PSMA-Directed Theranostics in Prostate Cancer
Abstract
1. Introduction
2. PSMA Directed Diagnostic Advancements in Prostate Cancer
2.1. Antibody-Based Agents
2.2. Small Molecule Targeting PSMA
2.2.1. Ga-68 PSMA-11
2.2.2. Ga-68 Gozetotide
2.2.3. 18F-DCFPyL (Pylarify)
2.2.4. 18F-rhPSMA-7.3
2.3. Future of PSMA Directed Diagnostics
2.4. Limitations
2.5. Clinical Applications of PSMA PET Scan in Prostate Cancer
2.5.1. Prognostic Utility and Role in Treatment Response Assessment
2.5.2. Framework for Standardizing PSMA PET Response Assessment
2.5.3. Limitations and Evolving Challenges in PSMA PET Interpretation
2.6. Conclusions
3. PSMA Directed Therapy Advancements in Prostate Cancer
3.1. PSMA-Based Radioligand Therapy
3.1.1. 177Lu-PSMA-617
3.1.2. Combining 177Lu-PSMA-617 with Novel Agents
3.1.3. 177Lu-PSMA-617 in Earlier Stages of PCa
3.2. Novel PSMA Radioligand Therapies
3.3. PSMA-Based Immunotherapies
3.3.1. Chimeric Antigen Receptor T-Cell (CAR-T) Therapy
3.3.2. Bispecific T-Cell Engager (BiTEs) Introduction and MOA
3.3.3. Limitations of BiTEs
3.3.4. Future of BiTEs
3.3.5. Antibody–Drug Conjugates Introduction and MOA
3.3.6. Limitations of Antibody–Drug Conjugates
3.3.7. Future of Antibody–Drug Conjugates
3.4. Other Molecules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRPC | Castration Resistant Prostate Cancer |
PSMA | Prostate Cancer Specific Membrane Antigen |
PCa | Prostate Cancer |
mCRPC | Metastatic Castration-Resistant Prostate Cancer |
ADT | Androgen Deprivation Therapy |
SPION | Superparamagnetic Iron Oxide Nanoparticles |
ADC | Antibody–Drug Conjugates |
CAR-T | Chimeric Antigen Receptor T-Cell |
MOA | Mechanism of Action |
PPV | Positive Predictive Value |
NPV | Negative Predictive Value |
SMDC | Small Molecule Drug Conjugates |
References
- American Cancer Society. Key Statistics for Prostate Cancer; American Cancer Society: Atlanta, GA, USA, 2025. [Google Scholar]
- Kirby, M.; Hirst, C.; Crawford, E.D. Characterising the castration-resistant prostate cancer population: A systematic review. Int. J. Clin. Pract. 2011, 65, 1180–1192. [Google Scholar] [CrossRef]
- Lamb, H.M.; Faulds, D. Capromab pendetide. A review of its use as an imaging agent in prostate cancer. Drugs Aging 1998, 12, 293–304. [Google Scholar] [CrossRef]
- Sheehan, B.; Guo, C.; Neeb, A.; Paschalis, A.; Sandhu, S.; de Bono, J.S. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. Eur. Urol. Focus 2022, 8, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Paschalis, A.; Sheehan, B.; Riisnaes, R.; Rodrigues, D.N.; Gurel, B.; Bertan, C.; Ferreira, A.; Lambros, M.B.K.; Seed, G.; Yuan, W.; et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur. Urol. 2019, 76, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Vlachostergios, P.J.; Niaz, M.J.; Sun, M.; Mosallaie, S.A.; Thomas, C.; Christos, P.J.; Osborne, J.R.; Molina, A.M.; Nanus, D.M.; Bander, N.H.; et al. Prostate-Specific Membrane Antigen Uptake and Survival in Metastatic Castration-Resistant Prostate Cancer. Front. Oncol. 2021, 11, 630589. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.C.; Malhotra, M.; Cryan, J.F.; O’Driscoll, C.M. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br. J. Pharmacol. 2016, 173, 3041–3079. [Google Scholar] [CrossRef]
- Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997, 3, 81–85. [Google Scholar]
- Ho, D.; Olafsen, T.; Lipman, A. J591 Minibodies and Cys-Diabodies for Targeting Human Prostate Specific Membrane Antigen (PSMA) and Methods for Their Use. U.S. Patent 8,772,459, 8 July 2014. [Google Scholar]
- Pandit-Taskar, N.; O’Donoghue, J.A.; Divgi, C.R.; Wills, E.A.; Schwartz, L.; Gönen, M.; Smith-Jones, P.; Bander, N.H.; Scher, H.I.; Larson, S.M.; et al. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors. EJNMMI Res. 2015, 5, 28. [Google Scholar] [CrossRef]
- Rovera, G.; Grimaldi, S.; Oderda, M.; Marra, G.; Calleris, G.; Iorio, G.C.; Falco, M.; Grossi, C.; Passera, R.; Campidonico, G.; et al. Comparative Performance of (68)Ga-PSMA-11 PET/CT and Conventional Imaging in the Primary Staging of High-Risk Prostate Cancer Patients Who Are Candidates for Radical Prostatectomy. Diagnostics 2024, 14, 1964. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Petronis, J.D.; Regan, F.; Lin, K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin. Nucl. Med. 1998, 23, 672–677. [Google Scholar] [CrossRef]
- Abdolahi, M.; Shahbazi-Gahrouei, D.; Laurent, S.; Sermeus, C.; Firozian, F.; Allen, B.J.; Boutry, S.; Muller, R.N. Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer. Contrast Media Mol. Imaging 2013, 8, 175–184. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, Y.; Chen, Y.; Liu, W.; Jiang, J.; Guan, W.; Zhang, Z.; Duan, Y. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with Polypeptide-Labeled Superparamagnetic Iron Oxide Nanoparticles. Int. J. Mol. Sci. 2015, 16, 9573–9587. [Google Scholar] [CrossRef]
- Tse, B.W.; Cowin, G.J.; Soekmadji, C.; Jovanovic, L.; Vasireddy, R.S.; Ling, M.T.; Khatri, A.; Liu, T.; Thierry, B.; Russell, P.J. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine 2015, 10, 375–386. [Google Scholar] [CrossRef]
- Hope, T.A.; Eiber, M.; Armstrong, W.R.; Juarez, R.; Murthy, V.; Lawhn-Heath, C.; Behr, S.C.; Zhang, L.; Barbato, F.; Ceci, F.; et al. Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol. 2021, 7, 1635–1642. [Google Scholar] [CrossRef]
- Drug Approval Package: GALLIUM GA 68 PSMA-11. Available online: https://www.locametz-hcp.com/psma-pet-ct/using-locametz?site=231288-231285GK100340&utm_source=google&utm_mlr=231288-231285&utm_medium=cpc&utm_campaign=google_branded_2023-locametz-hcp-branded-treatment-phrase%3Bs%3Bph%3Bbr%3Bonc%3Bhcp%3Bbr_apr-2024&utm_content=loc_prostate-cancer_kw_n2_indicationgeneric&utm_term=Gallium%2068%20psma%2011&gclsrc=aw.ds&gad_source=1&gad_campaignid=19005549993&gbraid=0AAAAAoNZQI-5jCRF6Ev-If_dhENx311aX&gclid=Cj0KCQjw-ZHEBhCxARIsAGGN96I_ThGK5y1o9x8qXKQ-MtNLLJj0ojNd0LWVuQ8zCLjm3GVbhJXSbxwaAuF2EALw_wcB (accessed on 22 June 2025).
- Fendler, W.P.; Calais, J.; Eiber, M.; Flavell, R.R.; Mishoe, A.; Feng, F.Y.; Nguyen, H.G.; Reiter, R.E.; Rettig, M.B.; Okamoto, S.; et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol. 2019, 5, 856–863. [Google Scholar] [CrossRef]
- Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with (18)F-DCFPyL in Prostate Cancer Patients (OSPREY). J. Urol. 2021, 206, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Rowe, S.P.; Gorin, M.A.; Saperstein, L.; Pouliot, F.; Josephson, D.; Wong, J.Y.C.; Pantel, A.R.; Cho, S.Y.; Gage, K.L.; et al. Diagnostic Performance of (18)F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin. Cancer Res. 2021, 27, 3674–3682. [Google Scholar] [CrossRef] [PubMed]
- Prospective, Multi-Center Study to Assess the Diagnostic Performance of [18F]PSMA-1007 PET/CT Imaging in Patients with Newly-Diagnosed High-Risk or Very-High-Risk Prostate Cancer. 2023. Available online: https://trialfinder.panfoundation.org/en-US/trial/listing/522075 (accessed on 22 June 2025).
- Phase III Study of [18F]PSMA-1007 Positron Emission Tomography for the Detection of Prostate Cancer Lesions in Patients with Biochemical Recurrence After Previous Definitive Treatment for Localized Prostate Cancer. 2021. Available online: https://www.clinicaltrials.gov/study/NCT04742361 (accessed on 22 June 2025).
- Tolvanen, T.; Kalliokoski, K.; Malaspina, S.; Kuisma, A.; Lahdenpohja, S.; Postema, E.J.; Miller, M.P.; Scheinin, M. Safety, Biodistribution, and Radiation Dosimetry of (18)F-rhPSMA-7.3 in Healthy Adult Volunteers. J. Nucl. Med. 2021, 62, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Jani, A.B.; Ravizzini, G.C.; Gartrell, B.A.; Siegel, B.A.; Twardowski, P.; Saltzstein, D.; Fleming, M.T.; Chau, A.; Davis, P.; Chapin, B.F.; et al. Diagnostic Performance and Safety of (18)F-rhPSMA-7.3 Positron Emission Tomography in Men With Suspected Prostate Cancer Recurrence: Results From a Phase 3, Prospective, Multicenter Study (SPOTLIGHT). J. Urol. 2023, 210, 299–311. [Google Scholar] [CrossRef]
- Surasi, D.S.; Eiber, M.; Maurer, T.; Preston, M.A.; Helfand, B.T.; Josephson, D.; Tewari, A.K.; Somford, D.M.; Rais-Bahrami, S.; Koontz, B.F.; et al. Diagnostic Performance and Safety of Positron Emission Tomography with (18)F-rhPSMA-7.3 in Patients with Newly Diagnosed Unfavourable Intermediate- to Very-high-risk Prostate Cancer: Results from a Phase 3, Prospective, Multicentre Study (LIGHTHOUSE). Eur. Urol. 2023, 84, 361–370. [Google Scholar] [CrossRef] [PubMed]
- 64Cu-SAR-bisPSMA Positron Emission Tomography: A Phase 1/2 Study of Participants with Biochemical Recurrence of Prostate Cancer. 2022. Available online: https://www.clinicaltrials.gov/study/NCT05249127 (accessed on 22 June 2025).
- Positron Emission Tomography Using 64Cu-SAR-bisPSMA in Participants with High-Risk Prostate Cancer Prior to Radical Prostatectomy: A Prospective, Single-Arm, Multi-Center, Blinded-Review, Phase 3 Diagnostic Performance Study. 2023. Available online: https://clinicaltrials.gov/study/NCT06056830 (accessed on 22 June 2025).
- Positron Emission Tomography Imaging of Participants with Confirmed Prostate Cancer Using 64Cu-SAR-bisPSMA: A Multi-Centre, Blinded Review, Dose Ranging Phase I Study. 2021. Available online: https://clinicaltrials.gov/study/NCT04839367 (accessed on 22 June 2025).
- Hamdy, F.C.; Lamb, A.D.; Tullis, I.D.C.; Verrill, C.; Rombach, I.; Rao, S.R.; Colling, R.; Barber, P.R.; Volpi, D.; Barbera-Martin, L.; et al. First-in-man study of the PSMA Minibody IR800-IAB2M for molecularly targeted intraoperative fluorescence guidance during radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3009–3025. [Google Scholar] [CrossRef] [PubMed]
- Stibbe, J.A.; de Barros, H.A.; Linders, D.G.J.; Bhairosingh, S.S.; Bekers, E.M.; van Leeuwen, P.J.; Low, P.S.; Kularatne, S.A.; Vahrmeijer, A.L.; Burggraaf, J.; et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: A single-arm, phase 2a, feasibility trial. Lancet Oncol. 2023, 24, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Schilham, M.G.M.; Somford, D.M.; Küsters-Vandevelde, H.V.N.; Hermsen, R.; van Basten, J.P.A.; Hoekstra, R.J.; Scheenen, T.W.J.; Gotthardt, M.; Sedelaar, J.P.M.; Rijpkema, M. Prostate-Specific Membrane Antigen-Targeted Radioguided Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients with a Suspicion of Locoregional Lymph Node Metastases: The DETECT Trial. J. Nucl. Med. 2024, 65, 423–429. [Google Scholar] [CrossRef]
- Quarta, L.; Mazzone, E.; Cannoletta, D.; Stabile, A.; Scuderi, S.; Barletta, F.; Cucchiara, V.; Nocera, L.; Pellegrino, A.; Robesti, D.; et al. Defining the optimal target-to-background ratio to identify positive lymph nodes in prostate cancer patients undergoing robot-assisted [(99m)Tc]Tc-PSMA radioguided surgery: Updated results and ad interim analyses of a prospective phase II study. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3789–3798. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Barocas, D.; Bitting, R.; Bryce, A.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; et al. NCCN Guidelines® Insights: Prostate Cancer, Version 1.2023. J. Natl. Compr. Canc Netw. 2022, 20, 1288–1298. [Google Scholar] [CrossRef]
- Orunmuyi, A.T.; Oladeji, A.A.; Azodoh, E.U.; Omisanjo, O.A.; Olapade-Olaopa, E.O. Planar (99m) Tc-PSMA Imaging of Prostate Cancer in a Low-Resource Setting: A Series Report. World J. Nucl. Med. 2022, 21, 142–147. [Google Scholar] [CrossRef]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Calais, J.; Ceci, F.; Cho, S.Y.; Fanti, S.; Giesel, F.L.; Goffin, K.; et al. PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1466–1486. [Google Scholar] [CrossRef]
- Adnan, A.; Basu, S. PSMA Receptor-Based PET-CT: The Basics and Current Status in Clinical and Research Applications. Diagnostics 2023, 13, 158. [Google Scholar] [CrossRef]
- 225Ac-OncoACP3 (Therapy). Available online: https://www.philochem.ch/pipeline/225ac-oncoacp3-therapy/ (accessed on 22 June 2025).
- Qiu, D.-X.; Li, J.; Zhang, J.-W.; Chen, M.-F.; Gao, X.-M.; Tang, Y.-X.; Zhang, Y.; Yi, X.-P.; Yin, H.-l.; Gan, Y.; et al. Dual-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2821–2832. [Google Scholar] [CrossRef]
- Kurth, J.; Krause, B.J.; Schwarzenböck, S.M.; Bergner, C.; Hakenberg, O.W.; Heuschkel, M. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: A radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Song, H.; Davidzon, G.A.; Moradi, F.; Liang, T.; Loening, A.; Vasanawala, S.; Iagaru, A. Prospective Comparison of (68)Ga-NeoB and (68)Ga-PSMA-R2 PET/MRI in Patients with Biochemically Recurrent Prostate Cancer. J. Nucl. Med. 2024, 65, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Lantheus Holdings, Inc. Lantheus Acquires Global Rights to Life Molecular Imaging’s Novel Therapeutic and Diagnostic Pair Targeting GRPR for Prostate and Breast Cancers; Lantheus Holdings, Inc.: North Billerica, MA, USA, 2024. [Google Scholar]
- Ma, Y.; Gao, F. Advances of radiolabeled GRPR ligands for PET/CT imaging of cancers. Cancer Imaging 2024, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Taimen, P.; Kemppainen, J.; Jambor, I.; Müller, A.; Loidl, W.; Kähkönen, E.; Käkelä, M.; Berndt, M.; Stephens, A.W.; et al. Value of (68)Ga-labeled bombesin antagonist (RM2) in the detection of primary prostate cancer comparing with [(18)F]fluoromethylcholine PET-CT and multiparametric MRI-a phase I/II study. Eur. Radiol. 2023, 33, 472–482. [Google Scholar] [CrossRef]
- Calais, J.; Ceci, F.; Eiber, M.; Hope, T.A.; Hofman, M.S.; Rischpler, C.; Bach-Gansmo, T.; Nanni, C.; Savir-Baruch, B.; Elashoff, D.; et al. 18/F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: A prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019, 20, 1286–1294. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Seifert, R.; Emmett, L.; Rowe, S.P.; Herrmann, K.; Hadaschik, B.; Calais, J.; Giesel, F.L.; Reiter, R.; Maurer, T.; Heck, M.; et al. Second Version of the Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation for Clinical Trials (PROMISE V2). Eur. Urol. 2023, 83, 405–412. [Google Scholar] [CrossRef]
- Gafita, A.; Djaileb, L.; Rauscher, I.; Fendler, W.P.; Hadaschik, B.; Rowe, S.P.; Herrmann, K.; Calais, J.; Rettig, M.; Eiber, M.; et al. Response Evaluation Criteria in PSMA PET/CT (RECIP 1.0) in Metastatic Castration-resistant Prostate Cancer. Radiology 2023, 308, e222148. [Google Scholar] [CrossRef]
- Fanti, S.; Hadaschik, B.; Herrmann, K. Proposal for Systemic-Therapy Response-Assessment Criteria at the Time of PSMA PET/CT Imaging: The PSMA PET Progression Criteria. J. Nucl. Med. 2020, 61, 678–682. [Google Scholar] [CrossRef]
- Karpinski, M.J.; Rahbar, K.; Bögemann, M.; Nikoukar, L.R.; Schäfers, M.; Hoberück, S.; Miederer, M.; Hölscher, T.; Rasul, S.; Miszczyk, M.; et al. Updated Prostate Cancer Risk Groups by Prostate-specific Membrane Antigen Positron Emission Tomography Prostate Cancer Molecular Imaging Standardized Evaluation (PPP2): Results from an International Multicentre Registry Study. Eur. Urol. 2025. [Google Scholar] [CrossRef]
- Fanti, S.; Goffin, K.; Hadaschik, B.A.; Herrmann, K.; Maurer, T.; MacLennan, S.; Oprea-Lager, D.E.; Oyen, W.J.; Rouvière, O.; Mottet, N.; et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Malaspina, S.; Ettala, O.; Tolvanen, T.; Rajander, J.; Eskola, O.; Boström, P.J.; Kemppainen, J. Flare on [(18)F]PSMA-1007 PET/CT after short-term androgen deprivation therapy and its correlation to FDG uptake: Possible marker of tumor aggressiveness in treatment-naïve metastatic prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Afshar-Oromieh, A.; Debus, N.; Uhrig, M.; Hope, T.A.; Evans, M.J.; Holland-Letz, T.; Giesel, F.L.; Kopka, K.; Hadaschik, B.; Kratochwil, C.; et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2045–2054. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Emmett, L.; Subramaniam, S.; Crumbaker, M.; Nguyen, A.; Joshua, A.M.; Weickhardt, A.; Lee, S.-T.; Ng, S.; Francis, R.J.; Goh, J.C.; et al. [177Lu]Lu-PSMA-617 plus enzalutamide in patients with metastatic castration-resistant prostate cancer (ENZA-p): An open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2024, 25, 563–571. [Google Scholar] [CrossRef]
- Kleiburg, F.; de Geus-Oei, L.F.; Luelmo, S.A.C.; Spijkerman, R.; Goeman, J.J.; Toonen, F.A.J.; Smit, F.; van der Hulle, T.; Heijmen, L. PSMA PET/CT for treatment response evaluation at predefined time points is superior to PSA response for predicting survival in metastatic castration-resistant prostate cancer patients. Eur. J. Radiol. 2024, 181, 111774. [Google Scholar] [CrossRef]
- Hope, T.A.; Truillet, C.; Ehman, E.C.; Afshar-Oromieh, A.; Aggarwal, R.; Ryan, C.J.; Carroll, P.R.; Small, E.J.; Evans, M.J. Ga-PSMA-11 PET Imaging of Response to Androgen Receptor Inhibition: First Human Experience. J. Nucl. Med. 2017, 58, 81. [Google Scholar] [CrossRef]
- Dash, A.; Pillai, M.R.; Knapp, F.F., Jr. Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging 2015, 49, 85–107. [Google Scholar] [CrossRef]
- Morris, M.J.; Castellano, D.; Herrmann, K.; de Bono, J.S.; Shore, N.D.; Chi, K.N.; Crosby, M.; Piulats, J.M.; Fléchon, A.; Wei, X.X.; et al. 177Lu-PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): A phase 3, randomised, controlled trial. Lancet 2024, 404, 1227–1239. [Google Scholar] [CrossRef]
- Raval, A.D.; Lunacsek, O.; Korn, M.J.; Littleton, N.; Constantinovici, N.; George, D.J. Real-World Evidence of Combination Therapy Use in Metastatic Hormone-Sensitive Prostate Cancer in the United States From 2017 to 2023. JCO Oncol. Pract. 2025, OP-24-00690. [Google Scholar] [CrossRef]
- Aggarwal, R.; Starzinski, S.; de Kouchkovsky, I.; Koshkin, V.; Bose, R.; Chou, J.; Desai, A.; Kwon, D.; Kaushal, S.; Trihy, L.; et al. Single-dose 177Lu-PSMA-617 followed by maintenance pembrolizumab in patients with metastatic castration-resistant prostate cancer: An open-label, dose-expansion, phase 1 trial. Lancet Oncol. 2023, 24, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Czernin, J.; Current, K.; Mona, C.E.; Nyiranshuti, L.; Hikmat, F.; Radu, C.G.; Lückerath, K. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. J. Nucl. Med. 2021, 62, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Eapen, R.S.; Buteau, J.P.; Jackson, P.; Mitchell, C.; Oon, S.F.; Alghazo, O.; McIntosh, L.; Dhiantravan, N.; Scalzo, M.J.; O’Brien, J.; et al. Administering [177Lu]Lu-PSMA-617 Prior to Radical Prostatectomy in Men with High-risk Localised Prostate Cancer (LuTectomy): A Single-centre, Single-arm, Phase 1/2 Study. Eur. Urol. 2024, 85, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Sartor, A.O.; Saad, F.; Reid, A.H.; Sakharova, O.V.; Feng, F.Y.; Fizazi, K.; Morris, M.J. PSMAddition: A phase 3 trial to compare treatment with 177Lu-PSMA-617 plus standard of care (SoC) and SoC alone in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol. 2023, 41, TPS5116. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, A.; Kulkarni, H.R.; Schuchardt, C.; Müller, D.; Wester, H.-J.; Maina, T.; Rösch, F.; van der Meulen, N.P.; Müller, C.; et al. From Bench to Bedside—The Bad Berka Experience With First-in-Human Studies. Semin. Nucl. Med. 2019, 49, 422–437. [Google Scholar] [CrossRef]
- Langbein, T.; Kulkarni, H.R.; Schuchardt, C.; Mueller, D.; Volk, G.F.; Baum, R.P. Salivary Gland Toxicity of PSMA-Targeted Radioligand Therapy with (177)Lu-PSMA and Combined (225)Ac- and (177)Lu-Labeled PSMA Ligands (TANDEM-PRLT) in Advanced Prostate Cancer: A Single-Center Systematic Investigation. Diagnostics 2022, 12, 1926. [Google Scholar] [CrossRef]
- Ninatti, G.; Scilipoti, P.; Pini, C.; Barletta, F.; Longoni, M.; Gelardi, F.; Sollini, M.; Gandaglia, G.; Sathekge, M.; Montorsi, F.; et al. Time for action: Actinium-225 PSMA-targeted alpha therapy for metastatic prostate cancer-a systematic review and meta-analysis. Theranostics 2025, 15, 3386–3399. [Google Scholar] [CrossRef]
- Sathekge, M.M.; Lawal, I.O.; Bal, C.; Bruchertseifer, F.; Ballal, S.; Cardaci, G.; Davis, C.; Eiber, M.; Hekimsoy, T.; Knoesen, O.; et al. Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): A multicentre, retrospective study. Lancet Oncol. 2024, 25, 175–183. [Google Scholar] [CrossRef]
- Hammer, S.; Hagemann, U.B.; Zitzmann-Kolbe, S.; Larsen, A.; Ellingsen, C.; Geraudie, S.; Grant, D.; Indrevoll, B.; Smeets, R.; von Ahsen, O.; et al. Preclinical Efficacy of a PSMA-Targeted Thorium-227 Conjugate (PSMA-TTC), a Targeted Alpha Therapy for Prostate Cancer. Clin. Cancer Res. 2020, 26, 1985–1996. [Google Scholar] [CrossRef]
- Hagemann, U.B.; Wickstroem, K.; Hammer, S.; Bjerke, R.M.; Zitzmann-Kolbe, S.; Ryan, O.B.; Karlsson, J.; Scholz, A.; Hennekes, H.; Mumberg, D.; et al. Advances in Precision Oncology: Targeted Thorium-227 Conjugates As a New Modality in Targeted Alpha Therapy. Cancer Biother. Radiopharm. 2020, 35, 497–510. [Google Scholar] [CrossRef]
- Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; et al. Production and Supply of α-Particle–Emitting Radionuclides for Targeted α-Therapy. J. Nucl. Med. 2021, 62, 1495–1503. [Google Scholar] [CrossRef]
- Verburg, F.A.; de Blois, E.; Koolen, S.; Konijnenberg, M.W. Replacing Lu-177 with Tb-161 in DOTA-TATE and PSMA-617 therapy: Potential dosimetric implications for activity selection. EJNMMI Phys. 2023, 10, 69. [Google Scholar] [CrossRef]
- Li, R.G.; Stenberg, V.Y.; Larsen, R.H. An Experimental Generator for Production of High-Purity 212Pb for Use in Radiopharmaceuticals. J. Nucl. Med. 2023, 64, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. (212)Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.R.; Minn, I.; Kumar, V.; Josefsson, A.; Lisok, A.; Brummet, M.; Chen, J.; Kiess, A.P.; Baidoo, K.; Brayton, C.; et al. Preclinical Evaluation of (203/212)Pb-Labeled Low-Molecular-Weight Compounds for Targeted Radiopharmaceutical Therapy of Prostate Cancer. J. Nucl. Med. 2020, 61, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Telix Announces Positive rPFS Data from ProstACT SELECT Trial of TLX591 rADC Therapy Candidate in Prostate Cancer. Available online: https://telixpharma.com/news-views/telix-announces-positive-rpfs-data-from-prostact-select-trial-of-tlx591-radc-therapy-candidate-in-prostate-cancer/ (accessed on 22 June 2025).
- Kwon, W.A.; Joung, J.Y. Immunotherapy in Prostate Cancer: From a “Cold” Tumor to a “Hot” Prospect. Cancers 2025, 17, 1064. [Google Scholar] [CrossRef]
- Hartmann, J.; Schüßler-Lenz, M.; Bondanza, A.; Buchholz, C.J. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. 2017, 9, 1183–1197. [Google Scholar] [CrossRef]
- Xiong, Y.; Taleb, M.; Misawa, K.; Hou, Z.; Banerjee, S.; Amador-Molina, A.; Jones, D.R.; Chintala, N.K.; Adusumilli, P.S. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. Nat. Cancer 2023, 4, 1001–1015. [Google Scholar] [CrossRef]
- Ma, Q.; Gomes, E.M.; Lo, A.S.; Junghans, R.P. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 2014, 74, 286–296. [Google Scholar] [CrossRef]
- Dorff, T.; Horvath, L.G.; Autio, K.; Bernard-Tessier, A.; Rettig, M.B.; Machiels, J.-P.; Bilen, M.A.; Lolkema, M.P.; Adra, N.; Rottey, S.; et al. A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2024, 30, 1488–1500. [Google Scholar] [CrossRef]
- Salek-Ardakani, S.-A. JANX007: A Tumor-Activated T Cell Engager (TRACTr) Targeting PSMA for the Treatment of mCRPC. In Proceedings of the PEGS: The Essential Protein Engineering Summit, Boston, MA, USA, 2–6 May 2022. [Google Scholar]
- Falchook, G.S.; McKean, M.; Kelly, W.K.; Patel, M.R.; Bupathi, M.; Liaw, B.C.-H.; Garmezy, B.; Vuu, I.; Smith, K.; Gokani, P.; et al. Phase 1 clinical trial of AMG 340, a prostate-specific membrane antigen (PSMA)-targeted T-cell engager with a novel low-affinity CD3 binding domain designed to mitigate toxicity for the treatment of metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2024, 42, e14587. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Galsky, M.D.; Morris, M.J.; Crona, D.J.; George, D.J.; Dreicer, R.; Tse, K.; Petruck, J.; Webb, I.J.; Bander, N.H.; et al. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 530.e15–530.e21. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, W.; Mao, Y.; Li, S. Nanoparticles and bone microenvironment: A comprehensive review for malignant bone tumor diagnosis and treatment. Mol. Cancer 2024, 23, 246. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, L.K.; Mills, D.; Kim, J.Y.; Knudsen, N.A.; Nelson, J.D.; Pal, M.; Wang, J.; GC, K.; Gray, M.J.; Barkho, W.; et al. Preclinical Characterization of ARX517, a Site-Specific Stable PSMA-Targeted Antibody–Drug Conjugate for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Mol. Cancer Ther. 2024, 23, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.R.; Vuky, J.; VanderWeele, D.; Rettig, M.; Heath, E.I.; Quigley, D.; Huang, J.; Chumber, A.; Cheung, A.; Foye, A.; et al. Phase I, First-in-Human Study of FOR46 (FG-3246), an Immune-Modulating Antibody-Drug Conjugate Targeting CD46, in Patients With Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2025, 43, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Tolcher, A.W.; Dorff, T.B.; Okubo, S.; Abraham, L.S.; Reilly, R.; Stevenson, C.; Wang, S.; Arnold, J.; Mudd, S.R.; et al. 1660TiP First-in-human study of ABBV-969, a dual variable antibody-drug conjugate (ADC), in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 2024, 35, S1000–S1001. [Google Scholar] [CrossRef]
- Narayan, V.; Barber-Rotenberg, J.S.; Jung, I.Y.; Lacey, S.F.; Rech, A.J.; Davis, M.M.; Hwang, W.T.; Lal, P.; Carpenter, E.L.; Maude, S.L.; et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat. Med. 2022, 28, 724–734. [Google Scholar] [CrossRef]
- Slovin, S.F.; Dorff, T.B.; Falchook, G.S.; Wei, X.X.; Gao, X.; McKay, R.R.; Oh, D.Y.; Wibmer, A.G.; Spear, M.A.; McCaigue, J.; et al. Phase 1 study of P-PSMA-101 CAR-T cells in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022, 40, 98. [Google Scholar] [CrossRef]
- Lim, E.A.; Schweizer, M.T.; Chi, K.N.; Aggarwal, R.; Agarwal, N.; Gulley, J.; Attiyeh, E.; Greger, J.; Wu, S.; Jaiprasart, P.; et al. Phase 1 Study of Safety and Preliminary Clinical Activity of JNJ-63898081, a PSMA and CD3 Bispecific Antibody, for Metastatic Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer 2023, 21, 366–375. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Vogelzang, N.J.; Chatta, G.S.; Fleming, M.T.; Smith, D.C.; Appleman, L.J.; Hussain, A.; Modiano, M.; Singh, P.; Tagawa, S.T.; et al. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following abiraterone and/or enzalutamide (abi/enz). J. Clin. Oncol. 2015, 33, 144. [Google Scholar] [CrossRef]
- de Bono, J.S.; Fleming, M.T.; Wang, J.S.; Cathomas, R.; Miralles, M.S.; Bothos, J.; Hinrichs, M.J.; Zhang, Q.; He, P.; Williams, M.; et al. Phase I Study of MEDI3726: A Prostate-Specific Membrane Antigen-Targeted Antibody-Drug Conjugate, in Patients with mCRPC after Failure of Abiraterone or Enzalutamide. Clin. Cancer Res. 2021, 27, 3602–3609. [Google Scholar] [CrossRef]
- Georgiev, T.; Puglioli, S.; Principi, L.; Gilardoni, E.; Pellegrino, C.; Bassi, G.; Galbiati, A.; Neri, D.; Cazzamalli, S. PSMA-Targeted Small Molecule–Drug Conjugates Based on a Postprolyl Peptidase–Cleavable Linker for the Treatment of Prostate Cancer. Mol. Cancer Ther. 2025, OF1–OF9. [Google Scholar] [CrossRef]
Tracer | Isotope | Brand Name | FDA Approval | Approved Use(s) | Pivotal Trial(s) | Sensitivities and Specificities |
---|---|---|---|---|---|---|
111In-Capromab | Indium-111 | ProstaScint | 1996 | Initial staging (now obsolete) | Various small pre-PET studies | - |
68Ga-PSMA-11 | Gallium-68 | None (academic) | 2020 | Initial staging, recurrence | UCLA and UCSF Phase 3 Trials (PMID: 33301460) | 0.40 (sensitivity), 0.95 (specificity) |
18F-DCFPyL | Fluorine-18 | Pylarify | 2021 | Initial staging, recurrence | CONDOR (PMID: 33622706), OSPREY | 0.40 (sensitivity), 0.98 (specificity) |
18F-rhPSMA-7.3 | Fluorine-18 | Posluma | 2023 | Initial staging, recurrence | SPOTLIGHT (PMID: 37126069), LIGHTHOUSE (PMID: 37414702) | 0.60 (sensitivity), 0.96 (specificity) |
68Ga-Gozetotide * | Gallium-68 | Gozellix | 2025 | Initial staging, recurrence | PSMA-PreRP, PSMA-BCR Trials | 0.91 (sensitivity), 0.90 (specificity) |
Trial Name | Tracer | Isotope | Phase | Objective |
---|---|---|---|---|
Prospective Multi-Center Study (2023) | PSMA-1007 | Fluorine-18 | III | Evaluate the diagnostic performance of 18F-PSMA-1007 PET/CT in the initial staging of high-risk PCa |
Phase III [18F] PSMA-1007 for BCR (2021) | PSMA-1007 | Fluorine-18 | III | Assess lesion detection in patients with biochemical recurrence after prior definitive therapy |
PSMAfore (NCT04689828) | PSMA-617 | Lutetium- 177 | III | Compare 177Lu-PSMA-617 vs. ARPI in PSMA+ mCRPC pre-chemotherapy patients |
COBRA (NCT05249127) | 18F-rhPSMA-7.3 | Fluorine-18 | II | Evaluate the impact of PSMA PET on decision-making for salvage therapy in post-prostatectomy BCR |
CLARIFY (NCT06011028) | 18F-DCFPyL | Fluorine-18 | II | Assess PSMA PET-based detection of nodal metastases in patients with suspected recurrence |
ProMOTE Study | IR800-IAB2M (PSMA dye) | NIR fluor | I | Investigate the use of fluorescent PSMA dye to guide prostatectomy and improve surgical precision |
Criteria | Imaging Modality | Key Metric | Strengths | Limitations |
---|---|---|---|---|
RECIST 1.1 | CT/MRI | Change in size of target lesions (diameter) | Standardized, widely adopted in solid tumors | Poor sensitivity for bone mets and molecular changes in PCa |
RECIP 1.0 | PSMA PET/CT | Total PSMA-positive tumor volume + new lesions | Incorporates molecular imaging; high concordance with visual reads | Still undergoing validation; limited availability of software tools |
PPP2 | PSMA PET/CT | Whole-body PSMA expression + response classification (e.g., PSMA score) | Future-oriented; adaptable framework for prospective trials | Not yet widely adopted; requires PROMISE-compliant data input |
Trial | Year | Phase | PCa Stage | No. of Patients | Intervention Regimen | Control Regimen | Primary Endpoint Results |
---|---|---|---|---|---|---|---|
VISION (NCT03511664) | 2021 | III | mCRPC | 831 | 177Lu-PSMA | Standard of Care | PFS:8.7 mo in Intervention vs. 3.4 months in Control |
TheraP (NCT03392428) | 2019 | II | mCRPC | 200 | 177Lu-PSMA | Cabazitaxel | PSA response of 66% in Intervention vs. 37% in Control |
ENZA-p (NCT04419402) | 2024 | II | mCRPC | 162 | 177Lu-PSMA + Enzalutamide | Enzalutamide | PSA PFS: 13.0 mo in Intervention vs. 7.8 mo in Control |
PSMAfore (NCT04689828) | 2024 | III | mCRPC | 468 | 177Lu-PSMA | ARPI | PFS = HR: 0.41 (0.29–0.56) |
Trial Number | Radioactive Novel Isotope | Particle Emission | Phase | Outcomes |
---|---|---|---|---|
VIOLET (NCT05521412) | 161Tb-PSMA | β | I/II | MTD1, AE2, SAEs3, DLTs4, RP2D5 |
NCT03724747 | 227Thorium | α | I | MTD1 |
TheraPb (NCT05720130) | 212Pb | Β,α (via daughters) | I/II | RP2D5 |
Drug | NCT | Phase | Target | Mechanism of Action |
---|---|---|---|---|
CART-PSMA-TGFβRDN | NCT04227275 | I | PSMA | Autologous T-cells expressing a PSMA-targeted CAR plus a dominant-negative TGFβ receptor (TGFβRDN), enabling tumor-cell lysis while resisting TGFβ-mediated immunosuppression |
PD1-PSMA-CART | NCT04768608 | I | PSMA | T-cells engineered via CRISPR/Cas9 to knock out PD-1 and knock in an anti-PSMA CAR at the same locus, providing PSMA-directed cytotoxicity with resistance to PD-1/PD-L1 exhaustion |
LIGHT-PSMA-CART | NCT04053062 | I | PSMA | Lentivirally transduced PSMA-CAR T-cells co-expressing LIGHT (a TNF-superfamily ligand) to engage HVEM/LTβR, boosting T-cell proliferation, cytokine release, and TME remodeling |
P-PSMA-101 CAR-T | NCT04249947 | I | PSMA | Autologous T-cells modified with Poseida’s piggyBac transposon to express a PSMA-specific CAR enriched for stem-cell memory phenotypes, enhancing persistence and durable antitumor activity |
Drug | NCT | Phase | Target | CD-3 Affinity | Fc Domain |
---|---|---|---|---|---|
AMG 340 | NCT04740034 | I | PSMA | Low | Yes |
JNJ-80038114 | NCT05441501 | I | PSMA | Moderate | Yes |
REGN5678 | NCT03972657 | I | PSMA | Moderate | Yes |
REGN4336 | NCT05125016 | I | PSMA | High | Yes |
CC1 | NCT04104607 | I | PSMA | Moderate | Yes |
LAVA-1207 | NCT05369000 | I/IIa | PSMA | Low | Yes |
AMG160 | NCT03792841 | I | PSMA | Moderate | Yes |
CB307 | NCT04839991 | I | PSMA | NA | No |
ADC | Target | Drug/Payload | Clinical Indication | Development Status |
---|---|---|---|---|
EC1169 | PSMA | Tubulysin B hydrazide (TubBH) | mCRPC | Phase I |
lutetium (177Lu) rosopatamab tetraxetan | FOLH1, PSMA | Radiolabeled with beta-emitting radioisotope Lutetium-177, Lu-177, and conjugated with chelator tetraxetan (DOTA) | mCRPC | Phase III |
MLN-2704 | PSMA | Maytansine analog drug maytansinoid-1 | PCa 1 | Phase-I/II Discontinued |
Pelgifatamab corixetan | FOLH1, PSMA | Chelator corixetan conjugated to an average of 1 lysine | mPCa | Phase I |
PSMA-ADC | FOLH1, PSMA | Monomethyl Auristatin E (MMAE) | PCa, Glioblastoma Multiforme (GBM) | Phase I/Phase II |
Rosopatamab Tetraxetan | FOLH1, PSMA | Tetraxetan (DOTA), a chelator for yttrium-90, a radioisotope. | PCa | Phase II |
ABBV-969 | PSMA, STEAP 1 | Proprietary topoisomerase-1 (Top1) inhibitor linker-drug format | mCRPC | Phase I |
ARX517 | PSMA | AS269/pAF-AS269, a proprietary microtubule inhibitor | mCRPC | Preclinical |
Modality | Agent | Response Assessment | Key Safety Signals |
---|---|---|---|
CAR-T | PSMA-TGFβRDN | PSA30 ~30.1% | CRS (grade 1–2), ICANS/MAS at higher dose (Grade 5) |
P-PSMA-101 | PSA/radiographic responses (unquantified) | Mostly mild CRS, no neurotoxicity | |
BiTEs | Acapatamab (AMG 160) | PSA50 ~30%, ORR ~7%, PFS ~3.3 months | CRS common (early onset), manageable |
JNJ-081 | PSA decline at high dose; no ORR | Mild CRS; generally tolerable | |
ADCs | PSMA-ADC (MMAE payload) | PSA30 ~30%, PSA50 ~14%, CTC conversion ~75% | Neutropenia, neuropathy, sepsis (dose-related) |
MEDI3726 (PBD dimer) | CRR ~12.1% | TRAE ~90%, Therapy discontinuation due to TRAE ~33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jajja, S.A.; Sodhi, N.; Parent, E.E.; Singh, P. PSMA-Directed Theranostics in Prostate Cancer. Biomedicines 2025, 13, 1837. https://doi.org/10.3390/biomedicines13081837
Jajja SA, Sodhi N, Parent EE, Singh P. PSMA-Directed Theranostics in Prostate Cancer. Biomedicines. 2025; 13(8):1837. https://doi.org/10.3390/biomedicines13081837
Chicago/Turabian StyleJajja, Salman Ayub, Nandini Sodhi, Ephraim E. Parent, and Parminder Singh. 2025. "PSMA-Directed Theranostics in Prostate Cancer" Biomedicines 13, no. 8: 1837. https://doi.org/10.3390/biomedicines13081837
APA StyleJajja, S. A., Sodhi, N., Parent, E. E., & Singh, P. (2025). PSMA-Directed Theranostics in Prostate Cancer. Biomedicines, 13(8), 1837. https://doi.org/10.3390/biomedicines13081837