Mental Pressure Recognition Method Based on CNN Model and EEG Signal under Cross Session
Abstract
:1. Introduction
2. Preliminaries
3. The Proposed Method
3.1. EEG Signal Pre-Processing
3.2. TL-Based CNN Model
3.2.1. Input Layer
3.2.2. Two Dimensional Convolution
3.2.3. Activation Layer
3.2.4. Batch Normalization (BN) Layer
3.2.5. Dropout Layer
3.2.6. Depth-Wise 2D Convolution Layer
3.3. Triple Loss
4. Experimental Analysis
4.1. Model Training and Triplet Acquisition
4.2. Task Setting
4.3. Significant EEG Characteristics
4.4. Intra Session and Cross Session MP Classification
4.5. Classification Results
4.6. Noise Robustness Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borghini, G.; Astolfi, L.; Vecchiato, G. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yin, Z. SleepZzNet: Sleep Stage Classification Using Single-Channel EEG Based on CNN and Transformer. Int. J. Psychophysiol. 2021, 168, 85–102. [Google Scholar] [CrossRef]
- Giraudet, L.; Imbert, J.P.; Berenger, M. The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EEG/ERP measures. Behav. Brain Res. 2015, 294, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, M.; Motamedzade, M.; Heidarimoghadam, R. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Appl. Ergon. 2016, 52, 95–103. [Google Scholar] [CrossRef]
- Huang, W.; Sun, F. Building feature space of extreme learning machine with sparse denoising stacked-autoencoder. Neurocomputing 2016, 174, 60–71. [Google Scholar]
- Rangpong, P.; Sawangjai, P. EEGWaveNet: Multiscale CNN-Based Spatiotemporal Feature Extraction for EEG Seizure Detection. IEEE Trans. Ind. Inform. 2022, 8, 18–33. [Google Scholar]
- Das, R.; Maiorana, E.; Campisi, P. EEG biometrics using visual stimuli: A longitudinal study. IEEE Signal Process. Lett. 2016, 23, 341–345. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Gu, Z. Deep temporal-spatial feature learning for motor imagery-based brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2356–2366. [Google Scholar] [CrossRef]
- Alwasiti, H.; Yusoff, M.Z.; Raza, K. Motor imagery classification for brain computer interface using deep metric learning. IEEE Access 2020, 8, 109949–109963. [Google Scholar] [CrossRef]
- Ke, Y.; Qi, H.; Zhang, L. Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression. Int. J. Psychophysiol. 2015, 98, 157–166. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, J. Operator functional state classification using least-square support vector machine based recursive feature elimination technique. Comput. Methods Programs Biomed. 2014, 113, 101–115. [Google Scholar] [CrossRef]
- Maiorana, E. Deep learning for EEG-based biometric recognition. Neurocomputing 2020, 410, 374–386. [Google Scholar] [CrossRef]
- Thakare, A.; Bhende, M.; Deb, N. Classification of Bioinformatics EEG Data Signals to Identify Depressed Brain State Using CNN Model. Biomed Res. Int. 2022, 10, 24–46. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Su, Y.; Wu, X. A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals. Neurocomputing 2020, 404, 108–121. [Google Scholar] [CrossRef]
- Hüpen, P.; Kumar, H.; Shymanskaya, A. Impulsivity Classification Using EEG Power and Explainable Machine Learning. Int. J. Neural Syst. 2023, 3, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Özdenizci, O.; Wang, Y.; Koike-Akino, T. Learning invariant representations from EEG via adversarial inference. IEEE Access 2020, 8, 27074–27085. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Liu, H. Efficient Residual Shrinkage CNN Denoiser Design for Intelligent Signal Processing: Modulation Recognition, Detection, and Decoding. IEEE J. Sel. Areas Commun. 2022, 40, 14–35. [Google Scholar] [CrossRef]
- Tuncer, T.; Dogan, S.; Baygin, M. Tetromino pattern based accurate EEG emotion classification modeL. Artif. Intell. Med. 2022, 123, 42–63. [Google Scholar] [CrossRef]
- Seha, S.N.A.; Hatzinakos, D. Human recognition using transient auditory evoked potentials: A preliminary study. IET Biom. 2018, 7, 242–250. [Google Scholar] [CrossRef]
- Bhullar, A.; Nadeem, K.; Ali, A. Imultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning. Sci. Rep. 2023, 13, 21–34. [Google Scholar] [CrossRef]
- Khatwani, M.; Rashid, H.A.; Paneliya, H.A. Flexible Multichannel EEG Artifact Identification Processor using Depthwise-Separable Convolutional Neural Networks. ACM J. Emerg. Technol. Comput. Syst. 2021, 17, 1–21. [Google Scholar] [CrossRef]
- Seha, S.N.A.; Hatzinakos, D. EEG-based human recognition using steady-state AEPs and subject-unique spatial filters. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3901–3910. [Google Scholar] [CrossRef]
- Upadhyaya, V.; Salim, M. Effect of sensing matrices on quality index parameters for block sparse bayesian learning-based EEG compressive sensing. Int. J. Wavelets 2023, 21, 31–53. [Google Scholar] [CrossRef]
- Moctezuma, L.; Abe, T.; Molinas, M. Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm. Sci. Rep. 2022, 12, 3523. [Google Scholar] [CrossRef]
Layer | Parameters | Output Size | Options |
---|---|---|---|
input | - | () | - |
Conv2D BN Average pooling Dropout | (1 × 5 × 25 × 32) bias:32 (2 × 32) - - | (// 2 × 32) (//2 × 32) (//4 × 32) (//4 × 32) | activation:RELU strides = (1,2) axis = 3 pool size = (1,2), strides = (1,2) rate = 0.1 |
Conv2D BN Average pooling Dropout | (32 × 5 × 15 × 64) bias:64 (2 × 64) - - | (//8 × 64) (//8 × 64) (//16 × 64) (//16 × 64) | activation:RELU strides = (1,2) axis = 3 pool size = (1,2), strides = (1,2) rate = 0.1 |
Conv2D BN Average pooling Dropout | (64 × 5 × 5 × 128) bias:64 (2 × 128) - - | (//32 × 128 (//32 × 128) (//64 × 128) (//64 × 128) | activation:RELU strides = (1,2) axis = 3 pool size = (1,2), strides = (1,2) rate = 0.1 |
DepthwiseConv2D BN L2-norm | //64 × 2 (2 × 256) - | 256 256 256 | Depth multiplier = 2 axis = 1 - |
Test Object | Estimated Grade | Intra Session | Cross Session | ||
---|---|---|---|---|---|
Target Category | Target Category | ||||
Low | High | Low | High | ||
Object1 | Low | 0.98 | 0.04 | 0.9811 | 0.13 |
High | 0.02 | 0.95 | 0.0189 | 0.87 | |
= 0.9683 | = 0.9256 | ||||
Object2 | Low | 1 | 0.8733 | 0.1545 | |
High | 0 | 0.977 | 0.1267 | 0.8434 | |
= 0.9950 | = 0.8578 | ||||
Object3 | Low | 0.9167 | 0.0789 | 0.87 | 0.2223 |
High | 0.0833 | 0.967 | 0.13 | 0.7123 | |
= 0.9217 | = 0.8206 | ||||
Object4 | Low | 0.91 | 0.43 | 0.8578 | 0.1321 |
High | 0.08 | 0.78 | 0.1422 | 0.8321 | |
= 0.8 | = 0.8706 | ||||
Object5 | Low | 0.96 | 0.0167 | 0.8411 | 0.06 |
High | 0.04 | 0.9866 | 0.1589 | 0.98 | |
= 0.9 | = 0.8956 | ||||
Object6 | Low | 10.8 | 0.8 | 0.9989 | 0.1789 |
High | 0.3 | 0.7 | 0.0011 | 0.8045 | |
= 0.9 | = 0.9011 | ||||
Object7 | Low | 0.95 | 0.0036 | 0.8389 | 0.1367 |
High | 0.05 | 0.9989 | 0.1611 | 0.8689 | |
= 0.97 | = 0.8522 | ||||
average value | Low | 0.96 | 0.056 | 0.8123 | 0.14789 |
High | 0.03 | 0.943 | 0.1123 | 0.8468 | |
= 0.9496 | = 0.8123 |
CNNvs.ANN | z = −2.56, p = 0.04 | z = −1, p = 1.00 | z = −0.15, p = 0.86 | z = −2.38, p = 0.04 | z = −2.23, p = 0.03 |
CNNvs.NB | z = −2.32, p = 0.04 | z = −1.56, p = 0.19 | z = −2.32, p = 0.08 | z =−2.32, p = 0.04 | z = −2.56, p = 0.03 |
CNNvs.KNN | z = −2.32, p = 0.04 | z = −1.23, p = 0.367 | z = −0.16, p = 1.38 | z = −2.34, p = 0.04 | z = −2.56, p = 0.03 |
CNNvs.SVMlin | z = −2.32, p = 0.04 | z = −0.234, p = 0.45 | z = −0.12, p = 1.32 | z = −2.56, p = 0.04 | z = −2.32, p = 0.04 |
CNNvs.rbf | z = −2.56, p = 0.03 | z = −0.878, p = 0.89 | z = −1.34, p = 0.36 | z = −2.67, p = 0.03 | z = −2.32, p = 0.04 |
CNNvs.lin | z = −2.32, p = 0.04 | z = −1.167, p = 0.23 | z = −0.15, p = 1.34 | z = −2.89, p = 0.03 | z = −2.56, p = 0.03 |
CNNvs.rbf | z = −2.56, p = 0.03 | z = −0.84, p = 0.78 | z = −1.67, p = 0.37 | z = −2.89, p = 0.03 | z = −2.32, p = 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Gao, T.; Xu, J. Mental Pressure Recognition Method Based on CNN Model and EEG Signal under Cross Session. Symmetry 2023, 15, 1173. https://doi.org/10.3390/sym15061173
Zhou S, Gao T, Xu J. Mental Pressure Recognition Method Based on CNN Model and EEG Signal under Cross Session. Symmetry. 2023; 15(6):1173. https://doi.org/10.3390/sym15061173
Chicago/Turabian StyleZhou, Song, Tianhan Gao, and Jun Xu. 2023. "Mental Pressure Recognition Method Based on CNN Model and EEG Signal under Cross Session" Symmetry 15, no. 6: 1173. https://doi.org/10.3390/sym15061173
APA StyleZhou, S., Gao, T., & Xu, J. (2023). Mental Pressure Recognition Method Based on CNN Model and EEG Signal under Cross Session. Symmetry, 15(6), 1173. https://doi.org/10.3390/sym15061173