Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = tribo-behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2596 KB  
Article
Self-Energy-Harvesting Pacemakers: An Example of Symbiotic Synthetic Biology
by Kuntal Kumar Das, Ashutosh Kumar Dubey, Bikramjit Basu and Yogendra Narain Srivastava
SynBio 2025, 3(4), 15; https://doi.org/10.3390/synbio3040015 - 4 Oct 2025
Viewed by 139
Abstract
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are [...] Read more.
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are permanently attached to a body, although non-living or genetically unaltered, and closely mimic biological behavior by harvesting biomechanical energy and providing functions, such as autonomous heart pacing. They form active interfaces with human tissues and operate as hybrid systems, similar to synthetic organs. In this context, the present paper first presents a short summary of previous in vivo studies on piezo-electric composites in relation to their deployment as battery-less pacemakers. This is then followed by a summary of a recent theoretical work using a damped harmonic resonance model, which is being extended to mimic the functioning of such devices. We then extend the theoretical study further to include new solutions and obtain a sum rule for the power output per cycle in such systems. In closing, we present our quantitative understanding to explore the modulation of the quantum vacuum energy (Casimir effect) by periodic body movements to power pacemakers. Taken together, the present work provides the scientific foundation of the next generation bio-integrated intelligent implementation. Full article
Show Figures

Figure 1

20 pages, 21513 KB  
Article
Tribological Properties and Wear Mechanisms of Carbide-Bonded Graphene Coating on Silicon Substrate
by Xiaomeng Zhu, Xiaojun Liu, Lihua Li, Kun Liu and Jian Zhou
C 2025, 11(3), 72; https://doi.org/10.3390/c11030072 - 15 Sep 2025
Viewed by 534
Abstract
Carbide-bonded graphene (CBG) coating, with its unique 3D cross-linked network structure, shows significant potential for protecting silicon substrates. However, a comprehensive understanding of its macroscale tribological properties remains lacking. This study investigated the macroscale friction and wear behaviors of CBG-coated silicon wafers using [...] Read more.
Carbide-bonded graphene (CBG) coating, with its unique 3D cross-linked network structure, shows significant potential for protecting silicon substrates. However, a comprehensive understanding of its macroscale tribological properties remains lacking. This study investigated the macroscale friction and wear behaviors of CBG-coated silicon wafers using reciprocating sliding tests against steel balls under various loads and sliding cycles. The CBG coating exhibited excellent friction-reduction and anti-wear performance, reducing the steady friction coefficient from 0.80 to 0.17 and wear rate by an order of magnitude compared to those of bare silicon. Higher loads slightly decreased both friction coefficients and wear rates, primarily due to the formation of denser tribofilms and transfer layers. Re-running experiments revealed three distinct wear stages—adhesive, abrasive, and accelerated substrate wear—driven by the evolution of tribofilms, transfer layers, and unabraded flat areas. Furthermore, comparative experiments confirmed that these “unabraded flat areas” on the wear track play a critical role in sustaining low friction and prolonging coating life. The findings identify CBG as a robust solid lubricant for high-contact-pressure applications and emphasize the influence of tribo-layer dynamics and wear debris behavior on coating performance. Full article
(This article belongs to the Topic Application of Graphene-Based Materials, 2nd Edition)
Show Figures

Graphical abstract

27 pages, 13580 KB  
Article
Understanding the Lubrication and Wear Behavior of Agricultural Components Under Rice Interaction: A Multi-Scale Modeling Study
by Honglei Zhang, Zhong Tang, Xinyang Gu and Biao Zhang
Lubricants 2025, 13(9), 388; https://doi.org/10.3390/lubricants13090388 - 30 Aug 2025
Viewed by 499
Abstract
This study investigates the tribological behavior and wear mechanisms of Q235 steel components subjected to abrasive interaction with rice, a critical challenge in agricultural machinery performance and longevity. We employed a comprehensive multi-scale framework, integrating bench-top tribological testing, advanced Discrete Element Method (DEM) [...] Read more.
This study investigates the tribological behavior and wear mechanisms of Q235 steel components subjected to abrasive interaction with rice, a critical challenge in agricultural machinery performance and longevity. We employed a comprehensive multi-scale framework, integrating bench-top tribological testing, advanced Discrete Element Method (DEM) coupled with a wear model (DEM-Wear), and detailed surface characterization. Bench tests revealed a composite wear mechanism for the rice–steel tribo-pair, transitioning from mechanical polishing under mild conditions to significant soft abrasive micro-cutting driven by the silica particles inherent in rice during high-load, high-velocity interactions. This elucidated fundamental friction and wear phenomena at the micro-level. A novel, calibrated DEM-Wear model was developed and validated, accurately predicting macroscopic wear “hot spots” on full-scale combine harvester header platforms with excellent geometric similarity to real-world wear profiles. This provides a robust predictive tool for component lifespan and performance optimization. Furthermore, fractal analysis was successfully applied to quantitatively characterize worn surfaces, establishing fractal dimension (Ds) as a sensitive metric for wear severity, increasing from ~2.17 on unworn surfaces to ~2.3156 in severely worn regions, directly correlating with the dominant wear mechanisms. This study offers a valuable computational approach for understanding and mitigating wear in tribosystems involving complex particulate matter, contributing to improved machinery reliability and reduced operational costs. Full article
Show Figures

Figure 1

21 pages, 4542 KB  
Article
Tribo-Dynamics and Fretting Behavior of Connecting Rod Big-End Bearings in Internal Combustion Engines
by Yinhui Che, Meng Zhang, Qiang Chen, Hebin Ren, Nan Li, Shuo Liu and Yi Cui
Lubricants 2025, 13(9), 376; https://doi.org/10.3390/lubricants13090376 - 23 Aug 2025
Viewed by 575
Abstract
With the increased power density of internal combustion engines (ICE) and growing demands for lightweight design, the connecting rod big-end bearings are subjected to significant alternating loads. Consequently, the interference–fit interfaces become susceptible to fretting damage, which can markedly shorten engine service life [...] Read more.
With the increased power density of internal combustion engines (ICE) and growing demands for lightweight design, the connecting rod big-end bearings are subjected to significant alternating loads. Consequently, the interference–fit interfaces become susceptible to fretting damage, which can markedly shorten engine service life and impair reliability. In the present study, the effects of the big end manufacturing process, bolt preload, and bearing bush interference fit are considered to develop a coupled lubrication–dynamic model of the connecting rod big-end bearing. This model investigates the fretting damage issue in the bearing bush of a marine diesel engine’s connecting rod big end. The results indicate that the relatively low stiffness of the big end is the primary cause of bearing bush fretting damage. Interference fit markedly affects fretting wear on the bush back, whereas the influence of bolt preload is secondary; nevertheless, a decrease in either parameter enlarges the fretting distance. Based on these findings, an optimized design scheme is proposed. Full article
Show Figures

Figure 1

26 pages, 8019 KB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Viewed by 602
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

22 pages, 4262 KB  
Article
Tribo-Dynamics of Dual-Star Planetary Gear Systems: Modeling, Analysis, and Experiments
by Jiayu Zheng, Yonggang Xiang, Changzhao Liu, Yixin Wang and Zonghai Mou
Sensors 2025, 25(15), 4709; https://doi.org/10.3390/s25154709 - 30 Jul 2025
Viewed by 492
Abstract
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine [...] Read more.
To address the unclear coupling mechanism between thermal elastohydrodynamic lubrication (TEHL) and dynamic behaviors in planetary gear systems, a novel tribo-dynamic model for dual-star planetary gears considering TEHL effects is proposed. In this model, a TEHL surrogate model is first established to determine the oil film thickness and sliding friction force along the tooth meshing line. Subsequently, the dynamic model of the dual-star planetary gear transmission system is developed through coordinate transformations of the dual-star gear train. Finally, by integrating lubrication effects into both time-varying mesh stiffness and time-varying backlash, a tribo-dynamic model for the dual-star planetary gear transmission system is established. The study reveals that the lubricant film thickness is positively correlated with relative sliding velocity but negatively correlated with unit line load. Under high-speed conditions, a thickened oil film induces premature meshing contact, leading to meshing impacts. In contrast, under high-torque conditions, tooth deformation dominates meshing force fluctuations while lubrication influence diminishes. By establishing a test bench for the planetary gear transmission system, the obtained simulation conclusions are verified. This research provides theoretical and experimental support for the design of high-reliability planetary gear systems. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

17 pages, 11614 KB  
Article
Influence of Si Content on the Microstructure and Properties of Hydrogenated Amorphous Carbon Films Deposited by Magnetron Sputtering Technique
by Zhen Yu, Jiale Shang, Qingye Wang, Haoxiang Zheng, Haijuan Mei, Dongcai Zhao, Xingguang Liu, Jicheng Ding and Jun Zheng
Coatings 2025, 15(7), 793; https://doi.org/10.3390/coatings15070793 - 6 Jul 2025
Viewed by 620
Abstract
Hydrogenated amorphous carbon (a-C:H) films are widely valued for their excellent mechanical strength and low friction, but their performance significantly degrades at elevated temperatures, limiting practical applications in aerospace environments. In this work, we aimed to enhance the high-temperature tribological behavior of a-C:H [...] Read more.
Hydrogenated amorphous carbon (a-C:H) films are widely valued for their excellent mechanical strength and low friction, but their performance significantly degrades at elevated temperatures, limiting practical applications in aerospace environments. In this work, we aimed to enhance the high-temperature tribological behavior of a-C:H films through controlled silicon (Si) doping. A series of a-C:H:Si films with varying Si contents were fabricated via direct current magnetron sputtering, and their microstructure, mechanical properties, and friction behavior were systematically evaluated from room temperature up to 400 °C. Results show that moderate Si doping (8.3 at.%) substantially enhances hardness and wear resistance, while enabling ultralow friction (as low as 0.0034) at 400 °C. This superior performance is attributed to the synergistic effects of transfer layer formation, preferential Si oxidation, and tribo-induced graphitization. This study provides new insights into the high-temperature lubrication mechanisms of Si-doped a-C:H films and demonstrates the critical role of Si content optimization, highlighting a viable strategy for extending the thermal stability and lifespan of solid-lubricating films. Full article
(This article belongs to the Special Issue Sputtering Deposition for Advanced Materials and Interfaces)
Show Figures

Figure 1

12 pages, 4266 KB  
Article
Influence of 3D-Printed PEEK on the Tribo-Corrosion Performance of Ti6Al4V Biomedical Alloy
by Dominik Jonas Federl and Abbas Al-Rjoub
Lubricants 2025, 13(7), 283; https://doi.org/10.3390/lubricants13070283 - 25 Jun 2025
Viewed by 762
Abstract
This study investigates the tribo-corrosion behavior of Ti6Al4V biomedical alloy, when sliding against fused filament fabrication (FFF) 3D-printed polyether ether ketone (PEEK) pins in a phosphate-buffered saline (PBS) solution. This research aims to evaluate wear mechanisms and electrochemical responses under simulated physiological conditions, [...] Read more.
This study investigates the tribo-corrosion behavior of Ti6Al4V biomedical alloy, when sliding against fused filament fabrication (FFF) 3D-printed polyether ether ketone (PEEK) pins in a phosphate-buffered saline (PBS) solution. This research aims to evaluate wear mechanisms and electrochemical responses under simulated physiological conditions, providing critical insights for enhancing the durability and performance of biomedical implants. Potentiodynamic polarization tests demonstrate that the Ti6Al4V alloy possesses excellent corrosion resistance, which is further enhanced under sliding conditions compared to the test without sliding. When tested against 3D-printed PEEK, the alloy exhibits a mixed wear mechanism characterized by both abrasive and adhesive wear. Open-circuit potential (OCP) measurement of Ti6Al4V demonstrates the alloy’s superior electrochemical stability, indicating high corrosion resistance and a favorable coefficient of friction. These findings highlight the potential of 3D-printed PEEK as a viable alternative for biomedical applications, offering rapid patient-specific prototyping, tunable mechanical properties, and improved surface adaptability compared to conventional materials. Full article
(This article belongs to the Special Issue Tribology of Polymeric Composites)
Show Figures

Figure 1

18 pages, 9592 KB  
Article
Tribo-Mechanical Characteristics of Modified Cu-Cr-Zr Resistance Spot Welding Electrode with Nickel
by Ahmad Mostafa, Reham Alhdayat and Rasheed Abdullah
Crystals 2025, 15(6), 560; https://doi.org/10.3390/cryst15060560 - 13 Jun 2025
Viewed by 2997
Abstract
This study investigates the tribo-mechanical properties of a modified Cu-Cr-Zr alloy with nickel addition, aimed at enhancing its suitability as a resistance spot welding (RSW) electrode material. Two alloy compositions, designated as Sample A (Cu-0.871%Cr-0.156%Zr) and Sample B (modified with 8.94% Ni), were [...] Read more.
This study investigates the tribo-mechanical properties of a modified Cu-Cr-Zr alloy with nickel addition, aimed at enhancing its suitability as a resistance spot welding (RSW) electrode material. Two alloy compositions, designated as Sample A (Cu-0.871%Cr-0.156%Zr) and Sample B (modified with 8.94% Ni), were prepared. Microstructural examination revealed a coarse, mixed equiaxed–columnar grain structure in Sample A, while Sample B exhibited a refined dendritic morphology of about 50 μm PDAS, due to nickel-induced solute partitioning, improving microhardness from 72.763 HV to 83.981 HV. The wear behavior was evaluated using a pin-on-disc tribometer with a full factorial design, assessing the effects of rotational speed, load, and time on mass loss and surface roughness. Sample A exhibited increased mass loss and roughness with higher loads and speeds, indicating severe wear. In contrast, Sample B showed reduced mass loss and roughness at higher loads, suggesting a polishing effect from plastic deformation. Design of experiments analysis identified load as the dominant factor for mass loss in Sample A, with speed primarily affecting roughness, while in Sample B, load negatively influenced both responses, with speed–time interactions being significant. These findings highlight the nickel-modified alloy’s superior wear resistance and hardness, making it a promising candidate for RSW electrodes in high-production environments. Full article
(This article belongs to the Special Issue Advances in Metal Matrix Composites (Second Edition))
Show Figures

Figure 1

18 pages, 8696 KB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 615
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

15 pages, 53267 KB  
Communication
Tribological Behavior of the Laser Micro-Textured PEEK-1040 Steel Friction Pairs
by Risheng Long, Haiming Wang, Jincheng Hou, Qingyu Shang, Yimin Zhang, Lin Zong and Zhijun Zhang
Polymers 2025, 17(5), 645; https://doi.org/10.3390/polym17050645 - 27 Feb 2025
Viewed by 886
Abstract
To compare them with PTFE-40# steel tribo-pairs, the tribological properties of textured PEEK-40# (AISI 1040) steel friction pairs were researched under full-film lubrication conditions by manufacturing micro-dimples with different dimensions on the contact surfaces of 1040 steel discs using laser surface texturing (LST). [...] Read more.
To compare them with PTFE-40# steel tribo-pairs, the tribological properties of textured PEEK-40# (AISI 1040) steel friction pairs were researched under full-film lubrication conditions by manufacturing micro-dimples with different dimensions on the contact surfaces of 1040 steel discs using laser surface texturing (LST). After repeated tribological tests, the coefficients of friction (COFs), wear losses, and wear morphologies of the PEEK-1040 steel friction pairs were measured and analyzed. The results show that micro-dimples do not significantly reduce the average COFs of PEEK-1040 steel friction pairs when lubricated with a sufficient amount of hydraulic oil, but they do reduce the wear losses of most groups. When the dimple diameter was 250 μm, the dimple depth was 5 μm, the area ratio was 6.6%, and the mass loss of the 1040 steel disc was reduced by 90% compared to the smooth reference. In comparison to the behavior of the PTFE-1040 steel tribo-pairs, PEEK-1040 steel friction pairs can provide better tribological performance, whether smooth or dimple-textured. This study offers important insights for the design of seals in machinery. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 6696 KB  
Article
Tribo-Dynamic Behavior of Double-Row Cylindrical Roller Bearings Under Raceway Defects and Cage Fracture
by Longqing Fan, Xingwang Zhao, Wei Hao, Chaoyang Miao, Xiuyuan Hu and Congcong Fang
Lubricants 2025, 13(2), 80; https://doi.org/10.3390/lubricants13020080 - 11 Feb 2025
Cited by 2 | Viewed by 803
Abstract
High-quality data samples are essential for the early detection of bearing failures and the analysis of bearing behavior. The accurate simulation of bearing fault conditions can provide valuable insights into understanding failure mechanisms. This paper establishes a new numerical simulation method for double-row [...] Read more.
High-quality data samples are essential for the early detection of bearing failures and the analysis of bearing behavior. The accurate simulation of bearing fault conditions can provide valuable insights into understanding failure mechanisms. This paper establishes a new numerical simulation method for double-row cylindrical roller bearing (DCRB) faults based on the augmented Lagrange dynamics method, overcoming the limitations of previous models by incorporating fault conditions related to cage fracture. This method accounts for the dynamic behavior of the rollers during the motion cycle and their interactions with other DCRB components. By comparing the characteristic frequencies of the fault components, the model not only replicates the dynamic behavior of faulty DCRBs more accurately but also offers a deeper understanding of fault-induced dynamics. This advancement provides a more comprehensive and realistic tool for bearing fault analysis. Full article
Show Figures

Figure 1

20 pages, 18907 KB  
Article
From Experimentation to Optimization: Surface Micro-Texturing for Low-Friction and Durable PTFE–Steel Interfaces Under Full Film Lubrication
by Risheng Long, Jincheng Hou, Yimin Zhang, Qingyu Shang, Chi Ma, Florian Pape and Max Marian
Polymers 2024, 16(24), 3505; https://doi.org/10.3390/polym16243505 - 17 Dec 2024
Cited by 4 | Viewed by 1409
Abstract
To enhance the sliding tribological performance between PTFE and 40#steel (AISI 1040) under full film lubrication conditions, laser surface texturing (LST) technology was employed to prepare micro-dimples on the contact surfaces of 40# steel discs. The Box–Behnken design response surface methodology (BBD-RSM) was [...] Read more.
To enhance the sliding tribological performance between PTFE and 40#steel (AISI 1040) under full film lubrication conditions, laser surface texturing (LST) technology was employed to prepare micro-dimples on the contact surfaces of 40# steel discs. The Box–Behnken design response surface methodology (BBD-RSM) was applied to optimize the micro-dimple parameters. Coefficients of friction (COFs), wear losses and worn contact surfaces of the PTFE–40# steel tribo-pairs were researched through repeated wear tests, as lubricated with sufficient anti-wear hydraulic oil. The influencing mechanism of micro-dimples on the tribological behavior of tribo-pairs was also discussed. The results proved that micro-dimples can significantly improve the tribological properties of PTFE–40#steel tribo-pairs. The deviation between the final obtained average COF and the prediction by the BBD-RSM regression model was only 0.0023. Following optimization, the average COF of the PTFE–40# steel tribo-pair was reduced by 39.34% compared to the smooth reference. The wear losses of the PTFE ring and 40# steel disc decreased by 91.8% and 30.3%, respectively. This study would offer a valuable reference for the optimal design of key seals used in hydraulic cylinders. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

34 pages, 4906 KB  
Review
Progress in Aluminum-Based Composites Prepared by Stir Casting: Mechanical and Tribological Properties for Automotive, Aerospace, and Military Applications
by Sachin Kumar Sharma, Sandra Gajević, Lokesh Kumar Sharma, Reshab Pradhan, Yogesh Sharma, Ivan Miletić and Blaža Stojanović
Lubricants 2024, 12(12), 421; https://doi.org/10.3390/lubricants12120421 - 29 Nov 2024
Cited by 30 | Viewed by 4980
Abstract
Manufacturing sectors, including automotive, aerospace, military, and aviation, are paying close attention to the increasing need for composite materials with better characteristics. Composite materials are significantly used in industry owing to their high-quality, low-cost materials with outstanding characteristics and low weight. Hence, aluminum-based [...] Read more.
Manufacturing sectors, including automotive, aerospace, military, and aviation, are paying close attention to the increasing need for composite materials with better characteristics. Composite materials are significantly used in industry owing to their high-quality, low-cost materials with outstanding characteristics and low weight. Hence, aluminum-based materials are preferred over other traditional materials owing to their low cost, great wear resistance, and excellent strength-to-weight ratio. However, the mechanical characteristics and wear behavior of the Al-based materials can be further improved by using suitable reinforcing agents. The various reinforcing agents, including whiskers, particulates, continuous fibers, and discontinuous fibers, are widely used owing to enhanced tribological and mechanical behavior comparable to bare Al alloy. Further, the advancement in the overall characteristics of the composite material can be obtained by optimizing the process parameters of the processing approach and the amount and types of reinforcement. Amongst the various available techniques, stir casting is the most suitable technique for the manufacturing of composite material. The amount of reinforcement controls the porosity (%) of the composite, while the types of reinforcement identify the compatibility with Al alloy through improvement in the overall characteristics of the composites. Fly ash, SiC, TiC, Al2O3, TiO2, B4C, etc. are the most commonly used reinforcing agents in AMMCs (aluminum metal matrix composites). The current research emphasizes how different forms of reinforcement affect AMMCs and evaluates reinforcement influence on the mechanical and tribo characteristics of composite material. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

23 pages, 77065 KB  
Article
Effects of Temperature and Frequency on Fretting Wear Behavior of 316L Austenitic Stainless Steel Before and After Plasma Carburization
by Lu Sun, Yuandong Li, Chi Cao, Guangli Bi, Xiaomei Luo and Jin Qiu
Coatings 2024, 14(12), 1496; https://doi.org/10.3390/coatings14121496 - 28 Nov 2024
Cited by 4 | Viewed by 1417
Abstract
Double-glow low-temperature plasma carburization (LTPC) was utilized to prepare a carburized layer (PC) on a 316L austenitic stainless steel (ASS) surface, and the fretting wear behavior was evaluated at various temperatures and frequencies. The friction coefficient curves could be divided into running-in, wear, [...] Read more.
Double-glow low-temperature plasma carburization (LTPC) was utilized to prepare a carburized layer (PC) on a 316L austenitic stainless steel (ASS) surface, and the fretting wear behavior was evaluated at various temperatures and frequencies. The friction coefficient curves could be divided into running-in, wear, and stable stages. With increasing temperature, the wear mechanism of 316L ASS changed from adhesive and abrasive wear to adhesive wear, accompanied by plastic deformation, fatigue peeling, and oxidative wear. The carburized layer had an adhesive wear, plastic deformation, fatigue peeling, and oxidative wear mechanism. As the frequency increased, 316L ASS showed an adhesive wear, fatigue peeling, and oxidative wear mechanism. With increasing frequency, the wear mechanism of PC changed from abrasive and adhesive wear to abrasive wear, adhesive wear, and fatigue peeling, accompanied by oxidative wear. The carburized layer generally showed lower frictional energy dissipation coefficients and wear rates than 316L ASS. This work demonstrated that plasma carburization could improve the fretting wear stability and resistance of 316L ASS. The rise in frictional temperature, the tribo-chemical reaction time, and the evolution of debris collectively influenced the wear mechanisms and wear morphologies of 316L ASS before and after plasma carburization. This could provide theoretical support for the fretting damage behaviors of ball valves under severe service conditions. Full article
Show Figures

Figure 1

Back to TopTop