Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,371)

Search Parameters:
Keywords = tubules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11168 KiB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Viewed by 57
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 - 2 Aug 2025
Viewed by 199
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

30 pages, 4119 KiB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Viewed by 287
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

17 pages, 1682 KiB  
Review
High-Fructose-Induced Salt-Sensitive Hypertension: The Potential Benefit of SGLT4 or SGLT5 Modulation
by Sharif Hasan Siddiqui and Noreen F. Rossi
Nutrients 2025, 17(15), 2511; https://doi.org/10.3390/nu17152511 - 30 Jul 2025
Viewed by 248
Abstract
Hypertension is an important risk factor for cardiovascular diseases. High salt intake when consumed with excess fructose enhances hypertension and resultant cardiovascular disease. Usually, the small intestine absorbs dietary fructose, and the proximal tubule of kidney reabsorbs filtered fructose into the circulation with [...] Read more.
Hypertension is an important risk factor for cardiovascular diseases. High salt intake when consumed with excess fructose enhances hypertension and resultant cardiovascular disease. Usually, the small intestine absorbs dietary fructose, and the proximal tubule of kidney reabsorbs filtered fructose into the circulation with the help of different transporters including SGLT4 and SGLT5. Very recently, SGLT5 mRNA has also been found to be expressed in the heart. High-fructose diet stimulates the sympathetic nervous system and renin–angiotensin–aldosterone (RAAS) activity, of which both are responsible for endothelial dysfunction and are associated with salt-sensitive hypertension. Few studies exist regarding the effects of SGLT4 and SGLT5 on cardiovascular function and blood pressure. However, SGLT4 gene knockout does not alter fructose-associated impact on blood pressure. In contrast, blood pressure does not increase in SGLT5 knockout rats even during fructose consumption. Given that limiting fructose and salt consumption as a public health strategy has proven challenging, we hope that studies into SGLT4 and SGLT5 transporters will open new research initiatives to address salt-sensitive hypertension and cardiovascular disease. This review highlights current information about SGLT4 and SGLT5 on fructose absorption, salt-sensitive hypertension, cardiovascular disease and points the way for the development of therapeutic fructose inhibitors that limit adverse effects. Full article
(This article belongs to the Special Issue Effects of Nutrient Intake on Cardiovascular Disease)
Show Figures

Figure 1

20 pages, 7380 KiB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 261
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

19 pages, 1329 KiB  
Review
Autosomal Dominant Polycystic Kidney Disease: From Pathogenesis to Organoid Disease Models
by Alexandru Scarlat, Susanna Tomasoni and Piera Trionfini
Biomedicines 2025, 13(7), 1766; https://doi.org/10.3390/biomedicines13071766 - 18 Jul 2025
Viewed by 614
Abstract
Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), the most common renal genetic disease, leading to the dysregulation of renal tubules and the development of cystic growth that compromises kidney function. Despite significant advances in recent decades, there remains [...] Read more.
Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), the most common renal genetic disease, leading to the dysregulation of renal tubules and the development of cystic growth that compromises kidney function. Despite significant advances in recent decades, there remains a considerable unmet clinical need, as current therapeutics are not effective at slowing or halting disease progression. Although preclinical animal models have been used extensively, the translatability of such findings is uncertain and human-relevant disease models are urgently needed. The advent of pluripotent stem cells (PSCs) and their ability to more accurately recapitulate organ architecture and function has allowed for the study of renal disease in a more physiological and human-relevant setting. To date, many research groups have studied ADPKD using PSC-derived kidney organoids, identifying many dysregulated pathways and screening drug candidates that may yield effective therapies in the clinic. In this review article, we discuss in detail the development of PSC-derived kidney organoids as ADPKD models and how they have advanced our understanding of the disease’s pathogenesis, as well as their limitations and potential strategies to address them. Full article
(This article belongs to the Special Issue Human Stem Cells in Disease Modelling and Treatment)
Show Figures

Figure 1

19 pages, 4325 KiB  
Article
The Impact of Nanoparticle Coatings on the Color of Teeth Restored Using Dental Adhesives Augmented with Magnetic Nanoparticles
by Carina Sonia Neagu, Andreea Codruta Novac, Cristian Zaharia, Meda-Lavinia Negrutiu, Izabell Craciunescu, Vlad Mircea Socoliuc, Catalin Nicolae Marin, Ionela-Amalia Bradu, Luminita Maria Nica, Marius Stef, Virgil-Florin Duma, Mihai Romînu and Cosmin Sinescu
Medicina 2025, 61(7), 1289; https://doi.org/10.3390/medicina61071289 - 17 Jul 2025
Viewed by 372
Abstract
Background and Objectives: Dental adhesives augmented with magnetic nanoparticles (MNPs) have been proposed to prevent microleakages. MNPs dispersed in a dental adhesive reduce the thickness of the adhesive layer applied in a magnetic field and enhance the bond strength by favoring the [...] Read more.
Background and Objectives: Dental adhesives augmented with magnetic nanoparticles (MNPs) have been proposed to prevent microleakages. MNPs dispersed in a dental adhesive reduce the thickness of the adhesive layer applied in a magnetic field and enhance the bond strength by favoring the penetration of the adhesive into dentinal tubules. However, the restoration’s color has been found to be affected by the MNPs. This study tests the hypothesis that MNP coating can alleviate the esthetic impact of magnetic dental adhesives. Materials and Methods: We synthesized Fe3O4 MNPs with silica coating (MNPs-SiO2), calcium-based coating (MNPs-Ca), and no coating. Their morphology was studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Their chemical composition was assessed by energy-dispersive X-ray spectroscopy (EDX), and magnetic properties were measured using a vibrating sample magnetometer. FTIR spectroscopy was used to evaluate the polymerization of the MNP-laden adhesive. We prepared cavities in molar phantoms divided in four groups (n = 15 each) restored using the same adhesive with different MNP contents: Group 0 (G0)—no MNPs, G1—MNPs-SiO2, G2—MNPs-Ca, and G3—uncoated MNPs. The restoration’s color was quantified in the CIELAB color space using a dental spectrophotometer. Results: MNPs-SiO2 were globular, whereas MNPs-Ca had a cubic morphology. The SiO2 layer was 73.1 nm ± 9.9 nm thick; the Ca(OH)2 layer was 19.97 nm ± 2.27 nm thick. The saturation magnetization was 18.6 emu/g for MNPs-SiO2, 1.0 emu/g for MNPs-Ca, and 65.7 emu/g for uncoated MNPs. MNPs had a marginal effect on the adhesive’s photopolymerization. The mean color difference between G0 and G2 was close to the 50:50% acceptability threshold, whereas the other groups were far apart from G0. The mean whiteness index of G2 did not differ significantly from that of G0; G1 deviated marginally from G0, whereas G3 differed significantly from G0. Conclusions: These results suggest that MNP coating can mitigate the influence of MNP-laden dental adhesives on the color of restorations. Full article
(This article belongs to the Collection New Concepts for Dental Treatments and Evaluations)
Show Figures

Figure 1

13 pages, 2301 KiB  
Communication
Renal Single-Cell RNA Sequencing and Digital Cytometry in Dogs with X-Linked Hereditary Nephropathy
by Candice P. Chu, Daniel Osorio and Mary B. Nabity
Animals 2025, 15(14), 2061; https://doi.org/10.3390/ani15142061 - 12 Jul 2025
Viewed by 412
Abstract
Chronic kidney disease (CKD) significantly affects canine health, but the precise cellular mechanisms of this condition remain elusive. In this study, we used single-cell RNA sequencing (scRNA-seq) to profile renal cellular gene expression in a canine model of X-linked hereditary nephropathy (XLHN). Dogs [...] Read more.
Chronic kidney disease (CKD) significantly affects canine health, but the precise cellular mechanisms of this condition remain elusive. In this study, we used single-cell RNA sequencing (scRNA-seq) to profile renal cellular gene expression in a canine model of X-linked hereditary nephropathy (XLHN). Dogs with this condition exhibit juvenile-onset CKD similar to that seen in human Alport syndrome. Post-mortem renal cortical tissues from an affected male dog and a heterozygous female dog were processed to obtain single-cell suspensions. In total, we recovered up to 13,190 cells and identified 11 cell types, including major kidney cells and immune cells. Differential gene expression analysis comparing the affected male and heterozygous female dogs identified cell-type specific pathways that differed in a subpopulation of proximal tubule cells. These pathways included the integrin signaling pathway and the pathway for inflammation mediated by chemokine and cytokine signaling. Additionally, using machine learning-empowered digital cytometry, we deconvolved bulk mRNA-seq data from a previous canine study, revealing changes in cell type proportions across CKD stages. These results underline the utility of single-cell methodologies and digital cytometry in veterinary nephrology. Full article
(This article belongs to the Special Issue Advances in Canine and Feline Nephrology and Urology)
Show Figures

Graphical abstract

21 pages, 2638 KiB  
Article
Inhibiting miR-200a-3p Increases Sirtuin 1 and Mitigates Kidney Injury in a Tubular Cell Model of Diabetes and Hypertension-Related Renal Damage
by Olga Martinez-Arroyo, Ana Flores-Chova, Marta Mendez-Debaets, Laia Garcia-Ferran, Lesley Escrivá, Maria Jose Forner, Josep Redón, Raquel Cortes and Ana Ortega
Biomolecules 2025, 15(7), 995; https://doi.org/10.3390/biom15070995 - 11 Jul 2025
Viewed by 397
Abstract
Hypertension and diabetes mellitus are key contributors to kidney damage, with the renal tubule playing a central role in the progression of kidney disease. MicroRNAs have important regulatory roles in renal injury and are among the most abundant cargos within extracellular vesicles (EVs), [...] Read more.
Hypertension and diabetes mellitus are key contributors to kidney damage, with the renal tubule playing a central role in the progression of kidney disease. MicroRNAs have important regulatory roles in renal injury and are among the most abundant cargos within extracellular vesicles (EVs), emerging as novel kidney disease biomarkers and therapeutic tools. Previously, we identified miR-200a-3p and its target SIRT1 as having a potential role in kidney injury. We aimed to evaluate miR-200a-3p levels in EVs from patient’s urine and delve into its function in causing tubular injury. We quantified miR-200a-3p urinary EV levels in hypertensive patients with and without diabetes (n = 69), 42 of which were with increased urinary albumin excretion (UAE). We analysed miR-200a-3p levels in EVs and cellular pellets, as well as their targets at mRNA and protein levels in renal tubule cells (RPTECs) subjected to high glucose and Angiotensin II treatments, and observed their influence on apoptosis, RPTEC markers and tubular injury markers. We conducted microRNA mimic and inhibitor transfections in treated RPTECs. Our findings revealed elevated miR-200a-3p levels in increased UAE patient urinary EVs, effectively discriminating UAE (AUC of 0.75, p = 0.003). In vitro, miR-200a-3p and renal injury markers increased, while RPTEC markers, SIRT1, and apoptosis decreased under treatments. Experiments using miR-200a-3p mimics and inhibitors revealed a significant impact on SIRT1 and decrease in tubular damage through miR-200a-3p inhibition. Increased levels of miR-200a-3p emerge as a potential disease marker, and its inhibition provides a therapeutic target aimed at reducing renal tubular damage linked to hypertension and diabetes. Full article
(This article belongs to the Special Issue New Insights into Kidney Disease Development and Therapy Strategies)
Show Figures

Graphical abstract

12 pages, 1380 KiB  
Communication
The GnRH Agonist Triptorelin Causes Reversible, Focal, and Partial Testicular Atrophy in Rats, Maintaining Sperm Production
by Alberto Marcos, Maria Cruz Rodríguez del Cerro, Rosa María Fernández, Eduardo Pásaro, Nuria Arias-Ramos, Pilar López-Larrubia, Pilar González-Peramato, Antonio Guillamon and Maria P. De Miguel
Int. J. Mol. Sci. 2025, 26(14), 6566; https://doi.org/10.3390/ijms26146566 - 8 Jul 2025
Viewed by 494
Abstract
We aim to provide a translational model to investigate the reproductive consequences of pubertal delay using the GnRH agonist triptorelin in transgender girls, tested in particular on testicular maturation in peripubertal rats. A total of 30 Sprague Dawley rats were utilized, with 10 [...] Read more.
We aim to provide a translational model to investigate the reproductive consequences of pubertal delay using the GnRH agonist triptorelin in transgender girls, tested in particular on testicular maturation in peripubertal rats. A total of 30 Sprague Dawley rats were utilized, with 10 subjects assigned to each of three groups from day P30 postpartum (prepubertal) until day P95 (postpubertal), mimicking treatment timing in patients. Rats received triptorelin at three time points (P30, P50, and P71), or only at P30 and P50. Control rats were injected with vehicle. Plasma testosterone levels were determined using MRM analysis. Testes and epididymides were examined histologically. There were significantly lower testosterone levels at postnatal day 48 in treated rats, indicating delayed puberty, with further reductions by day 69. By day 93, testosterone levels had recovered in rats given vehicle at P71 but remained low in the triptorelin-continuous group, suggesting the reversibility of the treatment. Treated rats had smaller testes; however, the majority of the testicular parenchyma was unaffected, with most seminiferous tubules displaying complete spermatogenesis. However, focal atrophic changes were observed in 1–30% of the parenchyma. One-third of the short-term group and half of the long-term group were classified as atrophic. Despite these changes, all treated rats had mature sperm in the epididymis, ensuring their fertility. In conclusion, triptorelin treatment promotes a decline in testosterone levels accompanied by discrete atrophy of the seminiferous tubules, which is partially reversible and compatible with sperm production and fertility preservation. Triptorelin could be an appropriate treatment prior to estrogen therapy for patients seeking gender transition. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 4010 KiB  
Article
Nano-Curcumin Mitigates Doxorubicin-Induced Reproductive Toxicity via Antioxidant, Anti-Apoptosis, and SIRT1-Modulating Effects in Rat Model
by Noha A. Alshuwayer, Qamraa H. Alqahtani, Marwa H. Hussein, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Toxics 2025, 13(7), 574; https://doi.org/10.3390/toxics13070574 - 8 Jul 2025
Viewed by 531
Abstract
Background: Doxorubicin (DOX) is a potent anti-cancer agent that is widely described in cancer treatment. However, its administration is often limited by its adverse effects, particularly its testicular toxicity, which can induce infertility in male patients. DOX-induced testicular damage is due to oxidative [...] Read more.
Background: Doxorubicin (DOX) is a potent anti-cancer agent that is widely described in cancer treatment. However, its administration is often limited by its adverse effects, particularly its testicular toxicity, which can induce infertility in male patients. DOX-induced testicular damage is due to oxidative stress, apoptosis, and inflammation. Nanocurcumin (NCR) is a nano-formulated edition of curcumin with a higher therapeutic potential. NCR has demonstrated antioxidant and anti-inflammatory properties. Methods: This study is designed to inspect the potential validity of NCR on DOX-induced testicular damage in male rats. We used thirty-two Wistar albino rats (150–200 g) and divided them into four groups. NCR (80 mg/kg/ dissolved in 1% CMC) was given orally by oral gavage for 14 days. A single dose of DOX (15 mg/kg) (i.p.) was injected on the 7th day of the experiment. Results: DOX treatment reduced the sperm viability and motility rate, cellular antioxidants, and gonadal hormones; it led to higher levels of inflammatory mediators, necrosis, and sloughing in seminiferous tubules. Conversely, NCR treatment significantly alleviated these side effects by improving sperm count/motility and reducing sperm abnormalities. The testicular function recovery was likely driven by stimulating the cytoprotective SIRT1/NF-κB pathway, depressing the testicular level of oxidative indicators such as MDA, TNF-α, iNOS, IL-1β, and NO, and increasing levels of antioxidants such as GSH and SOD. In addition, NCR contradicted the apoptotic changes by downregulating the pro-apoptotic signals Bax and caspase-3, while inducing Bcl-2 upregulation. Moreover, NCR increased levels of gonadal hormones, attenuated histological abnormalities, and preserved testicular structure when compared with the DOX group. Conclusions: NCR treatment can effectively ameliorate DOX-induced testicular toxicity. Full article
(This article belongs to the Special Issue Drug and Pesticides-Induced Oxidative Stress and Apoptosis)
Show Figures

Graphical abstract

13 pages, 5262 KiB  
Article
The Relationship Between Tramadol-Induced Oxidative Testis Injury and Reproductive Function Disorder and Adenosine Triphosphate
by Fevzi Bedir, Hüseyin Kocatürk, Mehmet Sefa Altay, Renad Mammadov, Bahadır Süleyman, Taha Abdulkadir Coban, Gülce Naz Yazici, Seval Bulut and Halis Süleyman
Life 2025, 15(7), 1078; https://doi.org/10.3390/life15071078 - 6 Jul 2025
Viewed by 469
Abstract
Tramadol, a central analgesic drug, is used to treat moderate to severe pain but can cause reproductive disorders. The pathogenesis of tramadol-induced reproductive damage may involve increased oxidative stress, pro-inflammatory cytokines, ATP depletion, and reduced antioxidant levels. In this study, subjects were divided [...] Read more.
Tramadol, a central analgesic drug, is used to treat moderate to severe pain but can cause reproductive disorders. The pathogenesis of tramadol-induced reproductive damage may involve increased oxidative stress, pro-inflammatory cytokines, ATP depletion, and reduced antioxidant levels. In this study, subjects were divided into four groups: healthy control (HC), tramadol only (TM), ATP only (ATP), and ATP + tramadol (ATM). ATP was administered intraperitoneally at 4 mg/kg, and tramadol was administered orally at 50 mg/kg. Distilled water was given to the HC group. This regimen was repeated for three weeks. At the end of the treatment, testicular tissues from six rats in each group were analyzed biochemically and histopathologically after euthanasia. The remaining rats’ reproductive functions were evaluated. Long-term tramadol exposure resulted in oxidative stress, inflammation in testicular tissue, and reduced male reproductive capacity. Thinning of seminiferous tubule walls and thickening of basement membrane, irregularity in germ cells, increase in interstitial connective tissue, congestion in vessels, increase in Leyding cells and hyperplasia were found in the TM group. ATP treatment significantly reduced tramadol-induced increases in oxidants and pro-inflammatory cytokines, reversed the decline in antioxidants, and mitigated infertility in testicular tissue. Furthermore, ATP preserved the morphology of the testicular tissue. These findings suggest that ATP may offer therapeutic potential for tramadol-induced infertility. Full article
Show Figures

Figure 1

15 pages, 2598 KiB  
Case Report
Two Cases of Chronic Tubular Necrosis Presenting as Fanconi Syndrome Induced by Red Yeast Rice Choleste-Help
by Kanako Mita, Shunsuke Takahashi, Satoshi Yanagida, Akihiro Aoyama, Takayuki Shiraishi, Takayuki Hamada, Yumiko Nakamura, Mariko Sato, Kento Hirose, Ryo Yamamoto, Yuya Shioda, Kaori Takayanagi, Izumi Nagayama, Yuko Ono, Hajime Hasegawa and Akito Maeshima
Diagnostics 2025, 15(13), 1722; https://doi.org/10.3390/diagnostics15131722 - 6 Jul 2025
Viewed by 445
Abstract
Background and Clinical Significance: Although dietary supplements have often been deemed safe, some have been linked to drug-induced nephropathy due to their diverse ingredients. The aim of this report is to enhance clinical awareness of a novel and emerging cause of Fanconi syndrome [...] Read more.
Background and Clinical Significance: Although dietary supplements have often been deemed safe, some have been linked to drug-induced nephropathy due to their diverse ingredients. The aim of this report is to enhance clinical awareness of a novel and emerging cause of Fanconi syndrome due to red yeast rice supplements and to contribute new histopathological and clinical data. Case Presentation: We report two cases of renal dysfunction and Fanconi syndrome associated with the use of red yeast rice supplements. Both patients presented with renal impairment accompanied by elevated markers of tubular injury, hypouricemia, hypokalemia, and glucosuria, consistent with Fanconi syndrome. Following the discontinuation of the red yeast rice supplement and initiation of steroid therapy, Fanconi syndrome resolved, however, moderate renal dysfunction persisted. Urinary NGAL levels improved after treatment in both cases. KIM-1 normalized in one case but remained elevated in the other. Uromodulin recovery was complete in one case and partial in the other. Renal biopsy revealed mild tubulointerstitial nephritis, with notable shedding of proximal tubular epithelial cells. Immunohistochemical analysis demonstrated reduced expression of URAT-1, Na-K ATPase, and Na-Pi IIa in some tubules. Conclusions: These findings suggest that renal injury induced by red yeast rice supplements is mediated by direct proximal tubular necrosis caused by a harmful substance in the supplement, resulting in persistence of tubular dysfunction. Full article
(This article belongs to the Special Issue Kidney Disease: Biomarkers, Diagnosis, and Prognosis: 3rd Edition)
Show Figures

Figure 1

23 pages, 1423 KiB  
Review
Transporter-Mediated Interactions Between Uremic Toxins and Drugs: A Hidden Driver of Toxicity in Chronic Kidney Disease
by Pierre Spicher, François Brazier, Solène M. Laville, Sophie Liabeuf, Saïd Kamel, Maxime Culot and Sandra Bodeau
Int. J. Mol. Sci. 2025, 26(13), 6328; https://doi.org/10.3390/ijms26136328 - 30 Jun 2025
Viewed by 371
Abstract
Chronic kidney disease (CKD) is associated with the systemic accumulation of uremic toxins (UTs) due to impaired renal elimination. Among these, indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are particularly challenging because of their high protein binding and limited removal by dialysis. In [...] Read more.
Chronic kidney disease (CKD) is associated with the systemic accumulation of uremic toxins (UTs) due to impaired renal elimination. Among these, indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are particularly challenging because of their high protein binding and limited removal by dialysis. In addition to renal excretion, the transport of IS and PCS, and their microbiota-derived precursors, indole and p-cresol, across key physiological barriers—the intestinal barrier, blood–brain barrier, and renal proximal tubule—critically influences their distribution and elimination. This review provides an overview of transporter-mediated mechanisms involved in the disposition of IS, PCS, and their microbial precursors, indole and p-cresol. It also examines how these UTs may interact with commonly prescribed drugs in CKD, particularly those that share transporter pathways as substrates or inhibitors. These drug–toxin interactions may influence the pharmacokinetics and toxicity of IS and PCS, but remain poorly characterized and largely overlooked in clinical settings. A better understanding of these processes may guide future efforts to optimize pharmacotherapy and support more informed management of CKD patients, particularly in the context of polypharmacy. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Figure 1

18 pages, 3990 KiB  
Article
Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats
by Ana Lívia D. Maciel, Amanda L. Deluque, Beatriz M. Oliveira, Cláudia S. Souza, Heloísa D. C. Francescato, Cleonice Giovanini, Francisco J. A. de Paula, Terezila M. Coimbra and Rildo A. Volpini
Diseases 2025, 13(7), 200; https://doi.org/10.3390/diseases13070200 - 28 Jun 2025
Viewed by 313
Abstract
Background/Objectives: Gentamicin is one of the most effective and widely used antibiotics to treat serious infections. In addition to its bactericidal properties, gentamicin has a nephrotoxic effect that results in acute kidney injury (AKI). AKI may be intensified by hypovitaminosis D. This [...] Read more.
Background/Objectives: Gentamicin is one of the most effective and widely used antibiotics to treat serious infections. In addition to its bactericidal properties, gentamicin has a nephrotoxic effect that results in acute kidney injury (AKI). AKI may be intensified by hypovitaminosis D. This study evaluated the effect of hypovitaminosis D in the progression of gentamicin-induced renal injury. Methods: Male Wistar Hannover rats received a standard (SD) or a vitamin D-free diet (VitD) before gentamicin treatment. After that, we divided the animals into four groups: Ctrl VitD, SD diet, and saline injection; Ctrl VitD, VitD diet, and saline injection; Genta VitD, SD diet, and gentamicin injection (40 mg/kg; IM); Genta VitD, VitD diet, and gentamicin injection (40 mg/kg; IM). After the end of gentamicin treatment, we followed the animals for 5 days (protocol 1) and 30 days (protocol 2). Results: The Genta VitD group (protocol 1) presented impaired renal function. Regarding morphological analyses, the Genta VitD group presented necrotic tubules (protocol 1) and atrophied tubules (protocol 2). In the inflammatory scenario, the Genta VitD group presented an increase in the number of CD68+ cells, as well as in the levels of interleukin 1β (protocols 1 and 2). In addition, gentamicin-treated animals (protocols 1 and 2) presented an increased renal expression of vimentin and fibronectin. Despite the notable changes in functional, inflammatory, and structural parameters induced by gentamicin, hypovitaminosis D did not aggravate the renal injury in this experimental model. Conclusion: Hypovitaminosis D did not aggravate the progression of gentamicin-induced renal injury in rats. Full article
Show Figures

Figure 1

Back to TopTop