Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = triethylenetetramine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 233
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
Research on Corrosion Protection of TETA-Modified Li–Al LDHs for AZ31 Magnesium Alloy in Simulated Seawater
by Sifan Tu, Liyan Wang, Sixu Wang, Haoran Chen, Qian Huang, Ning Hou, Zhiyuan Feng and Guozhe Meng
Metals 2025, 15(7), 724; https://doi.org/10.3390/met15070724 - 28 Jun 2025
Viewed by 588
Abstract
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. [...] Read more.
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. Electrochemical tests, SEM, FT-IR, XPS, and 3D depth-of-field microscopy were employed to evaluate TETA-modified Li–Al LDH coatings at varying concentrations. Among them, the Li–Al LDHs without the addition of a TETA corrosion inhibitor decreased significantly at |Z|0.01 Hz after immersion for 4 h. However, the Li–Al LDHs coating of 23.5 mM TETA experienced a sudden drop at |Z|0.01 Hz after holding for about 60 h, and the Li–Al LDHs coating of 70.5 mM TETA also experienced a sudden drop at |Z|0.01 Hz after holding for about 132 h. By contrast, at the optimal concentration (47 mM), after 24 h of immersion, the maximum |Z|0.01 Hz reached 7.56 × 105 Ω∙cm2—three orders of magnitude higher than pure Li–Al LDH coated AZ31 (2.55 × 102 Ω∙cm2). After 300 h of immersion, the low-frequency impedance remained above 105 Ω∙cm2, demonstrating superior long-term protection. TETA modification significantly improved the durability of Li–Al LDHs coatings, addressing the short-term protection limitation of standalone Li–Al LDHs. Li–Al LDHs themselves have a layered structure and effectively capture corrosive Cl ions in the environment through ion exchange capacity, reducing the corrosion of the interface. Furthermore, TETA exhibits strong adsorption on Li–Al LDHs layers, particularly at coating defects, enabling rapid barrier formation. This inorganic–organic hybrid design achieves defect compensation and enhanced protective barriers. Full article
(This article belongs to the Special Issue Metal Corrosion Behavior and Protection in Service Environments)
Show Figures

Figure 1

12 pages, 4459 KiB  
Article
Silver Ion-Chelated Waterborne Polyurethane Based Antibacterial Cotton Fabric via Coordination-Driven Immobilization
by Qiang Gao, Yajie Wang, Jianing Wang, Jiahao Sun, Jiqiang Cao, Zengying Liu and Xiang Liu
Coatings 2025, 15(6), 631; https://doi.org/10.3390/coatings15060631 - 24 May 2025
Viewed by 440
Abstract
This research employed triethylenetetramine as a chelating agent to successfully synthesize a chelating-functional waterborne polyurethane (CWPU) dispersion by adjusting the ratio of hard and soft segments and optimizing the molecular structure through the use of a chain extender. This allowed for the establishment [...] Read more.
This research employed triethylenetetramine as a chelating agent to successfully synthesize a chelating-functional waterborne polyurethane (CWPU) dispersion by adjusting the ratio of hard and soft segments and optimizing the molecular structure through the use of a chain extender. This allowed for the establishment of a stable WPU/Ag composite emulsion system upon the addition of silver nitrate, and during the film formation process, the reducing properties of polyols were employed to in situ reduce Ag+, resulting in the formation of silver nanoparticles (AgNPs). Structural characterization analyses, including FTIR and XRD, verified that the reduced AgNPs were evenly distributed in the WPU matrix, and SEM observations revealed the presence of reduced AgNPs on the film. Further, contact angle and TG tests were performed to explore the impact of AgNPs on the hydrophilicity and thermal stability of the film. By applying WPU/Ag to cotton fabric through a padding finishing technique, the fabric retained a breathability of over 64.7% and mechanical properties exceeding 70.9%. Following 20 standardized washes, the antibacterial efficacy against Escherichia coli and Staphylococcus aureus remained above 99%. Even after undergoing 1200 abrasion tests, the antibacterial efficacy for both bacteria was sustained at over 93%, and the antibacterial rate continued to exceed 99% after a 6 h immersion in hot water. These findings suggest that the composite material possesses outstanding thermal stability, durability, and mechanical characteristics. This research offers a new methodology for the development of textiles that combine both usability and prolonged antibacterial efficacy. Full article
Show Figures

Figure 1

13 pages, 4438 KiB  
Article
Reverse Design of High Strength and High Modulus Epoxy Resin Systems Through Computational Modeling with Experimental Validation
by Yilin Tang, Shipeng Zhu, Boya Zhang, Haozhong Lv, Jingshu Wu, Yunhua Yang, Ben Zhang and Jianli Gao
Polymers 2025, 17(9), 1214; https://doi.org/10.3390/polym17091214 - 29 Apr 2025
Viewed by 718
Abstract
High-strength and high-modulus epoxy resins are key elements for preparing carbon-fiber-reinforced polymer composites, which play an irreplaceable role in aerospace. In this study, five optimal epoxy systems were developed utilizing the reverse design strategy. The reverse design strategy was based on the ideal [...] Read more.
High-strength and high-modulus epoxy resins are key elements for preparing carbon-fiber-reinforced polymer composites, which play an irreplaceable role in aerospace. In this study, five optimal epoxy systems were developed utilizing the reverse design strategy. The reverse design strategy was based on the ideal resin and curing agent structures offered by the AI polymer platform, and the rules were summarized to create an optimum resin formulation. The formulations used m-phenylenediamine (MPD) as the principal curing agent, which was modified with 10 wt% diethyltetramethylenediamine (DETDA), 10 wt% 4,4′-diaminodiphenylmethane (DDM), or 10 wt% triethylenetetramine (TETA) to establish multiple crosslinking networks. Systematic characterization using differential scanning calorimetry (DSC) and rheological analysis revealed that the optimized activation energy was 55.95–63.42 kJ/mol, and the processing viscosity was ≤500 mPa·s at 80 °C. A stepwise curing protocol (3 h@80 °C, 2 h@120 °C, and 3 h@180 °C) was established to achieve a complete crosslinking network. The results showed that the system with 10% DDM had a tensile strength of 132.6 MPa, a modulus of 5.0 GPa, and a glass transition temperature of 253.1 °C. This work advances the rational design of epoxy resins by bridging molecular architecture with macroscopic performance, offering a paradigm for developing a next-generation matrix tailored to accommodate extreme operational demands in high-end engineering sectors. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

15 pages, 1761 KiB  
Article
Effect of Werner-Type Complex Formation of Cu2+ and Fe2+ on Oxidative Potentials Assessed Using Ascorbic Acid Assay
by Hideaki Sekine, Hikaru Ito and Yoshika Sekine
Atmosphere 2025, 16(2), 192; https://doi.org/10.3390/atmos16020192 - 7 Feb 2025
Viewed by 744
Abstract
The ascorbic acid (AA) assay is a widely recognized tool for assessing the oxidation potential (OP) of atmospheric particulate matter (PM), including PM2.5. OP quantified through the cell-free AA assay can be used to study the association between chemical properties and [...] Read more.
The ascorbic acid (AA) assay is a widely recognized tool for assessing the oxidation potential (OP) of atmospheric particulate matter (PM), including PM2.5. OP quantified through the cell-free AA assay can be used to study the association between chemical properties and harmful biological effects, such as the degradation of AA in the lungs by PM sample. AA is oxidized and depleted in solutions containing redox-active species such as polycyclic aromatic hydrocarbon quinones and heavy metal ions (Cu2+ and Fe2+), which are potential PM components. The metal ions form a Werner-type complex with ligands; thus, the AA depletion rate changes with the co-existing ligands in the PM sample. However, how the coordination structure of the complexes affects the AA depletion rate is poorly understood. This study examined the impact of the Werner-type complex formation of Cu2+ and Fe2+ on the AA depletion rate. Cu2+ and Fe2+ complexes were prepared by mixing them with three ethyleneamine forms: ethylenediamine, diethylenetriamine, and triethylenetetramine. The AA depletion rate was determined by measuring the changes in absorbance at 265 nm in the reaction solutions. Results indicated that the AA depletion rates of Cu2+ and Fe2+ were suppressed by the formation of complexes, and the degree of suppression depended on the coordination number and stability constants of the ethyleneamines. Additionally, AA depletion rates decreased with decreasing oxidative reduction potential in the solutions and changes in the coordination structures of the metal ion complexes. These findings demonstrate that the formation of Werner-type complexes with Cu2+ and Fe2+ reduces the AA depletion rate. As the number of ligands coordinating to the metal ions increases, the ORP decreases, creating a reducing environment that suppresses the oxidation of AA. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

13 pages, 3090 KiB  
Article
Nitrogen-Doped Weathered Coal for the Efficient Adsorption of Lead: Adsorption Performance and Mechanisms
by Xiaojing Chen, Xiaobing Jin, Chi Zhang, Zile Jiao, Zhiping Yang, Ke Wang, Jianhua Li and Qiang Zhang
Molecules 2024, 29(23), 5589; https://doi.org/10.3390/molecules29235589 - 26 Nov 2024
Cited by 1 | Viewed by 762
Abstract
The development of widely sourced and efficient adsorbents is crucial for the adsorption of lead from wastewater. A novel adsorbent, N-doped weathered coal (NWC), was prepared in this study using weathered coal as the precursor and triethylenetetramine (TETA) as the N-source. The adsorption [...] Read more.
The development of widely sourced and efficient adsorbents is crucial for the adsorption of lead from wastewater. A novel adsorbent, N-doped weathered coal (NWC), was prepared in this study using weathered coal as the precursor and triethylenetetramine (TETA) as the N-source. The adsorption performance and behavior of Pb(II) on NWC were investigated using batch adsorption experiments. The results demonstrated that NWC has an efficient adsorption performance towards Pb(II), with a maximum monolayer adsorption capacity of 216.32 mg g−1 (25 °C). The adsorption process was spontaneous and endothermic, and the importance of chemisorption was observed. The adsorption mechanisms of NWC were also analyzed based on its physicochemical structure before and after the Pb(II) adsorption and desorption experiments. The N and O functional groups, acting as electron donors, promoted coordination with Pb(II), making complexation the dominant mechanism. Its contribution to the adsorption mechanism could reach 44.81%. NWC is a promising material for both wastewater treatment and the resource utilization of weathered coal. Full article
Show Figures

Graphical abstract

17 pages, 14769 KiB  
Article
Efficient Uranium Removal from Aqueous Solutions Using Silica-Based Adsorbents Functionalized with Various Polyamines
by Ping Zhang, Hongling Wang, Lifeng Chen, Wenlong Li, Toyohisa Fujita, Shunyan Ning and Yuezhou Wei
Toxics 2024, 12(10), 704; https://doi.org/10.3390/toxics12100704 - 27 Sep 2024
Cited by 2 | Viewed by 1662
Abstract
With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins—SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA [...] Read more.
With the rapid development of nuclear energy, the contamination of environmental water systems by uranium has become a significant threat to human health. To efficiently remove uranium from these systems, three types of silica-based polyamine resins—SiPMA-DETA (SiPMA: silica/poly methyl acrylate; DETA: diethylenetriamine), SiPMA-TETA (TETA: triethylenetetramine), and SiPMA-TEPA (TEPA: tetraethylenepentamine)—were successfully prepared, characterized, and evaluated in batch experiments. Characterization results showed that the silica-based polyamine resins were successfully prepared, and they exhibited a uniform shape and high specific surface area. SiPMA-DETA, SiPMA-TETA, and SiPMA-TEPA had nitrogen contents of 4.08%, 3.72%, and 4.26%, respectively. Batch experiments indicated that these adsorbents could efficiently remove uranium from aqueous solutions with a pH of 5–9. The adsorption kinetics of U(VI) were consistent with the pseudo-second-order model, indicating that the adsorption process was chemisorption and that adsorption equilibrium was achieved within 10 min. SiPMA-TEPA, with the longest polyamine chain, exhibited the highest adsorption capacity (>198.95 mg/g), while SiPMA-DETA, with the shortest polyamine chain, demonstrated the highest U(VI) adsorption efficiency (83%) with 100 mM Na2SO4. SiPMA-TEPA still removed over 90% of U(VI) from river water and tap water. The spectral analysis revealed that the N-containing functional groups on the ligand were bound to anionic uranium–carbonate species and possibly contributed to the adsorption efficiency. In general, this work presents three effective adsorbents for removing uranium from environmental water systems and thus significantly contributes to the field of environmental protection. Full article
(This article belongs to the Special Issue Radioactive Contamination and Radionuclide Removal)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
Effects of Epoxy Resin Value on Waterborne-Epoxy-Resin-Modified Emulsified Asphalt Mixture Performance
by Lieguang Wang, Zirui Zhang, Wenyao Liu, Mingfei Wu, Junyi Shi and Kezhen Yan
Appl. Sci. 2024, 14(4), 1353; https://doi.org/10.3390/app14041353 - 6 Feb 2024
Cited by 7 | Viewed by 1532
Abstract
Although research shows that waterborne epoxy resin emulsified asphalt (WER-EA) is an environmental protection material with potential high resistance to multiple types of pavement distress, its performance is rather complicated and much affected by the curing agent and epoxy resin value. This paper [...] Read more.
Although research shows that waterborne epoxy resin emulsified asphalt (WER-EA) is an environmental protection material with potential high resistance to multiple types of pavement distress, its performance is rather complicated and much affected by the curing agent and epoxy resin value. This paper serves as a follow-up study to the preliminary published research on evaluating the impact of the epoxy value and common curing agents on the performance of asphalt mixtures. Four groups of emulsified asphalt were filtered out to prepare mixture samples, and laboratory tests on mixture performance under high and low temperatures were conducted. Specifically, Marshall and rutting tests were conducted for evaluating mixture resistance to rutting under high temperatures, and indirect tensile tests were conducted to indicate resistance to cracking at low temperatures. Water stability performance was also assessed by comparing the mixture properties before and after water absorption. The results showed that the mixture with an epoxy value of 20 and curing agents using triethylenetetramine (TETA) had the best overall performance among the investigated mixtures, with the highest resistance to high-temperature deformation and water damage. However, more research should be conducted to improve the low-temperature resistance to cracking for WER-EA mixtures. Full article
Show Figures

Figure 1

19 pages, 6604 KiB  
Article
Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater
by Aurel Diacon, Florin Albota, Alexandra Mocanu, Oana Brincoveanu, Alice Ionela Podaru, Traian Rotariu, Ahmad A. Ahmad, Edina Rusen and Gabriela Toader
Gels 2024, 10(2), 113; https://doi.org/10.3390/gels10020113 - 1 Feb 2024
Cited by 3 | Viewed by 2506
Abstract
This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment [...] Read more.
This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N′-methylenebisacrylamide (MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid, triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rhodamine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good correlation with the UV-Vis method. Full article
(This article belongs to the Special Issue Gels for Water Treatment)
Show Figures

Graphical abstract

18 pages, 5602 KiB  
Article
Phosphamide-Based Washing-Durable Flame Retardant for Cotton Fabrics
by Jinhao Li, Guangxian Zhang and Fengxiu Zhang
Materials 2024, 17(3), 630; https://doi.org/10.3390/ma17030630 - 27 Jan 2024
Cited by 5 | Viewed by 2065
Abstract
A formaldehyde-free reactive flame retardant, an ammonium salt of triethylenetetramine phosphoryl dimethyl ester phosphamide phosphoric acid (ATPEPDPA), was synthesized and characterized using nuclear magnetic resonance (NMR). Fourier transform infrared spectroscopy test (FT-IR), durability test and scanning electron microscopy (SEM) results suggested that ATPEPDPA [...] Read more.
A formaldehyde-free reactive flame retardant, an ammonium salt of triethylenetetramine phosphoryl dimethyl ester phosphamide phosphoric acid (ATPEPDPA), was synthesized and characterized using nuclear magnetic resonance (NMR). Fourier transform infrared spectroscopy test (FT-IR), durability test and scanning electron microscopy (SEM) results suggested that ATPEPDPA was successfully grafted on cotton fabrics through a -N-P(=O)-O-C covalent bond. Moreover, the limiting oxygen index (LOI) value of 20 wt% ATPEPDPA-treated cotton was 44.6%, which met stringent washing standard after 50 laundering cycles (LCs). The high washing resistance of the ATPEPDPA-treated cotton was due to the p-π conjugation between the N atom and the P(=O) group in the flame-retardant molecule, which strengthened the stability of the -N-P(=O)-O-C bonds between ATPEPDPA and cellulose, and the -N-P(=O)-(O-CH3)2 groups in the ATPEPDPA. The cone calorimetric test showed that the treated cotton had excellent flame retardance. In addition, the TG and TG-IR tests suggested that ATPEPDPA performed a condensed flame retardance mechanism. Furthermore, the physical properties and hand feel of the treated cotton were well maintained. These results suggested that introducing -N-P(=O)-(O-CH3)2 and -N-P(=O)-(ONH4)2 groups into ATPEPDPA could significantly increase the fire resistance and durability of cotton fabrics. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

11 pages, 5515 KiB  
Article
The Characterization of Residues Related to the Roasting– Leaching–Electrowinning Zinc Production Route for Further Metal Extraction
by Simon Hellgren, Fredrik Engström and Lena Sundqvist Öqvist
Metals 2024, 14(1), 73; https://doi.org/10.3390/met14010073 - 8 Jan 2024
Cited by 4 | Viewed by 2734
Abstract
Super-hot acid leach residue is generated during zinc production in the roasting–leaching–electrowinning route, where both primary and secondary resources are used as feed material. This residue may contain valuable metals, such as lead, zinc, and iron, as well as precious metals, such as [...] Read more.
Super-hot acid leach residue is generated during zinc production in the roasting–leaching–electrowinning route, where both primary and secondary resources are used as feed material. This residue may contain valuable metals, such as lead, zinc, and iron, as well as precious metals, such as gold and silver. Four materials, namely super-hot acid leach residue, a residue formed when super-hot acid leach residue is selectively leached for lead with triethylenetetramine, as well as flotation concentrate, and flotation tailings formed in a selective silver flotation process with super-hot acid leach residue as the feed material were characterized to obtain a deeper understanding of possible further metal extraction. These four materials were characterized for chemical composition, mineralogy, and mineral distribution via chemical analyses, X-ray diffraction, and energy-dispersive scanning electron microscopy, respectively. The scanning electron microscope images showed that the materials have large variations in particle size distribution and composition. The results showed that the main lead phase in super-hot acid leach residue is lead sulfate, whereas it is mostly converted to lead sulfide during the selective lead leaching of the super-hot acid leach residue. The remaining lead sulfate is found in a solid solution with barium sulfate. Extracting lead from super-hot acid leach residue via triethylenetetramine leaching resulted in increased concentrations of gold and silver by 41% and 42%, respectively. The identified silver phases in super-hot acid leach residue may correspond to silver sulfide, silver chloride, and elementary silver, where silver sulfide was the most commonly occurring silver phase. After leaching this selectively for lead with triethylenetetramine, similar silver phases were identified, but silver sulfide and silver chloride occurred to a similar extent. Additionally, silver copper sulfide was detected. The presence of different silver phases might pose a challenge to reaching high silver recovery during leaching as the optimum leaching conditions differ somewhat. Furthermore, elemental sulfur, with a tendency to coat gold and silver particle surfaces, which is indicated to be present in all materials except the silver flotation tailings, may hinder metal extraction. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 11422 KiB  
Article
Mechanism Exploration of the Effect of Polyamines on the Polishing Rate of Silicon Chemical Mechanical Polishing: A Study Combining Simulations and Experiments
by Ziwei Lin, Junli Zhu, Qi Huang, Lei Zhu, Weimin Li and Wenjie Yu
Nanomaterials 2024, 14(1), 127; https://doi.org/10.3390/nano14010127 - 4 Jan 2024
Cited by 3 | Viewed by 3179
Abstract
Polyamines have become important chemical components used in several integrated circuit manufacturing processes, such as etching, chemical mechanical polishing (CMP), and cleaning. Recently, researchers pointed out that polyamines can be excellent enhancers in promoting the material removal rate (MRR) of Si CMP, but [...] Read more.
Polyamines have become important chemical components used in several integrated circuit manufacturing processes, such as etching, chemical mechanical polishing (CMP), and cleaning. Recently, researchers pointed out that polyamines can be excellent enhancers in promoting the material removal rate (MRR) of Si CMP, but the interaction mechanism between the polyamines and the silicon surface has not been clarified. Here, the micro-interaction mechanisms of polyamines, including ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA), with the Si(1, 0, 0) surface were investigated through molecular dynamics (MD) simulations using the ReaxFF reactive force field. Polyamines can adsorb onto the Si(1, 0, 0) surface, and the adsorption rate first accelerates and then tends to stabilize with the increase in the quantity of -CH2CH2NH-. The close connection between the adsorption properties of polyamines and the polishing rate has been confirmed by CMP experiments on silicon wafers. A comprehensive bond analysis indicates that the adsorption of polyamines can stretch surface Si–Si bonds, which facilitates subsequent material removal by abrasive mechanical wear. This work reveals the adsorption mechanism of polyamines onto the silicon substrate and the understanding of the MRR enhancement in silicon CMP, which provides guidance for the design of CMP slurry. Full article
Show Figures

Figure 1

12 pages, 11824 KiB  
Article
Nondestructive Evaluation of Tensile Stress-loaded GFRPs Using the Magnetic Recording Method
by Ryszard D. Łukaszuk, Tomasz Chady, Marek J. Żwir and Krzysztof Gorący
Materials 2024, 17(1), 262; https://doi.org/10.3390/ma17010262 - 4 Jan 2024
Viewed by 1575
Abstract
This paper presents the results of inspecting tensile stress-loaded GFRP (glass fiber-reinforced polymer) samples using the Magnetic Recording Method (MRM). The MRM can be utilized solely to examine ferromagnetic materials. The modification was proposed in order to examine nonmagnetic composites. Ferromagnetic strips made [...] Read more.
This paper presents the results of inspecting tensile stress-loaded GFRP (glass fiber-reinforced polymer) samples using the Magnetic Recording Method (MRM). The MRM can be utilized solely to examine ferromagnetic materials. The modification was proposed in order to examine nonmagnetic composites. Ferromagnetic strips made of low-carbon steel DC01 were bonded to the surface using an adhesive composed of epoxy resin with the addition of triethylenetetramine. The modified method’s feasibility was tested on six samples made of GFRP. The research procedure consisted of three steps. In the first step, a metal strip is glued at the top surface of each sample, and an array of 100 cylindrical permanent magnets is used to record a sinusoidal magnetic pattern on the strip. The initial residual magnetization is measured in the second step, and the samples are subjected to static stress. In the third step, the residual magnetization is measured one more time. Ultimately, the measurement results from the second and third steps are compared. Generally, the applied stress causes changes in the amplitude and frequency of the sinusoidal magnetization pattern. In the case of GFRP, the frequency changes have not been used for evaluation due to minimal variations. The statistical parameters (mean, median, max, and mode) of the RMS (root mean square) value of the sinusoidal pattern were calculated and analyzed. The analysis demonstrates that the modified method is suitable for providing unequivocal and exact information on the load applied to a nonmagnetic composite material. For the presented results, the applied load can be assessed unambiguously for the samples elongated up to 0.6%. Full article
(This article belongs to the Special Issue Advances in Nondestructive Evaluation of Materials and Structures)
Show Figures

Figure 1

18 pages, 4440 KiB  
Article
Mechanical Properties of Epoxy Compounds Based on Unmodified Epoxy Resin Modified with Boric Acid as an Antiseptic
by Anna Rudawska
Materials 2024, 17(1), 259; https://doi.org/10.3390/ma17010259 - 3 Jan 2024
Cited by 5 | Viewed by 2251
Abstract
The objective of this study was to compare the selected mechanical properties of epoxy compounds based on an unmodified epoxy resin with those containing an antiseptic as a modifying agent. Experiments were carried out on twelve epoxy compounds made of an epoxy resin [...] Read more.
The objective of this study was to compare the selected mechanical properties of epoxy compounds based on an unmodified epoxy resin with those containing an antiseptic as a modifying agent. Experiments were carried out on twelve epoxy compounds made of an epoxy resin based on bisphenol A (BPA) with a basic epoxide amount of 0.48–0.51 mol/100 g. Three curing agents were used: one polyamide (a polyaminoamide curing agent) and two amines (one was an adduct of aliphatic amine and aromatic glycidyl ether, and the other was an adduct of cycloaliphatic amine). The epoxy compounds were modified by adding an antiseptic in the form of powdered boric acid (H3BO3) in three amounts: 0.5 g, 1.0 g, and 1.5 g. The cured modified and unmodified epoxy compounds were subjected to compressive strength testing and microscopic examination. The experimental results showed that the epoxy compounds containing adduct of aliphatic amine (triethylenetetramine) and aromatic glycidyl ether as the amine curing agent, i.e., E5/ET/100:18, had the highest compressive strength out of all the tested epoxy compounds, with the highest value of 119 MPa obtained for the epoxy compound modified by the addition of 1.0 g boric acid. The epoxy compounds modified with boric acid acquired antiseptic properties and, for most cases, exhibited a higher compressive strength than the unmodified epoxy compounds (not lower than that specified by the manufacturer for unmodified epoxy compounds). Full article
(This article belongs to the Special Issue Modification, Properties and Application of Epoxy Adhesives/Materials)
Show Figures

Figure 1

14 pages, 1623 KiB  
Article
Modification of Epoxides with Metallic Fillers—Mechanical Properties after Ageing in Aqueous Environments
by Anna Rudawska, Jakub Szabelski, Mariaenrica Frigione and Valentina Brunella
Materials 2023, 16(22), 7181; https://doi.org/10.3390/ma16227181 - 16 Nov 2023
Cited by 2 | Viewed by 1416
Abstract
The aim of this research was a comparative analysis of selected mechanical properties of epoxy compounds that were modified with metallic fillers and aged in aqueous environments. The tested epoxy compounds consisted of three components: styrene modified epoxy resin based on Bisphenol A, [...] Read more.
The aim of this research was a comparative analysis of selected mechanical properties of epoxy compounds that were modified with metallic fillers and aged in aqueous environments. The tested epoxy compounds consisted of three components: styrene modified epoxy resin based on Bisphenol A, triethylenetetramine curing agent (resin/curing agent ratio of 100:10) and two types of metallic fillers in the form of particles: aluminum alloy (EN AW-2024–AlCu4Mg1) and tin-phosphor bronze (CuSn10P). Samples were subjected to ageing in 4 water environments: low-, medium- and high-mineralized natural water and in a sugar-containing solution for 1, 2 and 3 months. The epoxy samples were subjected to compressive strength tests in accordance with the ISO 604:2002 standard. It was observed that, among others, the compositions seasoned in low-mineralized water usually achieved the highest average compressive strength. As for filler type, using the bronze filler (CuSn10P) usually achieved the highest average compressive strength results. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Engineering Materials)
Show Figures

Figure 1

Back to TopTop