Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = tropical lakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9060 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 184
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

22 pages, 5044 KiB  
Review
Paleolimnological Approaches to Track Anthropogenic Eutrophication in Lacustrine Systems Across the American Continent: A Review
by Cinthya Soledad Manjarrez-Rangel, Silvana Raquel Halac, Luciana Del Valle Mengo, Eduardo Luis Piovano and Gabriela Ana Zanor
Limnol. Rev. 2025, 25(3), 33; https://doi.org/10.3390/limnolrev25030033 - 17 Jul 2025
Viewed by 415
Abstract
Eutrophication has intensified in lacustrine systems across the American continent, which has been primarily driven by human activities such as intensive agriculture, wastewater discharge, and land-use change. This phenomenon adversely affects water quality, biodiversity, and ecosystem functioning. However, studies addressing the historical evolution [...] Read more.
Eutrophication has intensified in lacustrine systems across the American continent, which has been primarily driven by human activities such as intensive agriculture, wastewater discharge, and land-use change. This phenomenon adversely affects water quality, biodiversity, and ecosystem functioning. However, studies addressing the historical evolution of trophic states in lakes and reservoirs remain limited—particularly in tropical and subtropical regions. In this context, sedimentary records serve as invaluable archives for reconstructing the environmental history of water bodies. Paleolimnological approaches enable the development of robust chronologies to further analyze physical, geochemical, and biological proxies to infer long-term changes in primary productivity and trophic status. This review synthesizes the main methodologies used in paleolimnological research focused on trophic state reconstruction with particular attention to the utility of proxies such as fossil pigments, diatoms, chironomids, and elemental geochemistry. It further underscores the need to broaden spatial research coverage, fostering interdisciplinary integration and the use of emerging tools such as sedimentary DNA among others. High-resolution temporal records are critical for disentangling natural variability from anthropogenically induced changes, providing essential evidence to inform science-based lake management and restoration strategies under anthropogenic and climate pressures. Full article
Show Figures

Graphical abstract

16 pages, 5533 KiB  
Communication
Cultivation of Diverse Type I and Type II Methanotrophs from Tropical Wetlands in India, Including Rare Taxa (Methylocucumis and Methylolobus)
by Kajal Pardhi, Shubha Manvi, Rahul A. Bahulikar, Yukta Patil, Yash Kadam, Shirish Kadam, Chandani Saraf and Monali C. Rahalkar
Methane 2025, 4(3), 17; https://doi.org/10.3390/methane4030017 - 16 Jul 2025
Viewed by 762
Abstract
Wetlands are the most important natural sources of methane. Studies on the distribution and diversity of methanotrophs, especially in tropical wetlands, are limited. The studies on wetland methanotrophs help bridge the gap in the literature for understanding the community structure of methanotrophs in [...] Read more.
Wetlands are the most important natural sources of methane. Studies on the distribution and diversity of methanotrophs, especially in tropical wetlands, are limited. The studies on wetland methanotrophs help bridge the gap in the literature for understanding the community structure of methanotrophs in tropical wetlands. Our present study documents the methanotroph diversity from various wetland habitats across Western India. Samples from various sites, such as freshwater ponds, lake sediments, mangroves, etc., located in Western India, were collected and enriched for methanotroph isolation. An established protocol for the isolation of methanotrophs from Indian rice fields, involving serial dilution and long-term incubations, was slightly modified and used. Obtaining entirely pure cultures of methanotrophs is a labor-intensive and technically challenging process. Hence, for primary level characterization, ‘methanotroph monocultures’, which have a single methanotroph culture with minimal contamination, were established. Twenty monocultures and eight pure cultures of methanotrophs were obtained in this study. The pmoA gene has been used for the phylogenetic characterization of methanotrophs for the last 25 years. Monocultures were from seven genera: the Methylomonas, Methylocystis, Methylosinus, Methylocaldum, Methylocucumis, Methylomagnum, and Methylolobus genera. Eight pure cultures were obtained, which were strains of Methylomonas koyamae, Methylosinus sporium, and Methylolobus aquaticus. A maximum number of cultures belonged to the Type I genus Methylomonas and to the Type II genus Methylocystis. Thus, the cultivation-based community studies of methanotrophs from wetland habitats in India expanded the current knowledge about the methanotroph diversity in such regions. Additionally, the cultivation approach helped us obtain new methanotrophs from this previously unexplored habitat, which can be used for further biotechnological and environmental applications. The isolated monocultures can either be used as MMCs (mixed methanotroph consortia) for environmental applications or further purified and used as pure cultures. Full article
Show Figures

Figure 1

27 pages, 4827 KiB  
Article
Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs
by Elisa Maia de Godoy, Tavani Rocha Camargo, Moranne Toniato, Danilo Cintra Proença, Johana Marcela Concha Obando, Rodrigo Roubach, Pablo Gallardo and Guilherme Wolff Bueno
Sustainability 2025, 17(12), 5282; https://doi.org/10.3390/su17125282 - 7 Jun 2025
Viewed by 634
Abstract
Effective sustainable fish farming necessitates enhanced models that incorporate environmental variability and contemporary monitoring methods. This research presents an innovative framework for assessing and modeling the environmental carrying capacity based on phosphorus (ECCp) in tropical and neotropical lakes and reservoirs. The model evaluates [...] Read more.
Effective sustainable fish farming necessitates enhanced models that incorporate environmental variability and contemporary monitoring methods. This research presents an innovative framework for assessing and modeling the environmental carrying capacity based on phosphorus (ECCp) in tropical and neotropical lakes and reservoirs. The model evaluates phosphorus waste from tilapia farming (Oreochromis niloticus) under diverse climatic conditions and production scenarios in cage systems. Using bioenergetic modeling and Monte Carlo simulations, we estimated phosphorus retention in fish and maximum production limits across different temperatures (21 °C, 25 °C, 29 °C) and dietary phosphorus concentrations (0.8%, 1.2%, 2.1%) in Brazil’s Chavantes reservoir. Results indicated that phosphorus retention diminished with higher dietary phosphorus and increased temperatures, ranging from 51% (0.8% P) to 20% (2.1% P). Phosphorus discharge ranged from 3.3 to 20.5 kg/ton of fish produced. The ECCp model forecasted an allowable production of roughly 40 tons per year at full operational capacity, reflecting a 41% increase compared to current regulations. The model’s accuracy (96%) surpassed that of traditional regulatory frameworks, which rely on static parameters, emphasizing the shortcomings of existing practices. The findings promote enhanced modeling strategies, sophisticated monitoring, adaptive management, and revised public policies to mitigate phosphorus emissions and support sustainable aquaculture in tropical and neotropical regions. Full article
(This article belongs to the Special Issue Environmental and Economic Sustainability in Agri-Food System)
Show Figures

Graphical abstract

13 pages, 5084 KiB  
Article
Comparative Ecotoxicological Effects of Cyanobacterial Crude Extracts on Native Tropical Cladocerans and Daphnia magna
by Cesar Alejandro Zamora-Barrios, Marcos Efrén Fragoso Rodríguez, S. Nandini and S. S. S. Sarma
Toxins 2025, 17(6), 277; https://doi.org/10.3390/toxins17060277 - 2 Jun 2025
Viewed by 570
Abstract
Freshwater cyanobacterial harmful algal blooms (FCHABs) alter zooplankton communities, often adversely, through the production of cyanotoxins. While Daphnia magna is frequently used to evaluate the impact of toxicants, it is not commonly found in tropical waters; cladocerans from tropical and subtropical waterbodies should [...] Read more.
Freshwater cyanobacterial harmful algal blooms (FCHABs) alter zooplankton communities, often adversely, through the production of cyanotoxins. While Daphnia magna is frequently used to evaluate the impact of toxicants, it is not commonly found in tropical waters; cladocerans from tropical and subtropical waterbodies should be used in bioassays. Here, we evaluated the impact of crude cyanobacteria extracts on three common, native species (Daphnia laevis, Ceriodaphnia dubia, and Simocephalus vetulus) based on acute and chronic bioassays. We analyzed the toxicity of cyanobacterial consortium collected from Lake Zumpango, Mexico. The FCHAB was dominated by Planktothrix agardhii (1.16 × 106 ind mL−1). A series of freeze/thaw/sonification cycles at 20 kHz was used to extract the toxic metabolites and the concentration of dissolved microcystin-LR equivalents was measured using an ELISA immunological kit. S. vetulus was the most sensitive species, with a median lethal concentration of 0.43 compared to 1.19 µg L−1 of D. magna at 48 h. S. vetulus was also the most sensitive in chronic evaluations, showing a negative rate of population increase (−0.10 d−1) in experiments with 20% crude extract. Full article
(This article belongs to the Special Issue Prospective Studies on Harmful Cyanobacteria and Cyanotoxins)
Show Figures

Figure 1

20 pages, 1383 KiB  
Article
Nutrient, Organic Matter and Shading Alter Planktonic Structure and Density of a Tropical Lake
by Marina Isabela Bessa da Silva, Luciana Pena Mello Brandão, Ludmila Silva Brighenti, Peter A. U. Staehr, Cristiane Freitas de Azevedo Barros, Francisco Antônio Rodrigues Barbosa and José Fernandes Bezerra-Neto
Limnol. Rev. 2025, 25(2), 16; https://doi.org/10.3390/limnolrev25020016 - 29 Apr 2025
Viewed by 358
Abstract
The structure and density of plankton communities greatly influence carbon and nutrient cycling as well as the environmental status of lake ecosystems. This community can respond to a range of environmental drivers, including those influenced by human perturbations on local and regional scales, [...] Read more.
The structure and density of plankton communities greatly influence carbon and nutrient cycling as well as the environmental status of lake ecosystems. This community can respond to a range of environmental drivers, including those influenced by human perturbations on local and regional scales, causing abrupt changes and imbalances. While the implications of climate and land-use changes are evident for a range of tropical lake conditions, their impacts on planktonic population dynamics are less understood. In this study, we aimed to investigate how distinctive levels of nutrients, allochthonous organic matter (OM), and sunlight availability change phytoplankton and zooplankton density and structure in a natural tropical lake. Using an in situ mesocosm facility, we manipulated the addition of nutrients and OM, in addition to sunlight availability and a combination of these treatments. We monitored limnological parameters, plankton count, and identification for 12 days. The mesocosms included eight different combinations in a 2 × 2 × 2 factorial design, each with two replicates. Inorganic nutrient addition reduced phytoplankton species richness, favoring the dominance of opportunistic species such as Chlorella sp. at much higher densities. Organic matter also increased light attenuation and caused the substitution of species and changes in dominance from Pseudanabaena catenata to Aphanocapsa elachista. On the other hand, physical shading had less influence on these communities, presenting densities similar to those found in the control mesocosms. Zooplankton presented a group dominance substitution in all mesocosms from copepod to rotifer species, and copepod growth seemed to be negatively affected by Chlorella sp. density increase. Furthermore, this community was associated with the light attenuation indices and bacterioplankton. These results indicate that tropical planktonic responses to environmental changes can effectively occur in just a few days, and the responses can be quite different depending on the nutritional source added. The punctual nutrient addition was sufficient to provide changes in this community, evidencing the strength of anthropic events associated with strong nutrient input. Understanding tropical plankton dynamics in response to environmental changes, such as those simulated in this work, is important for understanding the effects of climate and anthropogenic changes on tropical lake functioning. This knowledge can strengthen measures for the conservation of freshwater systems by allowing predictions of plankton community changes and the possible consequences for the aquatic food chain and water quality. Full article
Show Figures

Figure 1

29 pages, 3813 KiB  
Article
A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)
by Md Akhtar-E Ekram, Cornelia Wuchter, Satria Bijaksana, Kliti Grice, James Russell, Janelle Stevenson, Hendrik Vogel and Marco J. L. Coolen
Microorganisms 2025, 13(5), 1005; https://doi.org/10.3390/microorganisms13051005 - 27 Apr 2025
Cited by 1 | Viewed by 794
Abstract
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, [...] Read more.
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, particularly in undersampled, floristically diverse tropical forests. We recently conducted trnL-P6 amplicon sequencing to generate a sedimentary ancient DNA (sedaDNA) record of the regional catchment vegetation of the tropical waterbody Lake Towuti (Sulawesi, Indonesia), spanning over one million years (Myr) of the lake’s developmental history. In this study, we performed 18SV9 amplicon sequencing to create a parallel paleofungal record to (a) infer the composition, origins, and functional guilds of paleofungal community members and (b) determine the extent to which downcore changes in fungal community composition reflect the late Pleistocene evolution of the Lake Towuti catchment. We identified at least 52 members of Ascomycota (predominantly Dothiodeomycetes, Eurotiomycetes, and Leotiomycetes) and 12 members of Basidiomycota (primarily Agaricales and Polyporales). Spearman correlation analysis of the relative changes in fungal community composition, geochemical parameters, and paleovegetation assemblages revealed that the overwhelming majority consisted of soil organic matter and wood-decaying saprobes, except for a necrotrophic phytopathogenic association between Mycosphaerellaceae (Cadophora) and wetland herbs (Alocasia) in more-than-1-Myr-old silts and peats deposited in a pre-lake landscape, dominated by small rivers, wetlands, and peat swamps. During the lacustrine stage, vegetation that used to grow on ultramafic catchment soils during extended periods of inferred drying showed associations with dark septate endophytes (Ploettnerulaceae and Didymellaceae) that can produce large quantities of siderophores to solubilize mineral-bound ferrous iron, releasing bioavailable ferrous iron needed for several processes in plants, including photosynthesis. Our study showed that sedaDNA metabarcoding paired with the analysis of geochemical parameters yielded plausible insights into fungal-plant-soil interactions, and inferred changes in the paleohydrology and catchment evolution of tropical Lake Towuti, spanning more than one Myr of deposition. Full article
(This article belongs to the Special Issue Ancient Microbiomes in the Environment)
Show Figures

Figure 1

45 pages, 2582 KiB  
Review
Biofertilization and Bioremediation—How Can Microbiological Technology Assist the Ecological Crisis in Developing Countries?
by Christine C. Gaylarde and Estefan M. da Fonseca
Micro 2025, 5(2), 18; https://doi.org/10.3390/micro5020018 - 10 Apr 2025
Viewed by 1011
Abstract
The increasing global demand for food caused by a growing world population has resulted in environmental problems, such as the destruction of ecologically significant biomes and pollution of ecosystems. At the same time, the intensification of crop production in modern agriculture has led [...] Read more.
The increasing global demand for food caused by a growing world population has resulted in environmental problems, such as the destruction of ecologically significant biomes and pollution of ecosystems. At the same time, the intensification of crop production in modern agriculture has led to the extensive use of synthetic fertilizers to achieve higher yields. Although chemical fertilizers provide essential nutrients and accelerate crop growth, they also pose significant health and environmental risks, including pollution of groundwater and other bodies of water such as rivers and lakes. Soils that have been destabilized by indiscriminate clearing of vegetation undergo a desertification process that has profound effects on microbial ecological succession, impacting biogeochemical cycling and thus the foundation of the ecosystem. Tropical countries have positive aspects that can be utilized to their advantage, such as warmer climates, leading to increased primary productivity and, as a result, greater biodiversity. As an eco-friendly, cost-effective, and easy-to-apply alternative, biofertilizers have emerged as a solution to this issue. Biofertilizers consist of a diverse group of microorganisms that is able to promote plant growth and enhance soil health, even under challenging abiotic stress conditions. They can include plant growth-promoting rhizobacteria, arbuscular mycorrhizal fungi, and other beneficial microbial consortia. Bioremediators, on the other hand, are microorganisms that can reduce soil and water pollution or otherwise improve impacted environments. So, the use of microbial biotechnology relies on understanding the relationships among microorganisms and their environments, and, inversely, how abiotic factors influence microbial activity. The recent introduction of genetically modified microorganisms into the gamut of biofertilizers and bioremediators requires further studies to assess potential adverse effects in various ecosystems. This article reviews and discusses these two soil correcting/improving processes with the aim of stimulating their use in developing tropical countries. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

14 pages, 5084 KiB  
Article
Comparing Particulate Carbon Fluxes in Tropical Karst Lakes with Different Trophic Statuses
by Montserrat Rivera-Herrera, Javier Alcocer, Luis A. Oseguera, Mariana Vargas-Sánchez, Felipe García-Oliva and Salvador Sánchez-Carrillo
Water 2025, 17(7), 1030; https://doi.org/10.3390/w17071030 - 31 Mar 2025
Viewed by 417
Abstract
Human activities have led to an increased influx of carbon into lakes due to changes in land use that result in higher erosion rates, eutrophication, and the introduction of organic matter. This, in turn, causes greater carbon exports and carbon accumulation in sediments. [...] Read more.
Human activities have led to an increased influx of carbon into lakes due to changes in land use that result in higher erosion rates, eutrophication, and the introduction of organic matter. This, in turn, causes greater carbon exports and carbon accumulation in sediments. In our study, we estimated the fluxes of total particulate carbon (FTPC), particulate organic carbon (FPOC), and particulate inorganic carbon (FPIC) in three lakes with different trophic statuses. Two lakes, one eutrophic (Bosque Azul) and one mesotrophic (San José), are in the anthropically impacted zone of the plateau. In contrast, an oligotrophic lake (Tziscao) is in the mountainous, pristine area of “Lagunas de Montebello” National Park, a tropical karst lake district in Chiapas, Mexico. Our findings revealed that the highest FPOC values were observed in the eutrophic lake (0.47 ± 0.2 g m−2 d−1), while the highest FPIC were observed in the mesotrophic lake (1.11 ± 0.8 g m−2 d−1). In contrast, the oligotrophic lake exhibited the lowest fluxes. Eutrophication increased the levels of FPOC, while deforestation and erosion contributed to the rise in FPIC. Eutrophication and erosion in the lakes of LMNP led to five-, two-, and sixteen-fold increases in the FTPC, FPOC, and FPIC, respectively. Full article
Show Figures

Figure 1

15 pages, 2836 KiB  
Article
Morphological Variability of a Natural Population of Cyanobacterium Raphidiopsis raciborskii in a Temperate Floodplain Lake
by Filip Stević, Melita Mihaljević, Dubravka Špoljarić Maronić, Tanja Žuna Pfeiffer and Vanda Zahirović
Taxonomy 2025, 5(2), 16; https://doi.org/10.3390/taxonomy5020016 - 22 Mar 2025
Viewed by 757
Abstract
The freshwater cyanobacterium Raphidiopsis raciborskii is an invasive species that was originally described as tropical and is now widely distributed in temperate regions. The current taxonomic position was established based on a multilevel approach with the morphological description of natural populations as well [...] Read more.
The freshwater cyanobacterium Raphidiopsis raciborskii is an invasive species that was originally described as tropical and is now widely distributed in temperate regions. The current taxonomic position was established based on a multilevel approach with the morphological description of natural populations as well as their ultrastructural, physiological and molecular characterization. The practical problem in identifying this species is that the morphology of the trichome in the natural environment can vary considerably during population growth. The aim of this study was to investigate the morphological variability of R. raciborskii during its blooming in a temperate floodplain lake on the Middle Danube (Europe). In both cases, only straight trichomes were found. Young trichomes with one or two acuminate ends and without heterocytes, referred to as primary filaments, can be exclusively monodominant at the beginning of bloom formation and remain dominant throughout the year, leading to taxonomic confusion. In mature populations, the different morphological forms of secondary filaments may differ in the size of the filaments and in the number and size of akinetes and heterocytes formed in the trichomes. The correct taxonomic identification and early detection of R. raciborskii in natural freshwaters is extremely important for the successful control of the spread of this potentially toxic species. Full article
Show Figures

Figure 1

23 pages, 28505 KiB  
Article
Drone-Based Detection and Classification of Greater Caribbean Manatees in the Panama Canal Basin
by Javier E. Sanchez-Galan, Kenji Contreras, Allan Denoce, Héctor Poveda, Fernando Merchan and Hector M. Guzmán
Drones 2025, 9(4), 230; https://doi.org/10.3390/drones9040230 - 21 Mar 2025
Viewed by 870
Abstract
This study introduces a novel, drone-based approach for the detection and classification of Greater Caribbean Manatees (Trichechus manatus manatus) in the Panama Canal Basin by integrating advanced deep learning techniques. Leveraging the high-performance YOLOv8 model augmented with Sliced Aided Hyper Inferencing (SAHI) for [...] Read more.
This study introduces a novel, drone-based approach for the detection and classification of Greater Caribbean Manatees (Trichechus manatus manatus) in the Panama Canal Basin by integrating advanced deep learning techniques. Leveraging the high-performance YOLOv8 model augmented with Sliced Aided Hyper Inferencing (SAHI) for improved small-object detection, our system accurately identifies individual manatees, mother–calf pairs, and group formations across a challenging aquatic environment. Additionally, the use of AltCLIP for zero-shot classification enables robust demographic analysis without extensive labeled data, enhancing model adaptability in data-scarce scenarios. For this study, more than 57,000 UAV images were acquired from multiple drone flights covering diverse regions of Gatun Lake and its surroundings. In cross-validation experiments, the detection model achieved precision levels as high as 93% and mean average precision (mAP) values exceeding 90% under ideal conditions. However, testing on unseen data revealed a lower recall, highlighting challenges in detecting manatees under variable altitudes and adverse lighting conditions. Furthermore, the integrated zero-shot classification approach demonstrated a robust top-2 accuracy close to 90%, effectively categorizing manatee demographic groupings despite overlapping visual features. This work presents a deep learning framework integrated with UAV technology, offering a scalable, non-invasive solution for real-time wildlife monitoring. By enabling precise detection and classification, it lays the foundation for enhanced habitat assessments and more effective conservation planning in similar tropical wetland ecosystems. Full article
Show Figures

Figure 1

12 pages, 4073 KiB  
Article
Characteristics of Observed Electromagnetic Wave Ducts in Tropical, Subtropical, and Middle Latitude Locations
by Sandra E. Yuter, McKenzie M. Sevier, Kevin D. Burris and Matthew A. Miller
Atmosphere 2025, 16(3), 336; https://doi.org/10.3390/atmos16030336 - 17 Mar 2025
Cited by 1 | Viewed by 386
Abstract
Where and at what altitudes electromagnetic wave ducts within the atmosphere are likely to occur is important for a variety of communication and military applications. We examined the modified refractivity profiles and wave duct characteristics derived from nearly 50,000 observed upper air soundings [...] Read more.
Where and at what altitudes electromagnetic wave ducts within the atmosphere are likely to occur is important for a variety of communication and military applications. We examined the modified refractivity profiles and wave duct characteristics derived from nearly 50,000 observed upper air soundings obtained over four years from seven tropical and subtropical islands, as well as middle latitude sites at four US coastal locations, three sites near the Great Lakes, and four US inland sites. Across all location types, elevated ducts were found to be more common than surface-based ducts, and the median duct thicknesses were ~100 m. There was a weak correlation between duct thickness and strength and, essentially, no correlation between the duct strength and duct base height. EM ducts more frequently occurred at the tropical and subtropical island locations (~60%) and middle latitude coastal locations (70%) as compared to the less than 30% of the time that occurred at the Great Lake and US inland sites. The tropical and subtropical island sites were more likely than the other location types to have ducts at altitudes higher than 2 km, which is above the boundary layer height. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 4604 KiB  
Article
Removal of Glyphosate in Agricultural Runoff Using Subsurface Constructed Wetlands in Monocultures and Polycultures of Tropical Plants
by Graciano Aguilar-Cortés, Gustavo Martínez-Castellanos, Georgina Martínez-Reséndiz, Sergio Aurelio Zamora-Castro, María Cecilia Monroy-Pineda and Luis Carlos Sandoval Herazo
Processes 2025, 13(3), 860; https://doi.org/10.3390/pr13030860 - 14 Mar 2025
Viewed by 836
Abstract
Glyphosate (GLY) is the most widely used herbicide in agriculture worldwide, posing a significant contamination risk to rivers, lakes, wetlands, and soils. Its ultimate fate represents a potential threat to the health of both terrestrial and aquatic ecosystems. This study evaluated the removal [...] Read more.
Glyphosate (GLY) is the most widely used herbicide in agriculture worldwide, posing a significant contamination risk to rivers, lakes, wetlands, and soils. Its ultimate fate represents a potential threat to the health of both terrestrial and aquatic ecosystems. This study evaluated the removal efficiency of glyphosate and conventional pollutants in mesocosm-scale horizontal subsurface flow-constructed wetlands planted with Canna indica, Heliconia psittacorum, and Alpinia purpurata in runoff water contaminated with glyphosate. Additionally, the study examined the performances of these species in monoculture and polyculture settings of tropical ornamental plants. Canna indica exhibited the highest growth (up to 160 cm) in both monoculture and polyculture conditions, as well as the highest removal efficiencies for total nitrogen (TN), total phosphorus (TP), and phosphate (PO43⁻), achieving a 91%, 93%, and 98% removal, respectively. Polyculture systems demonstrated a superior ammonium removal efficiency, reaching 94%. Alpinia purpurata (>5 ppm after 40 days) and Heliconia psittacorum (>5 ppm after 200 days) were the most effective species for glyphosate removal. Glyphosate can be effectively removed from aquatic environments through constructed wetlands planted with ornamental species, offering a sustainable approach to mitigating herbicide contamination in water bodies. Full article
(This article belongs to the Special Issue Wastewater Treatment and Waste Recovery in Environmental Processes)
Show Figures

Figure 1

20 pages, 5079 KiB  
Article
Paleovegetation Community and Paleoclimate Succession in Middle Jurassic Coal Seams in Eastern Coalfields in Dzungaria Basin, China
by Xingli Wang, Shuo Feng, Wenfeng Wang, Qin Zhang, Jijun Tian, Changcheng Han and Meng Wang
Plants 2025, 14(5), 695; https://doi.org/10.3390/plants14050695 - 24 Feb 2025
Viewed by 560
Abstract
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the [...] Read more.
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the aim of this study was to classify the paleovegetation types and develop paleoclimate succession models of the extra-thick coal seams. We conducted the sampling, separation, and extraction of spores and pollen and carried out microscopic observations in the Wucaiwan mining area of the eastern coalfields in the Dzungaria Basin. The vertical vegetation succession in the thick seam (Aalenian Stage) in the study area was divided into three zones using the CONISS clustering method. The results show that the types of spore and pollen fossils belong to twenty families and forty-five genera, including twenty-three fern, twenty gymnosperm, and two bryophyte genera. The types of paleovegetation in the study area were mainly Lycopodiaceae and Selaginellaceae herb plants, Cyatheaceae, Osmundaceae, and Polypodiaceae shrub plants, and Cycadaceae and Pinaceae coniferous broad-leaved trees. The paleoclimate changed from warm–humid to humid–semi-humid and, finally, to the semi-humid–semi-dry type, all within a tropical–subtropical climate zone. The study area was divided into four paleovegetation communities: the nearshore wetland paleovegetation community, lowland cycad and Filicinae plant community, slope broad-leaved and coniferous plant mixed community, and highland coniferous tree community. This indicates that there was a climate warming event during the Middle Jurassic, which led to a large-scale lake transgression and regression in the basin. This resulted in the transfer of the coal-accumulating center from the west and southwest to the central part of the eastern coalfields in the Dzungaria Basin. Full article
(This article belongs to the Special Issue Evolution of Land Plants)
Show Figures

Figure 1

21 pages, 14469 KiB  
Article
Landcover Change Amidst Climate Change in the Lake Tana Basin (Ethiopia): Insights from 37 Years of Earth Observation on Landcover–Rainfall Interactions
by Sullivan Tsay Fofang, Erasto Benedict Mukama, Anwar Assefa Adem and Stefaan Dondeyne
Remote Sens. 2025, 17(5), 747; https://doi.org/10.3390/rs17050747 - 21 Feb 2025
Cited by 1 | Viewed by 1265
Abstract
Land use/landcover (LULC) changes and climate variability impact soil erosion; however, their combined long-term effects are poorly studied. Using remote sensing data, this study investigates changes in LULC and rainfall from 1985 to 2022 and their implications for soil erosion in the Lake [...] Read more.
Land use/landcover (LULC) changes and climate variability impact soil erosion; however, their combined long-term effects are poorly studied. Using remote sensing data, this study investigates changes in LULC and rainfall from 1985 to 2022 and their implications for soil erosion in the Lake Tana Basin, Ethiopia. The Global Land Cover Fine Classification System (GLC_FCS30D) data were used to analyze LULC changes; Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS-v2) were used to assess rainfall trends; and the RUSLE was used to estimate potential soil erosion. The GLC_FCS30D proved to have an overall accuracy of 77.3% for 2005, 80.2% for 2014, and 80.3% for 2022. The cropland area increased slightly, from 32.9% to 33.3%, while tree cover initially decreased from 31.2% to 27.8% before recovering to 29.9%. Overall, annual rainfall increased by 2.92 mm yr−1, though it exhibited strong spatial variability, and rainfall erosivity rose by 1.25 MJ mm ha−1 h−1 yr−1. Despite seemingly modest changes in landcover and rainfall, the combined effect on potential soil erosion was substantial. Potential soil loss in the Lake Tana Basin showed significant spatial and temporal variation, with a slight increase of 0.9% from 1985 to 1995, followed by a slight decrease of 0.12% from 1995 to 2005, and a more substantial decrease of 2.3% from 2005 to 2015 before a notable increase of 8.2% occurred from 2015 to 2022. By elucidating the intricate interactions between landcover changes and rainfall variability, this study enhances our understanding of landscape dynamics in the Lake Tana Basin. The findings highlight the importance of considering the interaction between rainfall and landcover changes in climate change studies, as well as when targeting soil conservation efforts and promoting sustainable land management and ecosystem resilience in the tropics. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Figure 1

Back to TopTop