Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = triplet periodicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9566 KiB  
Article
How Does Energy Harvesting from a Fluttering Foil Influence Its Nonlinear Dynamics?
by Dilip Thakur, Faisal Muhammad and Muhammad Saif Ullah Khalid
Energies 2025, 18(15), 3897; https://doi.org/10.3390/en18153897 - 22 Jul 2025
Viewed by 228
Abstract
This study investigates the nonlinear aeroelastic behavior and energy harvesting performance of a two-degrees-of-freedom NACA 0012 airfoil under varying reduced velocities and electrical load resistances. The system exhibits a range of dynamic responses, including periodic and chaotic states, governed by strong fluid–structure interactions. [...] Read more.
This study investigates the nonlinear aeroelastic behavior and energy harvesting performance of a two-degrees-of-freedom NACA 0012 airfoil under varying reduced velocities and electrical load resistances. The system exhibits a range of dynamic responses, including periodic and chaotic states, governed by strong fluid–structure interactions. Nonlinear oscillations first appear near the critical reduced velocity Ur*=6, with large-amplitude limit-cycle oscillations emerging around Ur*=8 in the absence of the electrical loading. As the load resistance increases, this transition shifts to higher Ur*, reflecting the damping effect of the electrical load. Fourier spectra reveal the presence of odd and even superharmonics in the lift coefficient, indicating nonlinearities induced by fluid–structure coupling, which diminishes at higher resistances. Phase portraits and Poincaré maps capture transitions across dynamical regimes, from periodic to chaotic behavior, particularly at a low resistance. The voltage output correlates with variations in the lift force, reaching its maximum at an intermediate resistance before declining due to a suppressing nonlinearity. Flow visualizations identify various vortex shedding patterns, including single (S), paired (P), triplet (T), multiple-pair (mP) and pair with single (P + S) that weaken at higher resistances and reduced velocities. The results demonstrate that nonlinearity plays a critical role in efficient voltage generation but remains effective only within specific parameter ranges. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 4964 KiB  
Article
Spatial Patterns in Fibrous Materials: A Metrological Framework for Pores and Junctions
by Efi-Maria Papia, Vassilios Constantoudis, Youmin Hou, Prexa Shah, Michael Kappl and Evangelos Gogolides
Metrology 2025, 5(2), 26; https://doi.org/10.3390/metrology5020026 - 7 May 2025
Viewed by 643
Abstract
Several materials widely used in scientific research and industrial applications, including nano-filters and neuromorphic circuits, consist of fiber structures. Despite the fundamental structural similarity, the key feature that should be considered depends on the specific application. In the case of membranes and filters, [...] Read more.
Several materials widely used in scientific research and industrial applications, including nano-filters and neuromorphic circuits, consist of fiber structures. Despite the fundamental structural similarity, the key feature that should be considered depends on the specific application. In the case of membranes and filters, the main concern has been on the pores among fibers, whereas in neuromorphic networks the main functionality is performed through the junctions of nanowires simulating neuron synapses for information dissemination. Precise metrological characterization of these structural features, along with methods for their effective control and replication, is essential for optimizing performance across various applications. This paper presents a comprehensive metrological framework for characterizing the spatial point patterns formed by pores or junctions within fibrous materials. The aim is to probe the influence of fiber randomness on both the point patterns of intersections (ppi) and pores (ppp). Our findings indicate a strong tendency of ppi toward aggregation, contrasting with a tendency of ppp toward periodicity and consequent pore uniformity. Both patterns are characterized by peculiarities related to collinearity effects on neighboring points that cannot be captured by the conventional anisotropy analysis of point patterns. To characterize local collinearity, we develop a method that counts the number of collinear triplets of nearest neighbor points in a pattern and designs an appropriate parameter to quantify them, also applied to scanning electron microscopy (SEM) images of membranes, demonstrating consistency with simulated data. Full article
Show Figures

Figure 1

16 pages, 2216 KiB  
Article
Mirror Complementary Triplet Periodicity of Dispersed Repeats in Bacterial Genomes
by Eugene Vadimovitch Korotkov
Symmetry 2025, 17(4), 549; https://doi.org/10.3390/sym17040549 - 3 Apr 2025
Viewed by 645
Abstract
We investigated overlapping dispersed repeats (DRs) on the plus and minus DNA strands in 12 bacterial genomes. The use of the iterative procedure method (IP method) without taking into account insertions or deletions of nucleotides allowed speeding up the calculations by several times [...] Read more.
We investigated overlapping dispersed repeats (DRs) on the plus and minus DNA strands in 12 bacterial genomes. The use of the iterative procedure method (IP method) without taking into account insertions or deletions of nucleotides allowed speeding up the calculations by several times and increased the number of the identified DRs by 10–20%. Most of the DRs were found in the known bacterial genes. The intersection regions of the bacterial DRs contained reverse complement codons. Calculation of triplet periodicity matrices mt(i,j) (i is the position in the codon and j is the nucleotide) was performed for the intersection regions. Two classes of matrices in which the number of nucleotides was significantly greater than in random sequences were revealed: the first contained mt(1,G), mt(2,A), mt(2,T), and mt(3,C) cells and the second mt(1,G), mt(2,C), mt(3,A), and mt(3,T) cells. These classes included 10 and 2 bacterial genomes, respectively. The reverse complement transformation of the DR intersection regions preserved the cells in both classes, although cyclic matrix shifting to the right by one base was observed in the second class. The reverse complement codons in the DR intersection regions on the plus and minus DNA strands could represent sites of more frequent inversions/transpositions or participate in the formation of secondary/tertiary mRNA structures. Full article
(This article belongs to the Special Issue Applications of Symmetry in Computational Biology)
Show Figures

Figure 1

27 pages, 6152 KiB  
Article
Neural Network-Based Prediction of Amplification Factors for Nonlinear Soil Behaviour: Insights into Site Proxies
by Ahmed Boudghene Stambouli and Lotfi Guizani
Appl. Sci. 2025, 15(7), 3618; https://doi.org/10.3390/app15073618 - 26 Mar 2025
Cited by 3 | Viewed by 432
Abstract
The identification of the most pertinent site parameters to classify soils in terms of their amplification of seismic ground motions is still of prime interest to earthquake engineering and codes. This study investigates many options for improving soil classifications in order to reduce [...] Read more.
The identification of the most pertinent site parameters to classify soils in terms of their amplification of seismic ground motions is still of prime interest to earthquake engineering and codes. This study investigates many options for improving soil classifications in order to reduce the deviation between “exact” predictions using wave propagation and the method used in seismic codes based on amplification (site) factors. To this end, an exhaustive parametric study is carried out to obtain nonlinear responses of sets of 324 clay and sand columns and to constitute the database for neuronal network methods used to predict the regression equations of the amplification factors in terms of seismic and site parameters. A wide variety of parameters and their combinations are considered in the study, namely, soil depth, shear wave velocity, the stiffness of the underlaying bedrock, and the intensity and frequency content of the seismic excitation. A database of AFs for 324 nonlinear soil profiles of sand and clay under multiple records with different intensities and frequency contents is obtained by wave propagation, where soil nonlinearity is accounted for through the equivalent linear model and an iterative procedure. Then, a Generalized Regression Neural Network (GRNN) is used on the obtained database to determine the most significant parameters affecting the AFs. A second neural network, the Radial Basis Function (RBF) network, is used to develop simple and practical prediction equations. Both the whole period range and specific short-, mid-, and long-period ranges associated with the AFs, Fa, Fv, and Fl, respectively, are considered. The results indicate that the amplification factor of an arbitrary soil profile can be satisfactorily approximated with a limited number of sites and the seismic record parameters (two to six). The best parameter pair is (PGA; resonance frequency, f0), which leads to a standard deviation reduction of at least 65%. For improved performance, we propose the practical triplet PGA;Vs30;f0 with Vs30 being the average shear wave velocity within the upper 30 m of soil below the foundation. Most other relevant results include the fact that the AFs for long periods (Fl) can be significantly higher than those for short or mid periods for soft soils. Finally, it is recommended to further refine this study by including additional soil parameters such as spatial configuration and by adopting more refined soil models. Full article
Show Figures

Figure 1

13 pages, 3051 KiB  
Hypothesis
On the Origin of Information Dynamics in Early Life
by Robert A. Gatenby, Jill Gallaher, Hemachander Subramanian, Emma U. Hammarlund and Christopher J. Whelan
Life 2025, 15(2), 234; https://doi.org/10.3390/life15020234 - 5 Feb 2025
Viewed by 1199
Abstract
We hypothesize that predictable variations in environmental conditions caused by night/day cycles created opportunities and hazards that initiated information dynamics central to life’s origin. Increased daytime temperatures accelerated key chemical reactions but also caused the separation of double-stranded polynucleotides, leading to hydrolysis, particularly [...] Read more.
We hypothesize that predictable variations in environmental conditions caused by night/day cycles created opportunities and hazards that initiated information dynamics central to life’s origin. Increased daytime temperatures accelerated key chemical reactions but also caused the separation of double-stranded polynucleotides, leading to hydrolysis, particularly of single-stranded RNA. Daytime solar UV radiation promoted the synthesis of organic molecules but caused broad damage to protocell macromolecules. We hypothesize that inter-related simultaneous adaptations to these hazards produced molecular dynamics necessary to store and use information. Self-replicating RNA heritably reduced the hydrolysis of single strands after separation during warmer daytime periods by promoting sequences that formed hairpin loops, generating precursors to transfer RNA (tRNA), and initiating tRNA-directed evolutionary dynamics. Protocell survival during daytime promoted sequences in self-replicating RNA within protocells that formed RNA–peptide hybrids capable of scavenging UV-induced free radicals or catalyzing melanin synthesis from tyrosine. The RNA–peptide hybrids are precursors to ribosomes and the triplet codes for RNA-directed protein synthesis. The protective effects of melanin production persist as melanosomes are found throughout the tree of life. Similarly, adaptations mitigating UV damage led to the replacement of Na+ by K+ as the dominant mobile cytoplasmic cation to promote diel vertical migration and selected for homochirality. We conclude that information dynamics emerged in early life through adaptations to predictably fluctuating opportunities and hazards during night/day cycles, and its legacy remains observable in extant life. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Graphical abstract

17 pages, 6161 KiB  
Article
Efficient Triple Attention and AttentionMix: A Novel Network for Fine-Grained Crop Disease Classification
by Yanqi Zhang, Ning Zhang, Jingbo Zhu, Tan Sun, Xiujuan Chai and Wei Dong
Agriculture 2025, 15(3), 313; https://doi.org/10.3390/agriculture15030313 - 31 Jan 2025
Cited by 2 | Viewed by 958
Abstract
In the face of global climate change, crop pests and diseases have emerged on a large scale, with diverse species lasting for long periods and exerting wide-ranging impacts. Identifying crop pests and diseases efficiently and accurately is crucial in enhancing crop yields. Nonetheless, [...] Read more.
In the face of global climate change, crop pests and diseases have emerged on a large scale, with diverse species lasting for long periods and exerting wide-ranging impacts. Identifying crop pests and diseases efficiently and accurately is crucial in enhancing crop yields. Nonetheless, the complexity and variety of scenarios render this a challenging task. In this paper, we propose a fine-grained crop disease classification network integrating the efficient triple attention (ETA) module and the AttentionMix data enhancement strategy. The ETA module is capable of capturing channel attention and spatial attention information more effectively, which contributes to enhancing the representational capacity of deep CNNs. Additionally, AttentionMix can effectively address the label misassignment issue in CutMix, a commonly used method for obtaining high-quality data samples. The ETA module and AttentionMix can work together on deep CNNs for greater performance gains. We conducted experiments on our self-constructed crop disease dataset and on the widely used IP102 plant pest and disease classification dataset. The results showed that the network, which combined the ETA module and AttentionMix, could reach an accuracy as high as 98.2% on our crop disease dataset. When it came to the IP102 dataset, this network achieved an accuracy of 78.7% and a recall of 70.2%. In comparison with advanced attention models such as ECANet and Triplet Attention, our proposed model exhibited an average performance improvement of 5.3% and 4.4%, respectively. All of this implies that the proposed method is both practical and applicable for classifying diseases in the majority of crop types. Based on classification results from the proposed network, an install-free WeChat mini program that enables real-time automated crop disease recognition by taking photos with a smartphone camera was developed. This study can provide an accurate and timely diagnosis of crop pests and diseases, thereby providing a solution reference for smart agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

10 pages, 873 KiB  
Article
The Outcome of Octogenarian Patients with Multiple Myeloma Treated Outside Clinical Studies, Focusing on Tolerability and Efficacy of Treatment
by Dana Amsterdam, Ori Grossberger, Natan Melamed, Dor Shpizer, Svetlana Trestman, Tamir Shragai, Yael C. Cohen and Irit Avivi
Cancers 2024, 16(19), 3329; https://doi.org/10.3390/cancers16193329 - 29 Sep 2024
Cited by 1 | Viewed by 1186
Abstract
Background: Data on the outcome of octogenarian multiple myeloma (MM) patients (pts), especially if treated outside clinical studies, are scanty. Aims and Methods: MM pts ≥ 80 years, treated at TASMC with first-line therapy between 2010 and 2023, were reviewed. Characteristics and [...] Read more.
Background: Data on the outcome of octogenarian multiple myeloma (MM) patients (pts), especially if treated outside clinical studies, are scanty. Aims and Methods: MM pts ≥ 80 years, treated at TASMC with first-line therapy between 2010 and 2023, were reviewed. Characteristics and outcomes were analyzed. Results: A total number of 101 pts, of whom 54 were males with a median age of 84 years (80–98), were included. Among them, 67.4% had a Charlson comorbidity index of ≥5, 37% had ISS-3 (International staging system) and 20% had Revised-ISS-3. In our study, 44.5% received doublets and 50.5% received triplets/quadruplets. A bortezomib-based regimen was applied in 87%, and IMiDs were used in 27.7%. Despite an upfront employment of a low lenalidomide dose, dose reductions were required in 48%. Grade ≥ 3 adverse events (AEs) (mainly infections) were documented in 36.6% of patients, including grade 5 events in 9%, all attributed to infections. The overall response rate was 69%, including 31% ≥ VGPRs (Very good partial response). Sixty-seven percent (67%) received second-line therapy, administered within a median period of 12 months (1–84). Within a median follow-up period of 36 m (1–141), the median overall survival (OS) approached 42 m (range: 1–141); being shorter in pts > 84 years (HR = 1.7, p = 0.03), pts with lung disease (HR = 1.8, p = 0.044) and pts with ISS = 3 and R-ISS = 3 (HR = 1.65, p = 0.0016 and HR = 2.45, p = 0.006, respectively); Conclusions: Octogenarians treated outside clinical studies often have a lower tolerance to treatment. Nevertheless, upfront administration of low doses of anti-MM agents provided a response in the majority of patients, translated into impressive OS. Nevertheless, mortality due to AEs was high, emphasizing the need for new, “octogenarian-oriented” treatment protocols. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

14 pages, 11550 KiB  
Article
Identification and Characterization of miRNAs and lncRNAs Associated with Salinity Stress in Rice Panicles
by Conghui Jiang, Yulong Wang, Yanan He, Yongbin Peng, Lixia Xie, Yaping Li, Wei Sun, Jinjun Zhou, Chongke Zheng and Xianzhi Xie
Int. J. Mol. Sci. 2024, 25(15), 8247; https://doi.org/10.3390/ijms25158247 - 28 Jul 2024
Cited by 2 | Viewed by 1989
Abstract
Salinity is a common abiotic stress that limits crop productivity. Although there is a wealth of evidence suggesting that miRNA and lncRNA play important roles in the response to salinity in rice seedlings and reproductive stages, the mechanism by which competing endogenous RNAs [...] Read more.
Salinity is a common abiotic stress that limits crop productivity. Although there is a wealth of evidence suggesting that miRNA and lncRNA play important roles in the response to salinity in rice seedlings and reproductive stages, the mechanism by which competing endogenous RNAs (ceRNAs) influence salt tolerance and yield in rice has been rarely reported. In this study, we conducted full whole-transcriptome sequencing of rice panicles during the reproductive period to clarify the role of ceRNAs in the salt stress response and yield. A total of 214 lncRNAs, 79 miRNAs, and 584 mRNAs were identified as differentially expressed RNAs under salt stress. Functional analysis indicates that they play important roles in GO terms such as response to stress, biosynthesis processes, abiotic stimuli, endogenous stimulus, and response to stimulus, as well as in KEGG pathways such as secondary metabolite biosynthesis, carotenoid biosynthesis, metabolic pathways, and phenylpropanoid biosynthesis. A ceRNA network comprising 95 lncRNA–miRNA–mRNA triplets was constructed. Two lncRNAs, MSTRG.51634.2 and MSTRG.48576.1, were predicted to bind to osa-miR172d-5p to regulate the expression of OsMYB2 and OsMADS63, which have been reported to affect salt tolerance and yield, respectively. Three lncRNAs, MSTRG.30876.1, MSTRG.44567.1, and MSTRG.49308.1, may bind to osa-miR5487 to further regulate the expression of a stress protein (LOC_Os07g48460) and an aquaporin protein (LOC_Os02g51110) to regulate the salt stress response. This study is helpful for understanding the underlying molecular mechanisms of ceRNA that drive the response of rice to salt stress and provide new genetic resources for salt-resistant rice breeding. Full article
Show Figures

Figure 1

13 pages, 5533 KiB  
Article
Short-Range Charge Transfer in DNA Base Triplets: Real-Time Tracking of Coherent Fluctuation Electron Transfer
by Lixia Zhu, Qi Li, Yongfeng Wan, Meilin Guo, Lu Yan, Hang Yin and Ying Shi
Molecules 2023, 28(19), 6802; https://doi.org/10.3390/molecules28196802 - 25 Sep 2023
Cited by 2 | Viewed by 1719
Abstract
The short-range charge transfer of DNA base triplets has wide application prospects in bioelectronic devices for identifying DNA bases and clinical diagnostics, and the key to its development is to understand the mechanisms of short-range electron dynamics. However, tracing how electrons are transferred [...] Read more.
The short-range charge transfer of DNA base triplets has wide application prospects in bioelectronic devices for identifying DNA bases and clinical diagnostics, and the key to its development is to understand the mechanisms of short-range electron dynamics. However, tracing how electrons are transferred during the short-range charge transfer of DNA base triplets remains a great challenge. Here, by means of ab initio molecular dynamics and Ehrenfest dynamics, the nuclear–electron interaction in the thymine-adenine-thymine (TAT) charge transfer process is successfully simulated. The results show that the electron transfer of TAT has an oscillating phenomenon with a period of 10 fs. The charge density difference proves that the charge transfer proportion is as high as 59.817% at 50 fs. The peak position of the hydrogen bond fluctuates regularly between −0.040 and −0.056. The time-dependent Marcus–Levich–Jortner theory proves that the vibrational coupling between nucleus and electron induces coherent electron transfer in TAT. This work provides a real-time demonstration of the short-range coherent electron transfer of DNA base triplets and establishes a theoretical basis for the design and development of novel biological probe molecules. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Graphical abstract

18 pages, 1479 KiB  
Review
Impact of Multiple Phase Transitions in Dense QCD on Compact Stars
by Armen Sedrakian
Particles 2023, 6(3), 713-730; https://doi.org/10.3390/particles6030044 - 14 Jul 2023
Cited by 6 | Viewed by 2199
Abstract
This review covers several recent developments in the physics of dense QCD with an emphasis on the impact of multiple phase transitions on astrophysical manifestations of compact stars. To motivate the multi-phase modeling of dense QCD and delineate the perspectives, we start with [...] Read more.
This review covers several recent developments in the physics of dense QCD with an emphasis on the impact of multiple phase transitions on astrophysical manifestations of compact stars. To motivate the multi-phase modeling of dense QCD and delineate the perspectives, we start with a discussion of the structure of its phase diagram and the arrangement of possible color-superconducting and other phases. It is conjectured that pair-correlated quark matter in β-equilibrium is within the same universality class as spin-imbalanced cold atoms and the isospin asymmetrical nucleonic matter. This then implies the emergence of phases with broken space symmetries and tri-critical (Lifshitz) points. The beyond-mean-field structure of the quark propagator and its non-trivial implications are discussed in the cases of two- and three-flavor quark matter within the Eliashberg theory, which takes into account the frequency dependence (retardation) of the gap function. We then construct an equation of state (EoS) that extends the two-phase EoS of dense quark matter within the constant speed of sound parameterization by adding a conformal fluid with a speed of sound cconf.=1/3 at densities 10nsat, where nsat is the saturation density. With this input, we construct static, spherically symmetrical compact hybrid stars in the mass–radius diagram, recover such features as the twins and triplets, and show that the transition to conformal fluid leads to the spiraling-in of the tracks in this diagram. Stars on the spirals are classically unstable with respect to the radial oscillations but can be stabilized if the conversion timescale between quark and nucleonic phases at their interface is larger than the oscillation period. Finally, we review the impact of a transition from high-temperature gapped to low-temperature gapless two-flavor phase on the thermal evolution of hybrid stars. Full article
Show Figures

Figure 1

16 pages, 1733 KiB  
Article
Search for Dispersed Repeats in Bacterial Genomes Using an Iterative Procedure
by Eugene Korotkov, Yulia Suvorova, Dimitry Kostenko and Maria Korotkova
Int. J. Mol. Sci. 2023, 24(13), 10964; https://doi.org/10.3390/ijms241310964 - 30 Jun 2023
Cited by 7 | Viewed by 3052
Abstract
We have developed a de novo method for the identification of dispersed repeats based on the use of random position-weight matrices (PWMs) and an iterative procedure (IP). The created algorithm (IP method) allows detection of dispersed repeats for which the average number of [...] Read more.
We have developed a de novo method for the identification of dispersed repeats based on the use of random position-weight matrices (PWMs) and an iterative procedure (IP). The created algorithm (IP method) allows detection of dispersed repeats for which the average number of substitutions between any two repeats per nucleotide (x) is less than or equal to 1.5. We have shown that all previously developed methods and algorithms (RED, RECON, and some others) can only find dispersed repeats for x ≤ 1.0. We applied the IP method to find dispersed repeats in the genomes of E. coli and nine other bacterial species. We identify three families of approximately 1.09 × 106, 0.64 × 106, and 0.58 × 106 DNA bases, respectively, constituting almost 50% of the complete E. coli genome. The length of the repeats is in the range of 400 to 600 bp. Other analyzed bacterial genomes contain one to three families of dispersed repeats with a total number of 103 to 6 × 103 copies. The existence of such highly divergent repeats could be associated with the presence of a single-type triplet periodicity in various genes or with the packing of bacterial DNA into a nucleoid. Full article
(This article belongs to the Topic Bioinformatics and Intelligent Information Processing)
Show Figures

Figure 1

25 pages, 2973 KiB  
Article
Detection and Quantification of Ammonia as the Ammonium Cation in Human Saliva by 1H NMR: A Promising Probe for Health Status Monitoring, with Special Reference to Cancer
by Mohammed Bhogadia, Mark Edgar, Kayleigh Hunwin, Georgina Page and Martin Grootveld
Metabolites 2023, 13(7), 792; https://doi.org/10.3390/metabo13070792 - 26 Jun 2023
Cited by 15 | Viewed by 5272
Abstract
Ammonia (NH3) has been shown to be a key biomarker for a wide variety of diseases, such as hepatic and chronic kidney diseases (CKD), and cancers. It also has relevance to the oral health research area, and, hence, its determination in [...] Read more.
Ammonia (NH3) has been shown to be a key biomarker for a wide variety of diseases, such as hepatic and chronic kidney diseases (CKD), and cancers. It also has relevance to the oral health research area, and, hence, its determination in appropriate biofluids and tissues is of much importance. However, since it contains exchangeable >N-H protons, its analysis via 1H NMR spectroscopy, which is a widely employed technique in untargeted metabolomic studies, is rendered complicated. In this study, we focused on the 1H NMR analysis of this biomarker in less invasively collected human saliva samples, and we successfully identified and quantified it as ammonium cation (NH4+) in post-collection acidulated forms of this biofluid using both the standard calibration curve and standard addition method (SAM) approaches. For this purpose, n = 27 whole mouth saliva (WMS) samples were provided by healthy human participants, and all donors were required to follow a fasting/oral environment abstention period of 8 h prior to collection. Following acidification (pH 2.00), diluted WMS supernatant samples treated with 10% (v/v) D2O underwent 1H NMR analysis (600 MHz). The acquired results demonstrated that NH4+ can be reliably determined in these supernatants via integration of the central line of its characteristic 1:1:1 intensity triplet resonance (complete spectral range δ = 6.97–7.21 ppm). Experiments performed also demonstrated that any urease-catalysed NH3 generation occurring post-sampling in WMS samples did not affect the results acquired during the usual timespan of laboratory processing required prior to analysis. Further experiments demonstrated that oral mouth-rinsing episodes conducted prior to sample collection, as reported in previous studies, gave rise to major decreases in salivary NH4+ levels thereafter, which renormalised to only 50–60% of their basal control concentrations at the 180-min post-rinsing time point. Therefore, the WMS sample collection method employed significantly affected the absolute levels of this analyte. The LLOD was 60 μmol/L with 128 scans. The mean ± SD salivary NH4+ concentration of WMS supernatants was 11.4 ± 4.5 mmol/L. The potential extension of these analytical strategies to the screening of other metabolites with exchangeable 1H nuclei is discussed, as is their relevance to the monitoring of human disorders involving the excessive generation and/or uptake of cellular/tissue material, or altered homeostasis, in NH3. Full article
Show Figures

Figure 1

17 pages, 3853 KiB  
Article
Mental Pressure Recognition Method Based on CNN Model and EEG Signal under Cross Session
by Song Zhou, Tianhan Gao and Jun Xu
Symmetry 2023, 15(6), 1173; https://doi.org/10.3390/sym15061173 - 30 May 2023
Cited by 2 | Viewed by 1342
Abstract
There is an important application value in assessing an operator’s mental pressure (MP) level in human–computer cooperative tasks through continuous asymmetric electroencephalogram (EEG) signals, which can help predict hidden risks. Due to the different distributions of EEG features in different periods, it is [...] Read more.
There is an important application value in assessing an operator’s mental pressure (MP) level in human–computer cooperative tasks through continuous asymmetric electroencephalogram (EEG) signals, which can help predict hidden risks. Due to the different distributions of EEG features in different periods, it is particularly challenging to accurately identify brain states by training and testing asymmetric EEG signals with static pattern classifiers. Due to the limitations of non-stationary neurophysiological data capture technology, cross-session MP recognition schemes can only be used as an auxiliary means in practical applications. Deep learning methods can achieve stable feature extraction at a high level. Based on this advantage, this paper proposes a triplet loss (TL)-based CNN model that can automatically update the weights of shallow hidden neurons in cross-session MP classification tasks. Firstly, the generalization ability of the CNN model under both intra-session and cross-session conditions is evaluated. Moreover, the proposed model is compared with the existing MP classifier under different feature selection and noise destruction modes. According to the results, our TL-based CNN model has high performance in processing cross-session EEG features. Full article
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Photodynamic Activity of Acridine Orange in Keratinocytes under Blue Light Irradiation
by Bárbara Fornaciari, Marina S. Juvenal, Waleska K. Martins, Helena C. Junqueira and Maurício S. Baptista
Photochem 2023, 3(2), 209-226; https://doi.org/10.3390/photochem3020014 - 23 Apr 2023
Cited by 5 | Viewed by 4124
Abstract
Acridine orange (AO) is a metachromatic fluorescent dye that stains various cellular compartments, specifically accumulating in acidic vacuoles (AVOs). AO is frequently used for cell and tissue staining (in vivo and in vitro), mainly because it marks different cellular compartments with different colors. [...] Read more.
Acridine orange (AO) is a metachromatic fluorescent dye that stains various cellular compartments, specifically accumulating in acidic vacuoles (AVOs). AO is frequently used for cell and tissue staining (in vivo and in vitro), mainly because it marks different cellular compartments with different colors. However, AO also forms triplet excited states and its role as a photosensitizer is not yet completely understood. Human immortalized keratinocytes (HaCaT) were incubated for either 10 or 60 min with various concentrations (nanomolar range) of AO that were significantly lower than those typically used in staining protocols (micromolar). After incubation, the cells were irradiated with a 490 nm LED. As expected, cell viability (measured by MTT, NRU and crystal violet staining) decreased with the increase in AO concentration. Interestingly, at the same AO concentration, altering the incubation time with HaCaT substantially decreased the 50% lethal dose (LD50) from 300 to 150 nM. The photoinduced cell death correlated primarily with lysosomal disfunction, and the correlation was stronger for the 60 min AO incubation results. Furthermore, the longer incubation time favored monomers of AO and a distribution of the dye to intracellular sites other than lysosomes. Studies with mimetic systems indicated that monomers, which have higher yields of fluorescence emission and singlet oxygen generation, are favored in acidic environments, consistent with the more intense emission from cells submitted to the longer AO incubation period. Our results indicate that AO is an efficient PDT photosensitizer, with a photodynamic efficiency that is enhanced in acidic environments when multiple intracellular locations are targeted. Consequently, when using AO as a probe for live cell tracking and tissue staining, care must be taken to avoid excessive exposure to light to avoid undesirable photosensitized oxidation reactions in the tissue or cell under investigation. Full article
Show Figures

Graphical abstract

9 pages, 1162 KiB  
Article
Reinvestigation of the Room Temperature Photochemical Reaction between N-Methyl-1,2,4-triazoline-3,5-dione (MeTAD) and Benzene
by Gary W. Breton
Organics 2023, 4(2), 164-172; https://doi.org/10.3390/org4020013 - 17 Apr 2023
Cited by 1 | Viewed by 2109
Abstract
The photochemical reaction of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with benzene is known to lead to a Diels–Alder cycloaddition product when conducted at low temperatures (i.e., <−60 °C). This reactivity has been exploited recently for novel synthetic applications. It was previously reported that no reaction [...] Read more.
The photochemical reaction of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with benzene is known to lead to a Diels–Alder cycloaddition product when conducted at low temperatures (i.e., <−60 °C). This reactivity has been exploited recently for novel synthetic applications. It was previously reported that no reaction between MeTAD and benzene occurs at room temperature. However, it has now been discovered that MeTAD reacts effectively with benzene upon visible light irradiation over a several day period at room temperature. The major product is a para-substituted bisurazole adduct. Our studies indicate that the adduct is formed via sequential aromatic substitution reactions made possible by electron transfer from the aromatic ring to the highly electrophilic triplet state of photoactivated MeTAD. Full article
(This article belongs to the Special Issue Chemistry of Heterocycles)
Show Figures

Figure 1

Back to TopTop