi.org/10.3390/biom15081096 - 29 Jul 2025
Viewed by 388
Abstract
T-cells constitute an essential component of the adaptive immune response, mount a protective response against foreign pathogens and are important regulators of anti-tumor immunotherapy. In this context, the activation of T-cells and chimeric antigen receptor (CAR)-expressing T-cells is orchestrated by various signaling pathways, [...] Read more.
T-cells constitute an essential component of the adaptive immune response, mount a protective response against foreign pathogens and are important regulators of anti-tumor immunotherapy. In this context, the activation of T-cells and chimeric antigen receptor (CAR)-expressing T-cells is orchestrated by various signaling pathways, involving the initiation of a protein tyrosine phosphorylation cascade. For T-cells, this involves initiation of the phosphorylation cascade via src-related protein-tyrosine kinase p56lck, which we show to associate with the co-receptors CD4 and CD8 for the induction of a phosphorylation cascade needed for the activation of T-cells. Likewise, p56lck phosphorylation of the antigen receptor immunoreceptor tyrosine-based activation motifs (ITAMs) and key CD28 tyrosine motifs ensures the functionality and the survival of CARs, while their phospho-targets are also inhibited by PD-1, a key component of the immune checkpoint blockade. This review covers historic and current elements of our knowledge of CD4/CD8–p56lck-induced activation events and their importance to the development of CAR T-cell immunotherapies. Full article
(This article belongs to the Special Issue Molecular Signalling Pathways in Tumorigenesis and Tumor Suppression)
Show Figures

Figure 1

26 pages, 1745 KiB  
Review
Emerging PET Imaging Agents and Targeted Radioligand Therapy: A Review of Clinical Applications and Trials
by Maierdan Palihati, Jeeban Paul Das, Randy Yeh and Kathleen Capaccione
Tomography 2025, 11(8), 83; https://doi.org/10.3390/tomography11080083 - 28 Jul 2025
Viewed by 493
Abstract
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular [...] Read more.
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular targeting have spurred the development of numerous theranostic combinations for other targets. A number of the most promising agents have progressed to clinical trials and are poised to change the landscape of positron emission tomography (PET) imaging. Here, we present recent data on some of the most important emerging molecular targeted agents with their exemplar clinical images, including agents targeting fibroblast activation protein (FAP), hypoxia markers, gastrin-releasing peptide receptors (GRPrs), and integrins. These radiopharmaceuticals share the promising characteristic of being able to image multiple types of cancer. Early clinical trials have already demonstrated superiority to 18F-fluorodeoxyglucose (18F-FDG) for some, suggesting the potential to supplant this longstanding PET radiotracer. Here, we provide a primer for practicing radiologists, particularly nuclear medicine clinicians, to understand novel PET imaging agents and their clinical applications, as well as the availability of companion targeted radiotherapeutics, the status of their regulatory approval, the potential challenges associated with their use, and the future opportunities and perspectives. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

26 pages, 2998 KiB  
Review
PSMA-Directed Theranostics in Prostate Cancer
by Salman Ayub Jajja, Nandini Sodhi, Ephraim E. Parent and Parminder Singh
Biomedicines 2025, 13(8), 1837; https://doi.org/10.3390/biomedicines13081837 - 28 Jul 2025
Viewed by 888
Abstract
Following lung cancer, prostate cancer is the leading cause of cancer death in men. High-risk localized tumor burden or metastatic disease often progresses, refractory to initial treatment regimens. There is ongoing development of technology to appropriately identify high-risk patients, stage them correctly, and [...] Read more.
Following lung cancer, prostate cancer is the leading cause of cancer death in men. High-risk localized tumor burden or metastatic disease often progresses, refractory to initial treatment regimens. There is ongoing development of technology to appropriately identify high-risk patients, stage them correctly, and offer appropriate treatments to obtain the best clinical outcomes. Prostate cancer-specific membrane antigen (PSMA) is a transmembrane glutamate carboxypeptidase, which helps regulate folate absorption, and its overexpression is pathologically directly proportional and associated with prostate cancer. Increased PSMA expression is a known independent risk factor for poorer survival, and most metastatic lesions in CRPC are PSMA positive. Over the last decade, several PSMA-based PET radiopharmaceuticals have demonstrated superior sensitivities and specificities compared to traditional imaging methods. These outcomes have been demonstrated by several large clinical trials. As the data emerges, these diagnostics are being integrated into standard of care protocol to facilitate nuanced identification of malignant lesions. PSMA is also being targeted through several therapeutics, including radioligands and immunotherapies such as CAR-T, BiTEs, and ADCs. This review will discuss the landscape of PSMA-based theranostics in the context of prostate cancer. Full article
(This article belongs to the Special Issue Advanced Research on Genitourinary Cancer)
Show Figures

Figure 1

21 pages, 861 KiB  
Review
Bispecific Antibodies and Antibody–Drug Conjugates in Relapsed/Refractory Aggressive Non-Hodgkin Lymphoma, Focusing on Diffuse Large B-Cell Lymphoma
by Santino Caserta, Chiara Campo, Gabriella Cancemi, Santo Neri, Fabio Stagno, Donato Mannina and Alessandro Allegra
Cancers 2025, 17(15), 2479; https://doi.org/10.3390/cancers17152479 - 26 Jul 2025
Viewed by 575
Abstract
Relapsed/refractory diffuse large B-cell lymphoma and other non-Hodgkin lymphomas represent significant clinical challenges, particularly in patients who have exhausted standard immunochemotherapy and cellular therapies. Bispecific antibodies and antibody–drug conjugates have emerged as promising treatments, offering targeted and more effective treatment options compared to [...] Read more.
Relapsed/refractory diffuse large B-cell lymphoma and other non-Hodgkin lymphomas represent significant clinical challenges, particularly in patients who have exhausted standard immunochemotherapy and cellular therapies. Bispecific antibodies and antibody–drug conjugates have emerged as promising treatments, offering targeted and more effective treatment options compared to current standards. Bispecific antibodies, including epcoritamab and glofitamab, third-line therapies for diffuse large B-cell lymphoma, are recombinant immunoglobulins engineered to recognize two distinct antigens or epitopes simultaneously. This capability enhances therapeutic precision by bridging immune effector cells and tumor cells and modulating multiple signaling pathways involved in the pathogenesis of non-Hodgkin lymphoma. In the context of new therapies, antibody–drug conjugates, such as loncastuximab tesirine, are therapies composed of monoclonal antibodies linked to cytotoxic agents, in which the antibody selectively binds to tumor-associated antigens, delivering the cytotoxic payload directly to cancer cells while minimizing off-target effects. They combine the specificity of antibodies with the potency of chemotherapy, offering enhanced efficacy and safety in hematological malignancies. Ongoing clinical trials are investigating other molecules like odronextamab and the use of bispecific antibodies in combination regimens and earlier lines of therapy. The aim of this review is to explore actual therapies in relapsed/refractory diffuse large B-cell lymphoma, focusing on bispecific antibodies and antibody–drug conjugates. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 312
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

19 pages, 3009 KiB  
Article
PD-1-Positive CD8+ T Cells and PD-1-Positive FoxP3+ Cells in Tumor Microenvironment Predict Response to Neoadjuvant Chemoimmunotherapy in Gastric Cancer Patients
by Liubov A. Tashireva, Anna Yu. Kalinchuk, Elena O. Shmakova, Elisaveta A. Tsarenkova, Dmitriy M. Loos, Pavel Iamschikov, Ivan A. Patskan, Alexandra V. Avgustinovich, Sergey V. Vtorushin, Irina V. Larionova and Evgeniya S. Grigorieva
Cancers 2025, 17(14), 2407; https://doi.org/10.3390/cancers17142407 - 21 Jul 2025
Viewed by 380
Abstract
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive [...] Read more.
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive markers associated with therapeutic efficacy. Methods: We prospectively enrolled 16 patients with histologically confirmed, PD-L1–positive (CPS ≥ 1) gastric adenocarcinoma (T2–4N0–1M0). All patients received eight cycles of FLOT chemotherapy combined with pembrolizumab. Treatment response was assessed by Mandard tumor regression grading. Spatial transcriptomic profiling (10x Genomics Visium) and multiplex immunofluorescence were used to evaluate tumor-infiltrating immune cell subsets and PD-1 expression at baseline and after treatment. Results: Transcriptomic analysis differentiated the immune landscapes of responders from non-responders. Responders exhibited elevated expression of IL1B, CXCL5, HMGB1, and IFNGR2, indicative of an inflamed tumor microenvironment and type I/II interferon signaling. In contrast, non-responders demonstrated upregulation of immunosuppressive genes such as LGALS3, IDO1, and CD55, along with enrichment in oxidative phosphorylation and antigen presentation pathways. Multiplex immunofluorescence confirmed a higher density of FoxP3+ regulatory T cells in non-responders (median 5.36% vs. 2.41%; p = 0.0032). Notably, PD-1+ CD8+ T cell and PD-1+ FoxP3+ Treg frequencies were significantly elevated in non-responders, suggesting that PD-1 expression within cytotoxic and regulatory compartments may contribute to immune evasion. No substantial differences were observed in PD-L1 CPS or PD-1+ B cells and PD-1+ macrophages. Conclusions: Our findings identify PD-1+ CD8+ T cells and PD-1+ FoxP3+ Tregs as potential biomarkers of resistance to neoadjuvant chemoimmunotherapy in gastric cancer. Transcriptional programs centered on IL1B/CXCL5 and LGALS3/IDO1 define distinct immune phenotypes that may guide future combination strategies targeting both effector and suppressive arms of the tumor immune response. Full article
Show Figures

Figure 1

20 pages, 3793 KiB  
Article
Chemoresistance Evolution in Ovarian Cancer Delineated by Single-Cell RNA Sequencing
by Yuanmei Wang, Zongfu Tang, Haoyu Li, Run Zhou, Hao Wu, Xiaoping Cen, Yi Zhang, Wei Dong and Huanming Yang
Int. J. Mol. Sci. 2025, 26(14), 6760; https://doi.org/10.3390/ijms26146760 - 15 Jul 2025
Viewed by 391
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive gynecological malignancy characterized by intraperitoneal spread and chemotherapy resistance. Chemotherapies have demonstrated limited effectiveness in HGSOC, underscoring the urgent need to evaluate how the tumor microenvironment (TME) was reshaped by chemotherapy in different sites of [...] Read more.
High-grade serous ovarian cancer (HGSOC) is an aggressive gynecological malignancy characterized by intraperitoneal spread and chemotherapy resistance. Chemotherapies have demonstrated limited effectiveness in HGSOC, underscoring the urgent need to evaluate how the tumor microenvironment (TME) was reshaped by chemotherapy in different sites of tumor foci. In this study, we performed single-cell transcriptomic analysis to explore the TME in samples obtained from various sites of tumor foci, with or without the history of Neoadjuvant chemotherapy (NACT). We discovered that chemotherapy reshaped the tumor immune microenvironment, evident through the reduction in human leukocyte antigen (HLA) diversity and the increase in PDCD1/CD274 in CD8_ANXA1, LAMP3+ dendritic cell (DC_LAMP3), and EREG+ monocytes (mono_EREG). Moreover, cancer.cell.2, cancer-associated C3+ fibroblasts (CAF_C3), and Fibrocyte_CD34, which are prone to accumulate in the metastatic site and post-NACT group, harbored poor clinical outcome, reflected in the immune exclusion and tumor progression signaling. Cell–cell communication identified a stronger interaction between cancer.cell.2 and CAF_C3, as well as Fibrocyte_CD34, in post-NACT samples, indicating that chemotherapy reshapes pre-existing cell clusters in a site-dependent manner. Our findings suggest that chemotherapy and sites of foci were critical for the transcriptional reprogramming of pre-existed cell clusters. Our study offers a single-cell phenotype data substrate from which to develop a personalized combination of chemotherapy and immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 8113 KiB  
Article
An Interpretable Machine Learning Model Based on Inflammatory–Nutritional Biomarkers for Predicting Metachronous Liver Metastases After Colorectal Cancer Surgery
by Hao Zhu, Danyang Shen, Xiaojie Gan and Ding Sun
Biomedicines 2025, 13(7), 1706; https://doi.org/10.3390/biomedicines13071706 - 12 Jul 2025
Viewed by 437
Abstract
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods [...] Read more.
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods: This study enrolled 680 patients with CRC who underwent curative resection, randomly allocated into a training set (n = 477) and a validation set (n = 203) in a 7:3 ratio. Feature selection was performed using Boruta and Lasso algorithms, identifying nine core prognostic factors through variable intersection. Seven machine learning (ML) models were constructed using the training set, with the optimal predictive model selected based on comprehensive evaluation metrics. An interactive visualization tool was developed to interpret the dynamic impact of key features on individual predictions. The partial dependence plots (PDPs) revealed a potential dose–response relationship between inflammatory–nutritional markers and MLM risk. Results: Among 680 patients with CRC, the cumulative incidence of MLM at 6 months postoperatively was 39.1%. Multimodal feature selection identified nine key predictors, including the N stage, vascular invasion, carcinoembryonic antigen (CEA), systemic immune–inflammation index (SII), albumin–bilirubin index (ALBI), differentiation grade, prognostic nutritional index (PNI), fatty liver, and T stage. The gradient boosting machine (GBM) demonstrated the best overall performance (AUROC: 0.916, sensitivity: 0.772, specificity: 0.871). The generalized additive model (GAM)-fitted SHAP analysis established, for the first time, risk thresholds for four continuous variables (CEA > 8.14 μg/L, PNI < 44.46, SII > 856.36, ALBI > −2.67), confirming their significant association with MLM development. Conclusions: This study developed a GBM model incorporating inflammatory-nutritional biomarkers and clinical features to accurately predict MLM in colorectal cancer. Integrated with dynamic visualization tools, the model enables real-time risk stratification via a freely accessible web calculator, guiding individualized surveillance planning and optimizing clinical decision-making for precision postoperative care. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

14 pages, 1881 KiB  
Case Report
HIV Integration into the PTEN Gene and Its Tumor Microenvironment Implications for Lung Cancer
by Davey M. Smith, Elizabeth F. Rowland, Sara Gianella, Sandip Pravin Patel, Stephanie Solso, Cheryl Dullano, Robert Deiss, Daria Wells, Caroline Ignacio, Gemma Caballero, Magali Porrachia, Collin Kieffer and Antoine Chaillon
Curr. Oncol. 2025, 32(7), 389; https://doi.org/10.3390/curroncol32070389 - 4 Jul 2025
Viewed by 435
Abstract
Health outcomes for people with HIV (PWH) have improved significantly with combination antiretroviral therapy (ART), yet the risk of lung cancer remains elevated. While a single case cannot establish causality, we describe here an investigation of a 74-year-old male PWH with de novo [...] Read more.
Health outcomes for people with HIV (PWH) have improved significantly with combination antiretroviral therapy (ART), yet the risk of lung cancer remains elevated. While a single case cannot establish causality, we describe here an investigation of a 74-year-old male PWH with de novo high-grade neuroendocrine small cell lung carcinoma. To investigate the potential contribution of HIV to cancer development, we performed HIV integration site sequencing on blood, tumor, and non-tumor tissue samples from the patient. We analyzed integration site distribution, clonal expansion, and associated gene disruption. Phosphatase and Tensin Homolog (PTEN) expression was evaluated using immunofluorescence and microscopy. A total of 174 unique HIV integration sites were identified, with 29.9% (52/174) located in clonally expanded cells. The most frequent integration site in clonally expanded cells was within the PTEN gene, representing 4.2% to 16.7% of all HIV-infected cells across samples. PTEN expression was markedly reduced in tumor regions relative to non-tumor tissue. Areas positive for HIV p24 antigen showed minimal PTEN expression. These findings suggest that HIV integration into the PTEN gene, coupled with clonal expansion of HIV-infected cells, may impair anti-tumor immune responses and promote cancer progression in PWH. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Graphical abstract

14 pages, 581 KiB  
Review
CAR-Based Cell Therapy in Head and Neck Cancer: A Comprehensive Review on Clinical Applicability
by Francesco Perri, Margaret Ottaviano, Miriam Tomaciello and Francesca De Felice
Cancers 2025, 17(13), 2215; https://doi.org/10.3390/cancers17132215 - 1 Jul 2025
Viewed by 574
Abstract
Background/Objectives: Chimeric antigen receptor T-cell (CAR-T) therapy is a novel form of adoptive cellular immunotherapy that involves modifying autologous T cells to recognize and target tumor-associated antigens (TAAs) on malignant cells, independent of major histocompatibility complex (MHC) restriction. Although CAR-T therapy has [...] Read more.
Background/Objectives: Chimeric antigen receptor T-cell (CAR-T) therapy is a novel form of adoptive cellular immunotherapy that involves modifying autologous T cells to recognize and target tumor-associated antigens (TAAs) on malignant cells, independent of major histocompatibility complex (MHC) restriction. Although CAR-T therapy has shown remarkable success in treating hematologic malignancies, its efficacy in solid tumors remains limited, largely due to the lack of tumor-specific antigens and the complexity of the tumor microenvironment. This review aims to explore the rationale for continuing the development of adoptive cellular therapies in head and neck cancer (HNC), offering insights into the diagnostic and therapeutic challenges associated with this heterogeneous group of malignancies. Methods: We conducted a comprehensive literature review using the PubMed database to identify relevant studies on the application of CAR-T cell therapy in the management of HNC. Results: HNC presented numerous barriers to CAR-T cell infiltration, primarily due to the unique characteristics of its tumor microenvironment (TME). The TME in HNC is notably immunosuppressive, with a lymphocytic infiltrate predominantly composed of regulatory T cells (Tregs) and natural killer (NK) cells. These immune cells typically exhibit low expression of the CD16 receptor, which plays a crucial role in mediating antibody-dependent cellular cytotoxicity (ADCC), thereby limiting the effectiveness of CAR-T cell therapy. Conclusions: This comprehensive review suggests a potential clinical applicability of CAR-T therapy in HNC management. Full article
Show Figures

Figure 1

17 pages, 623 KiB  
Review
A Review of Emerging Immunotherapeutic Strategies for IDH-Mutant Glioma
by Masih Tazhibi, Eric P. Grewal, Rishab Ramapriyan, Leland G. K. Richardson, Gust Vandecandelaere, Adrian Kalaw, Parker Kotlarz, Samuel J. Steuart, Jing Sun, Matthew Gaffey, Daniel P. Cahill, Julie J. Miller, William T. Curry and Bryan D. Choi
Cancers 2025, 17(13), 2178; https://doi.org/10.3390/cancers17132178 - 27 Jun 2025
Viewed by 718
Abstract
IDH-mutant gliomas (IMGs) are a unique subset of diffuse gliomas that follow a relatively indolent course compared to IDH-wildtype glioblastoma (GBM) but inevitably progress, often to a higher histologic grade. Current standard therapies, including surgery, chemoradiation, and the recently approved mutant IDH inhibitor [...] Read more.
IDH-mutant gliomas (IMGs) are a unique subset of diffuse gliomas that follow a relatively indolent course compared to IDH-wildtype glioblastoma (GBM) but inevitably progress, often to a higher histologic grade. Current standard therapies, including surgery, chemoradiation, and the recently approved mutant IDH inhibitor (mIDHi) vorasidenib, provide limited disease control and are not curative. Given the immunosuppressive tumor microenvironment (TME) driven by the mutant IDH enzyme and its associated oncometabolite 2-hydroxyglutarate (2-HG), novel immunotherapies offer a promising avenue for treatment. The goal of this paper is to review the main immunologic characteristics that distinguish IMG from GBM, including reduced T cell infiltration and function, fewer myeloid cells, and increased immune-dampening signaling. We also evaluate the preclinical and clinical evidence for immunotherapeutic approaches with the most potential to induce meaningful clinical activity, such as immune checkpoint inhibitors, CAR T cells, tumor vaccines, myeloid redirection, and oncolytic viruses. Despite significant advances in immunotherapy for IMG, fundamental questions persist, including optimal timing and combination strategies, mechanisms underpinning treatment resistance, and strategies to overcome the suppressive microenvironment. Future exploration of these treatment modalities, with a focus on mitigating soluble immunosuppressive factors in the TME, enhancing in situ T cell persistence, and leveraging novel antigen targets, is critical for advancing the state of therapy for this presently incurable group of tumors. Full article
(This article belongs to the Special Issue Emerging Research on Primary Brain Tumors)
Show Figures

Figure 1

Back to TopTop