Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets
2.3. Experimental Design
2.4. Renal Function Studies
2.5. 25 Hydroxyvitamin D [25(OH)D3], Calcium, and Phosphorus Levels
2.6. Histological Studies
2.7. Immunohistochemical Analysis
2.8. Total Protein Isolation
2.9. Western Blot Assay
2.10. Evaluation of IL-1β
2.11. Statistical Analysis
3. Results
3.1. Body Weight
3.2. Renal Function
3.3. Serum Vitamin D Levels and Plasma Calcium and Phosphorus Levels
3.4. Western Blot Assay—VDR and CYP24A1
3.5. Histological Analysis
3.6. Immunohistochemistry Analysis
3.6.1. Vimentin
3.6.2. Fibronectin
3.6.3. ED1—CD68+ Cells (Macrophages)
3.7. Quantification of Interleukin 1β (IL-1β)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Ashmawy, G.M.; El-Sherbeni, S.A. Protective effects of Cupressus macrocarpa and Dioon edule against gentamicin-induced nephrotoxicity in rats. J. Pharm. Pharmacogn. Res. 2020, 8, 434–448. [Google Scholar] [CrossRef]
- Hamdy, S.; Elshopakey, G.E.; Risha, E.F.; Rezk, S.; Ateya, A.I.; Abdelhamid, F.M. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-kappaB/iNOS and Bcl-2/BAX pathways. Food Chem. Toxicol. 2024, 183, 114323. [Google Scholar] [CrossRef]
- Randjelovic, P.; Veljkovic, S.; Stojiljkovic, N.; Sokolovic, D.; Ilic, I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI J. 2017, 16, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.I.; Detaille, D.; Prieto, M.; Puente, A.; Briones, E.; Arevalo, M.; Leverve, X.; Lopez-Novoa, J.M.; El-Mir, M.Y. Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int. 2010, 77, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Mingeot-Leclercq, M.P.; Tulkens, P.M. Aminoglycosides: Nephrotoxicity. Antimicrob. Agents Chemother. 1999, 43, 1003–1012. [Google Scholar] [CrossRef]
- Sorribas, V.; Halaihel, N.; Puttaparthi, K.; Rogers, T.; Cronin, R.E.; Alcalde, A.I.; Aramayona, J.; Sarasa, M.; Wang, H.; Wilson, P.; et al. Gentamicin causes endocytosis of Na/Pi cotransporter protein (NaPi-2). Kidney Int. 2001, 59, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Cronin, R.E. Early selective effects of gentamicin on renal brush-border membrane Na-Pi cotransport and Na-H exchange. Am. J. Physiol. 1990, 258, F1379–F1387. [Google Scholar] [CrossRef]
- Sassen, M.C.; Kim, S.W.; Kwon, T.H.; Knepper, M.A.; Miller, R.T.; Frokiaer, J.; Nielsen, S. Dysregulation of renal sodium transporters in gentamicin-treated rats. Kidney Int. 2006, 70, 1026–1037. [Google Scholar] [CrossRef]
- Medic, B.; Stojanovic, M.; Rovcanin, B.; Kekic, D.; Skodric, S.R.; Jovanovic, G.B.; Vujovic, K.S.; Divac, N.; Stojanovic, R.; Radenkovic, M.; et al. Pioglitazone attenuates kidney injury in an experimental model of gentamicin-induced nephrotoxicity in rats. Sci. Rep. 2019, 9, 13689. [Google Scholar] [CrossRef]
- Albino, A.H.; Zambom, F.F.F.; Foresto-Neto, O.; Oliveira, K.C.; Avila, V.F.; Arias, S.C.A.; Seguro, A.C.; Malheiros, D.; Camara, N.O.S.; Fujihara, C.K.; et al. Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis. Front. Physiol. 2021, 12, 606392. [Google Scholar] [CrossRef]
- Geleilete, T.J.; Melo, G.C.; Costa, R.S.; Volpini, R.A.; Soares, T.J.; Coimbra, T.M. Role of myofibroblasts, macrophages, transforming growth factor-beta endothelin, angiotensin-II, and fibronectin in the progression of tubulointerstitial nephritis induced by gentamicin. J. Nephrol. 2002, 15, 633–642. [Google Scholar] [PubMed]
- Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 2011, 7, 684–696. [Google Scholar] [CrossRef]
- Diaz, P.; Cadena, M.; Montalvan, M.E.; Garrochamba, K.; Calderon, P.; Carrion, G.; Santana, S. Hypovitaminosis D in university workers in Southern Ecuador: Interactions between gender and lifestyle. Front. Nutr. 2024, 11, 1482910. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Nandini; Kharkwal, H.; Saha, M.; Sankaranarayanan, M.; Sharma, S.; Chander, S. Recent Advancements Towards the Use of Vitamin D Isoforms and the Development of Their Synthetic Analogues as New Therapeutics. Biomedicines 2025, 13, 1002. [Google Scholar] [CrossRef]
- Kushner, B.; Allen, P.D.; Crane, B.T. Frequency and Demographics of Gentamicin Use. Otol. Neurotol. 2016, 37, 190–195. [Google Scholar] [CrossRef]
- Graidis, S.; Papavramidis, T.S.; Papaioannou, M. Vitamin D and Acute Kidney Injury: A Two-Way Causality Relation and a Predictive, Prognostic, and Therapeutic Role of Vitamin D. Front. Nutr. 2020, 7, 630951. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, C.; Viswanathan, P. Vitamin D and Acute Kidney Injury: A Reciprocal Relationship. Biomolecules 2025, 15, 586. [Google Scholar] [CrossRef]
- Ganimusa, I.; Chew, E.; Lu, E.M. Vitamin D Deficiency, Chronic Kidney Disease and Periodontitis. Medicina 2024, 60, 420. [Google Scholar] [CrossRef]
- Deluque, A.L.; Oliveira, B.M.; Souza, C.S.; Maciel, A.L.D.; Francescato, H.D.C.; Giovanini, C.; de Almeida, L.F.; de Paula, F.J.A.; Costa, R.S.; Antunes-Rodrigues, J.; et al. Paricalcitol Improves the Angiopoietin/Tie-2 and VEGF/VEGFR2 Signaling Pathways in Adriamycin-Induced Nephropathy. Nutrients 2022, 14, 5316. [Google Scholar] [CrossRef]
- Dos Santos, M.S.; Canale, D.; Bernardo, D.R.D.; Shimizu, M.H.M.; Seguro, A.C.; Volpini, R.A.; de Braganca, A.C. The Restoration of Vitamin D Levels Slows the Progression of Renal Ischemic Injury in Rats Previously Deficient in Vitamin D. Front. Med. 2021, 8, 625647. [Google Scholar] [CrossRef]
- Oliveira, B.M.; de Almeida, L.F.; Deluque, A.L.; Souza, C.S.; Maciel, A.L.D.; Francescato, H.D.C.; Costa, R.S.; Giovanini, C.; de Paula, F.J.A.; Coimbra, T.M. Calcitriol Reduces the Inflammation, Endothelial Damage and Oxidative Stress in AKI Caused by Cisplatin. Int. J. Mol. Sci. 2022, 23, 5877. [Google Scholar] [CrossRef] [PubMed]
- de Braganca, A.C.; Volpini, R.A.; Mehrotra, P.; Andrade, L.; Basile, D.P. Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. Physiol. Rep. 2016, 4, e12829. [Google Scholar] [CrossRef]
- Goncalves, J.G.; de Braganca, A.C.; Canale, D.; Shimizu, M.H.; Sanches, T.R.; Moyses, R.M.; Andrade, L.; Seguro, A.C.; Volpini, R.A. Vitamin D deficiency aggravates chronic kidney disease progression after ischemic acute kidney injury. PLoS ONE 2014, 9, e107228. [Google Scholar] [CrossRef]
- Souza, C.S.; Deluque, A.L.; Oliveira, B.M.; Maciel, A.L.D.; Giovanini, C.; Boer, P.A.; de Paula, F.J.A.; Costa, R.S.; Franscecato, H.D.C.; de Almeida, L.F.; et al. Vitamin D deficiency contributes to the diabetic kidney disease progression via increase ZEB1/ZEB2 expressions. Nutr. Diabetes 2023, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Volpini, R.A.; Costa, R.S.; da Silva, C.G.; Coimbra, T.M. Inhibition of nuclear factor-kappaB activation attenuates tubulointerstitial nephritis induced by gentamicin. Nephron Physiol. 2004, 98, p97–p106. [Google Scholar] [CrossRef]
- Moyses Neto, M.; Costa, R.S.; Volpini, R.A.; Garcia, T.M.; Rodrigues, F.F.; Coimbra, T.M. Interstitial alterations in renal cortex in acute tubular necrosis (ATN) post-renal transplantation and in patients with ATN not related to renal transplant. Clin. Transplant. 2004, 18, 156–165. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Bernardo, D.R.D.; Canale, D.; Nascimento, M.M.; Shimizu, M.H.M.; Seguro, A.C.; de Braganca, A.C.; Volpini, R.A. The association between obesity and vitamin D deficiency modifies the progression of kidney disease after ischemia/reperfusion injury. Front. Nutr. 2022, 9, 952028. [Google Scholar] [CrossRef]
- de Braganca, A.C.; Volpini, R.A.; Canale, D.; Goncalves, J.G.; Shimizu, M.H.; Sanches, T.R.; Seguro, A.C.; Andrade, L. Vitamin D deficiency aggravates ischemic acute kidney injury in rats. Physiol. Rep. 2015, 3, e12331. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Reis, N.G.; Francescato, H.D.C.; de Almeida, L.F.; Silva, C.; Costa, R.S.; Coimbra, T.M. Protective effect of calcitriol on rhabdomyolysis-induced acute kidney injury in rats. Sci. Rep. 2019, 9, 7090. [Google Scholar] [CrossRef]
- Schmitz, C.; Hilpert, J.; Jacobsen, C.; Boensch, C.; Christensen, E.I.; Luft, F.C.; Willnow, T.E. Megalin deficiency offers protection from renal aminoglycoside accumulation. J. Biol. Chem. 2002, 277, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Hur, E.; Garip, A.; Camyar, A.; Ilgun, S.; Ozisik, M.; Tuna, S.; Olukman, M.; Narli Ozdemir, Z.; Yildirim Sozmen, E.; Sen, S.; et al. The effects of vitamin d on gentamicin-induced acute kidney injury in experimental rat model. Int. J. Endocrinol. 2013, 2013, 313528. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef]
- Perazella, M.A.; Rosner, M.H. Drug-Induced Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2022, 17, 1220–1233. [Google Scholar] [CrossRef] [PubMed]
- Dusso, A.S.; Bauerle, K.T.; Bernal-Mizrachi, C. Non-classical Vitamin D Actions for Renal Protection. Front. Med. 2021, 8, 790513. [Google Scholar] [CrossRef]
- de Braganca, A.C.; Canale, D.; Goncalves, J.G.; Shimizu, M.H.M.; Seguro, A.C.; Volpini, R.A. Vitamin D Deficiency Aggravates the Renal Features of Moderate Chronic Kidney Disease in 5/6 Nephrectomized Rats. Front. Med. 2018, 5, 282. [Google Scholar] [CrossRef]
- Fakhoury, M.; Levy, R.; Melamed, M.L. Vitamin D deficiency and kidney hyperfiltration: A mechanism of kidney injury? Ann. Transl. Med. 2019, 7, S207. [Google Scholar] [CrossRef]
- Jhee, J.H.; Nam, K.H.; An, S.Y.; Cha, M.U.; Lee, M.; Park, S.; Kim, H.; Yun, H.R.; Kee, Y.K.; Park, J.T.; et al. Severe vitamin D deficiency is a risk factor for renal hyperfiltration. Am. J. Clin. Nutr. 2018, 108, 1342–1351. [Google Scholar] [CrossRef]
- Teumer, A.; Gambaro, G.; Corre, T.; Bochud, M.; Vollenweider, P.; Guessous, I.; Kleber, M.E.; Delgado, G.E.; Pilz, S.; Marz, W.; et al. Negative effect of vitamin D on kidney function: A Mendelian randomization study. Nephrol. Dial. Transplant. 2018, 33, 2139–2145. [Google Scholar] [CrossRef]
- Park, J.W.; Bae, E.H.; Kim, I.J.; Ma, S.K.; Choi, C.; Lee, J.; Kim, S.W. Renoprotective effects of paricalcitol on gentamicin-induced kidney injury in rats. Am. J. Physiol. Renal Physiol. 2010, 298, F301–F313. [Google Scholar] [CrossRef]
- Gil, A.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Saccone, D.; Asani, F.; Bornman, L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene 2015, 561, 171–180. [Google Scholar] [CrossRef]
- Dusso, A.S.; Tokumoto, M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: A downward spiral in kidney disease. Kidney Int. 2011, 79, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Wiese, R.J.; Uhland-Smith, A.; Ross, T.K.; Prahl, J.M.; DeLuca, H.F. Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J. Biol. Chem. 1992, 267, 20082–20086. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Aboulhoda, B.E.; Mahmoud, R.H. Vitamin D attenuates gentamicin-induced acute renal damage via prevention of oxidative stress and DNA damage. Hum. Exp. Toxicol. 2019, 38, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Ince, S.; Kucukkurt, I.; Demirel, H.H.; Arslan-Acaroz, D.; Varol, N. Boron, a Trace Mineral, Alleviates Gentamicin-Induced Nephrotoxicity in Rats. Biol. Trace Elem. Res. 2020, 195, 515–524. [Google Scholar] [CrossRef]
- Morin, J.P.; Viotte, G.; Vandewalle, A.; Van Hoof, F.; Tulkens, P.; Fillastre, J.P. Gentamicin-induced nephrotoxicity: A cell biology approach. Kidney Int. 1980, 18, 583–590. [Google Scholar] [CrossRef]
- Balakumar, P.; Rohilla, A.; Thangathirupathi, A. Gentamicin-induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? Pharmacol. Res. 2010, 62, 179–186. [Google Scholar] [CrossRef]
- Bledsoe, G.; Crickman, S.; Mao, J.; Xia, C.F.; Murakami, H.; Chao, L.; Chao, J. Kallikrein/kinin protects against gentamicin-induced nephrotoxicity by inhibition of inflammation and apoptosis. Nephrol. Dial. Transplant. 2006, 21, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Fenercioglu, A.K.; Gonen, M.S.; Uzun, H.; Sipahioglu, N.T.; Can, G.; Tas, E.; Kara, Z.; Ozkaya, H.M.; Atukeren, P. The Association between Serum 25-Hydroxyvitamin D3 Levels and Pro-Inflammatory Markers in New-Onset Type 2 Diabetes Mellitus and Prediabetes. Biomolecules 2023, 13, 1778. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, Y.; Tian, L.; Zheng, L.; Wang, X.; Liu, W.; Zhang, Y.; Huang, G. Association of serum 25-hydroxyvitamin D(3) with adipokines and inflammatory marker in persons with prediabetes mellitus. Clin. Chim. Acta 2017, 468, 152–158. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 2011, 121, 4210–4221. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, J.G.; Canale, D.; de Braganca, A.C.; Seguro, A.C.; Shimizu, M.H.M.; Volpini, R.A. The Blockade of TACE-Dependent EGF Receptor Activation by Losartan-Erlotinib Combination Attenuates Renal Fibrosis Formation in 5/6-Nephrectomized Rats Under Vitamin D Deficiency. Front. Med. 2020, 7, 609158. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.C.; Bell, P.D.; Hill, J.A. Fibrosis--a common pathway to organ injury and failure. N. Engl. J. Med. 2015, 372, 1138–1149. [Google Scholar] [CrossRef]
- Diao, H.Y.; Zhu, W.; Liu, J.; Yin, S.; Wang, J.H.; Li, C.L. Salvianolic Acid A Improves Rat Kidney Injury by Regulating MAPKs and TGF-beta1/Smads Signaling Pathways. Molecules 2023, 28, 3630. [Google Scholar] [CrossRef]
- Ibrahim, Y.F.; Hammady, S.H.; Rifaai, R.A.; Waz, S.; Ibrahim, M.A.; Hafez, H.M. Dose-dependent ameliorating effect of lipoxin A4 on gentamicin-induced nephrotoxicity in rats: The role of TNFalpha, TGF-beta, ICAM-1, and JNK signaling. Chem. Biol. Interact. 2022, 366, 110139. [Google Scholar] [CrossRef]
Ctrl VitD | Ctrl VitD— | Genta VitD | Genta VitD— | |
---|---|---|---|---|
BW (g) | ||||
5 days 30 days | 0.340 ± 0.006 0.364 ± 0.020 | 0.333 ± 0.011 0.321 ± 0.010 | 0.310 ± 0.008 0.307 ± 0.012 d | 0.308 ± 0.008 0.312 ± 0.009 d |
Pcreat. (mg/dL) | ||||
5 days 30 days | 0.39 ± 0.01 0.40 ± 0.03 | 0.51 ± 0.03 0.50 ± 0.03 | 2.25 ± 0.32 c,g 0.67 ± 0.02 c | 3.64 ± 0.64 a,e,k 0.66 ± 0.03 |
TFG (ml/min/100g) | ||||
5 days 30 days | 0.39 ± 0.07 0.47 ± 0.07 | 0.20 ± 0.04 0.45 ± 0.05 | 0.10 ± 0.03 d 0.28 ± 0.01 | 0.10 ± 0.04 d 0.24 ± 0.06 |
FENa+ (%) | ||||
5 days 30 days | 0.20 ± 0.02 0.20 ± 0.02 | 0.29 ± 0.03 0.28 ± 0.04 | 1.01 ± 0.35 c 0.42 ± 0.02 | 0.94 ± 0.34 d 0.54 ± 0.17 |
Uosm (mOsm/KgH2O) | ||||
5 days 30 days | 1173 ± 66.5 1069 ± 246 | 1227 ± 206 1007 ± 231 | 595 ± 63.6 955 ± 149 | 529 ± 58.5 d,h 1032 ± 130 |
V (ml/min) | ||||
5 days 30 days | 0.004 ± 0.001 0.006 ± 0.002 | 0.004 ± 0.0008 0.004 ± 0.001 | 0.016 ± 0.001 a,e 0.007 ± 0.001 | 0.016 ± 0.002 a,e 0.008 ± 0.001 |
Ctrl VitD | Ctrl VitD— | Genta VitD | Genta VitD— | |
---|---|---|---|---|
25(OH)D3 (ng/mL) | ||||
5 days 30 days | 42.5 ± 1.37 38.3 ± 1.99 | 11.00 ± 1.44 b 8.66 ± 0.77 a | 38.7 ± 1.93 f 39.9 ± 2.57 e | 12.5 ± 0.77 b,j 9.68 ± 0.86 a,i |
PCa (mg/dL) | ||||
5 days 30 days | 11.6 ± 0.45 11.90 ± 0.18 | 10.8 ± 0.43 11.70 ± 0.03 | 13.50 ± 0.52 c,f 11.60 ± 0.20 | 10.6 ± 0.27 j 11.00 ± 0.35 |
PP (mg/dL) | ||||
5 days 30 days | 5.41 ± 0.19 5.51 ± 0.32 | 5.91 ± 0.38 5.29 ± 0.42 | 5.18 ± 0.22 5.60 ± 0.46 | 5.39 ± 0.31 5.69 ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, A.L.D.; Deluque, A.L.; Oliveira, B.M.; Souza, C.S.; Francescato, H.D.C.; Giovanini, C.; de Paula, F.J.A.; Coimbra, T.M.; Volpini, R.A. Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats. Diseases 2025, 13, 200. https://doi.org/10.3390/diseases13070200
Maciel ALD, Deluque AL, Oliveira BM, Souza CS, Francescato HDC, Giovanini C, de Paula FJA, Coimbra TM, Volpini RA. Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats. Diseases. 2025; 13(7):200. https://doi.org/10.3390/diseases13070200
Chicago/Turabian StyleMaciel, Ana Lívia D., Amanda L. Deluque, Beatriz M. Oliveira, Cláudia S. Souza, Heloísa D. C. Francescato, Cleonice Giovanini, Francisco J. A. de Paula, Terezila M. Coimbra, and Rildo A. Volpini. 2025. "Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats" Diseases 13, no. 7: 200. https://doi.org/10.3390/diseases13070200
APA StyleMaciel, A. L. D., Deluque, A. L., Oliveira, B. M., Souza, C. S., Francescato, H. D. C., Giovanini, C., de Paula, F. J. A., Coimbra, T. M., & Volpini, R. A. (2025). Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats. Diseases, 13(7), 200. https://doi.org/10.3390/diseases13070200