Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = triaxial creep test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7032 KiB  
Article
Influence of Moisture on the Shakedown Behavior of Fine Soils for Sustainable Railway Subballast Layers
by William Wilson dos Santos, Gleyciane Almeida Serra, Lisley Madeira Coelho, Sergio Neves Monteiro, Gabriel de Carvalho Nascimento and Antônio Carlos Rodrigues Guimarães
Infrastructures 2025, 10(6), 149; https://doi.org/10.3390/infrastructures10060149 - 18 Jun 2025
Viewed by 357
Abstract
This study investigates the influence of moisture on the mechanical behavior of fine soil mixtures from the São Luís region, applied as subballast layers in railway track structures. Two samples were analyzed: a non-lateritic sandy soil (NA’, AM03) and a lateritic clayey soil [...] Read more.
This study investigates the influence of moisture on the mechanical behavior of fine soil mixtures from the São Luís region, applied as subballast layers in railway track structures. Two samples were analyzed: a non-lateritic sandy soil (NA’, AM03) and a lateritic clayey soil (LG’, AM09). The research included physical and chemical characterization tests, as well as repeated load triaxial tests to determine the resilient modulus and shakedown limits, complemented by numerical simulations using the SysTrain 2.0 software. The samples showed average resilient modulus values of 577 MPa and 638 MPa, respectively. Tests were conducted under optimum moisture content and under moisture 1% above the optimum, induced by capillary rise in compacted samples. The results indicated that under 1% above optimum moisture, the shakedown limits were reduced by up to 50% for AM03 and 25% for AM09, demonstrating greater stability for the lateritic soil. In addition, it was observed that as stress ratios increased, the shakedown limits for both moisture conditions tended to converge. Numerical simulations confirmed the adverse influence of increased moisture on the occurrence of shakedown in both samples. For AM03, the simulations revealed progressive failure under elevated moisture, indicating a more severe stress redistribution within the subballast layer. In contrast, AM09 remained within the shakedown regime under both conditions, although it exhibited higher values of S1/S1max under moisture above optimum, suggesting a greater tendency toward plastic creep. These findings highlight the critical importance of moisture control for the sustainable performance of railway substructures. This study contributes to understanding environmental vulnerability in transportation infrastructure and supports the development of more resilient and sustainable railway systems. Full article
Show Figures

Figure 1

18 pages, 4203 KiB  
Article
Long-Term Anisotropic Mechanical Characterization of Layered Shale—An Experimental Study for the BaoKang Tunnel of the Zhengwan Railway, China
by Jun Zhao, Changming Li and Wei Huang
Processes 2025, 13(6), 1900; https://doi.org/10.3390/pr13061900 - 16 Jun 2025
Viewed by 436
Abstract
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and [...] Read more.
With the further implementation and development of the Western Development Strategy, studying the mechanical behavior and deformation characteristics of deep-buried tunnels in layered hard rock under high ground stress conditions holds considerable engineering significance. To study the mechanical properties and long-term deformation and failure characteristics of different bedding stratified rocks, this research employed an MTS815 electro-hydraulic servo rock testing system and a French TOP rheometer. Triaxial compression tests, rheological property tests, and long-term cyclic and unloading tests were conducted on shale samples under varying confining pressures and bedding angles. The results indicate that (1) under triaxial compression, shale demonstrates pronounced anisotropic behavior. When the confining pressure is constant, the peak strength of the rock sample exhibits a “U”-shaped variation with the bedding angle (its minimum value at 60°). For a fixed bedding angle, the peak strength of the rock sample progressively increases as the confining pressure rises. (2) The mode of shale failure varies with the angle: at 0°, shale exhibits conjugate shear failure; at 30°, shear slip failure along the bedding is controlled by the bedding weak plane; at 60° and 90°, failure occurs through the bedding. (3) During the creep process of layered shale, brittle failure characteristics are evident, with microcracks within the sample gradually failing at stress concentration points. The decelerated and stable creep stages are prominent; while the accelerated creep stage is less noticeable, the creep rate increases with increasing stress level. (4) Under low confining pressure, the peak strength during cyclic loading and unloading creep processes is lower than that of conventional triaxial tests when the bedding plane dip angles are 0° and 30°, which is the opposite at 60° and 90°. (5) In the cyclic loading and unloading process, Poisson’s ratio gradually increases, whereas the elastic modulus, shear modulus, and bulk modulus gradually decrease. Full article
Show Figures

Figure 1

15 pages, 2651 KiB  
Article
Creep Behavior and Quantitative Prediction of Marine Soft Clay Based on a Nonlinear Elasto-Plastic–Viscous Element Assembly Model
by Yajun Liu, Ning Fang, Yang Zheng, Ke Wu, Rong Chen, Haijun Lu and Vu Quoc Vuong
J. Mar. Sci. Eng. 2025, 13(6), 1142; https://doi.org/10.3390/jmse13061142 - 8 Jun 2025
Viewed by 438
Abstract
Marine soft clay is characterized by a high water content and low strength, exhibiting pronounced creep deformation under long-term loading that threatens the serviceability and durability of coastal infrastructure. Accordingly, this study develops a creep constitutive model that combines elastic, plastic, and viscous [...] Read more.
Marine soft clay is characterized by a high water content and low strength, exhibiting pronounced creep deformation under long-term loading that threatens the serviceability and durability of coastal infrastructure. Accordingly, this study develops a creep constitutive model that combines elastic, plastic, and viscous effects and quantitatively evaluates time-dependent deformation under varying water contents and stress levels to provide reliable prediction tools for tunnel, excavation, and pile-foundation design. Cyclic creep tests were carried out on reconstituted marine soft clay with water contents of 40–60% and stress ratios of 0.4–1.2 using a pneumatic, fully digital, closed-loop triaxial apparatus. A “nonlinear spring–Bingham slider–dual viscous dashpot in parallel with a standard Kelvin dashpot” element assembly was proposed, and the complete stress–strain relationship was derived. Experimental data were fitted with Python to generate a creep-strain polynomial and verify the model accuracy. The predicted–measured creep difference remained within 10%, and the surface-fit coefficient of determination reached R2 = 0.97, enabling rapid estimation of deformation for the given stress and time conditions. The findings offer an effective method for the precise long-term settlement prediction of marine soft clay and significantly enhance the reliability of the deformation assessments in coastal civil-engineering projects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
A Study on the Creep Characteristics of Gassy Clay Mixed with Silt
by Aiwu Yang, Tianli Liu, Hao Zhang and Boqu Zhang
Appl. Sci. 2025, 15(9), 5106; https://doi.org/10.3390/app15095106 - 4 May 2025
Viewed by 336
Abstract
As the economy evolves, there has been an increasing interest in exploring oceanic resources. However, the complex marine environment poses several geological challenges for offshore engineering endeavors. The presence of gassy soil significantly influences the deformation properties and integrity of the soil, significantly [...] Read more.
As the economy evolves, there has been an increasing interest in exploring oceanic resources. However, the complex marine environment poses several geological challenges for offshore engineering endeavors. The presence of gassy soil significantly influences the deformation properties and integrity of the soil, significantly impacting offshore engineering construction. Triaxial shear tests and creep tests were conducted on gassy clay with silt content, prepared using the laboratory “zeolite method”, to analyze its shear deformation characteristics and long-term resilience. We proposed a prediction model for calculating the long-term resilience of silt-containing clay, accounting for confining pressure and gas content, and verified its efficacy through experimentation. Our findings reveal the following: The stress–strain relationship curve of silt-containing gassy clay is a typical strain hardening curve. The greater the confining pressure or the smaller the gas content, the greater the stress under the same strain and the greater the yield stress; when the gas content is the same, the greater the confining pressure, the greater the long-term strength of the soil; and when the confining pressure is the same, the smaller the gas content, the greater the long-term strength of the soil. The research results can provide theoretical reference for actual complex engineering. Full article
Show Figures

Figure 1

17 pages, 3080 KiB  
Article
Creep Deformation Characteristics and Damage Unified Creep Constitutive Model of Undisturbed Structural Loess Under Different Consolidation Conditions
by Yuan Yuan, Hui-Mei Zhang, Zhao-Yuan Gou and Pan Wang
Buildings 2025, 15(7), 1199; https://doi.org/10.3390/buildings15071199 - 6 Apr 2025
Viewed by 391
Abstract
In the loess-filling project, the original structural loess under the filling will produce creep deformation under the isometric consolidation stress state, affecting the upper building’s safe construction and later operation. Therefore, studying the creep deformation characteristics of structural loess under different consolidation coefficients [...] Read more.
In the loess-filling project, the original structural loess under the filling will produce creep deformation under the isometric consolidation stress state, affecting the upper building’s safe construction and later operation. Therefore, studying the creep deformation characteristics of structural loess under different consolidation coefficients is significant. In this paper, the following results are obtained by combining test and theoretical analysis. In view of the structural loess under the filling, the triaxial creep test of undisturbed loess under different isometric consolidation coefficients, confining pressures and shear stress levels was completed, and the creep deformation law of structural loess was obtained. The creep characteristics of undisturbed loess are found to be diversified under different coefficients, confining pressures, and shear stresses, including initial instantaneous deformation, subsequent creep attenuation deformation, and final stable creep deformation. The damage creep constitutive model of undisturbed loess is established, taking the binary medium model as the framework, the cementation element adopts the Nishihara model, the friction element introduces the overstress model and considers the isometric consolidation effect, and the damage creep constitutive model of undisturbed loess is established. The theoretical model is obtained by determining the relevant parameters of the constitutive model. The theoretical curve is compared with the experimental curve and shows that the damage creep model established in this paper can better reflect the creep of structural loess under isometric consolidation conditions well. The research results can provide systematic theoretical support and an experimental basis for the deformation problems involved in the filling project in the loess area. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 12983 KiB  
Article
Study on the Macro-/Micrometric Characteristics and Mechanical Properties of Clayey Sandy Dredged Fill in the Guangdong Area
by Qiunan Chen, Xiaodi Xu, Ao Zeng, Yunyang Yan, Yan Feng, Kun Long and Chenna Qi
Materials 2024, 17(23), 6018; https://doi.org/10.3390/ma17236018 - 9 Dec 2024
Cited by 1 | Viewed by 722
Abstract
The study of dredged fill in Guangdong (GD), China, is of great significance for reclamation projects. Currently, there are relatively few studies on dredged fill in Guangdong, and there are many differences in the engineering characteristics of dredged fill foundations formed through land [...] Read more.
The study of dredged fill in Guangdong (GD), China, is of great significance for reclamation projects. Currently, there are relatively few studies on dredged fill in Guangdong, and there are many differences in the engineering characteristics of dredged fill foundations formed through land reclamation and natural foundations. In order to have a more comprehensive understanding of the physico-mechanical properties of blowing fill in the coastal area of GD and to understand the effect of its long-term creep row on the long-term settlement and deformation of buildings, the material properties, microstructure, elemental composition, triaxial shear properties, and triaxial creep properties of dredged fill in Guangdong were studied and analyzed through indoor geotechnical tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and conventional triaxial shear tests and triaxial creep tests. The test results showed that the Guangdong dredged fill is characterized by a high water content, high pore ratio, and high-liquid-limit clayey sand, and the mineral composition is dominated by quartz and whitmoreite. The scanning electron microscopy results showed that the particles of the dredged fill showed an agglomerated morphology, and the surface of the test soil samples had scaly fine flakes and a fragmented structure. In the triaxial shear test, the GD dredged fill showed strain hardening characteristics, and the effective stress path showed continuous loading characteristics; the consolidated undrained shear test showed that the GD dredged fill had shear expansion characteristics under low-perimeter-pressure conditions. It was found that, with an increase in bias stress, the axial strain in the consolidated undrained triaxial creep test under the same perimeter pressure conditions gradually exceeded the axial strain in the consolidated drained triaxial creep test. The results of this study are of theoretical and practical significance for further understanding the mechanical properties of silty soils in the region and for the rational selection of soil strength parameters in practical engineering design. Full article
(This article belongs to the Special Issue Rock-Like Material Characterization and Engineering Properties)
Show Figures

Figure 1

18 pages, 9148 KiB  
Article
Experimental Investigation on the Critical Dynamic Stress of Frozen Silty Clay Under Different Temperature and Moisture Conditions
by Jiahui Wang, Jiahao Ding and Yingying Zhao
Appl. Sci. 2024, 14(23), 11419; https://doi.org/10.3390/app142311419 - 8 Dec 2024
Cited by 1 | Viewed by 896
Abstract
In this paper, a comprehensive series of dynamic triaxial tests were conducted to delve into the influence of temperature and moisture content on the behavior of frozen silty clay. Upon scrutinizing the experimental outcomes under prolonged reciprocal cyclic loading, insights were gained into [...] Read more.
In this paper, a comprehensive series of dynamic triaxial tests were conducted to delve into the influence of temperature and moisture content on the behavior of frozen silty clay. Upon scrutinizing the experimental outcomes under prolonged reciprocal cyclic loading, insights were gained into how varying temperatures and moisture contents impact the cumulative permanent strain (CPS) and critical dynamic stress (CDS) of frozen clay. The results show that the variation curves of CPS with the number of cyclic loadings show significant changes at different temperatures and moisture contents. Additionally, based on the assessment of vertical CPS recorded at the 100th and 1000th loading iterations, criteria for assessing the plastic stability and plastic creep threshold of frozen silty clay were devised. Consequently, an analysis was conducted to delineate the correlation between the variation in vertical cumulative strains and the dynamic stresses applied within the frozen clay, resulting in the formulation of a series of correlation curves. The relationship between the changes in CDS affected by different temperatures and water contents were analyzed. The CDS under the plastic stability and plastic creep limits showed a slowly increasing trend with decreasing temperatures and a slowly decreasing trend with increasing water contents. Full article
(This article belongs to the Special Issue Geotechnical Engineering and Infrastructure Construction)
Show Figures

Figure 1

20 pages, 25650 KiB  
Article
Investigation of the Mechanical Properties of Reinforced Calcareous Sand Using a Permeable Polyurethane Polymer Adhesive
by Dingfeng Cao, Lei Fan, Rui Huang and Chengchao Guo
Materials 2024, 17(21), 5277; https://doi.org/10.3390/ma17215277 - 30 Oct 2024
Cited by 2 | Viewed by 1026
Abstract
Calcareous sand has been widely used as a construction material for offshore projects; however, the problem of foundation settlement caused by particle crushing cannot be ignored. Although many methods for reinforcing calcareous sands have been proposed, they are difficult to apply on-site. In [...] Read more.
Calcareous sand has been widely used as a construction material for offshore projects; however, the problem of foundation settlement caused by particle crushing cannot be ignored. Although many methods for reinforcing calcareous sands have been proposed, they are difficult to apply on-site. In this study, a permeable polyurethane polymer adhesive (PPA) was used to reinforce calcareous sands, and its mechanical properties after reinforcement were investigated through compression creep, direct shear, and triaxial shear tests. The reinforcement mechanism was analyzed using optical microscopy, CT tomography, and mercury intrusion porosimetry. The experimental results indicate that there is a critical time during the compression creep process. Once the critical time is surpassed, creep accelerates again, causing failure of the traditional Burgers and Murayama models. The direct shear strength of the fiber- and geogrid-reinforced calcareous sand reinforced by PPA was approximately nine times greater than that without PPA. The influence of normal stress was not significant when the moisture content was less than 10%, but when the moisture content was more than 10%, the shear strength increased with an increase in vertical normal stress. Strain-softening features can be observed in triaxial shear tests under conditions of low confining pressure, and the relationship between the deviatoric stress and strain can be described using the Duncan–Chang model before softening occurs. The moisture content also has a significant influence on the peak strength and cohesive force but has little influence on the internal friction angle and Poisson’s ratio. This influence is caused by the different PPA structures among the particles. The higher the moisture content, the greater the number of pores left after grouting PPA. Full article
Show Figures

Figure 1

15 pages, 1947 KiB  
Article
Features and Constitutive Model of Hydrate-Bearing Sandy Sediment’s Triaxial Creep Failure
by Shihui Sun, Xiaohan Zhang and Yunjian Zhou
Water 2024, 16(20), 2947; https://doi.org/10.3390/w16202947 - 16 Oct 2024
Cited by 5 | Viewed by 1098
Abstract
In the longstanding development of hydrate-bearing sediment (HBS) reservoirs, slow and permanent deformation of the formation will occur under the influence of stress, which endangers the safety of hydrate development projects. This paper takes hydrate-bearing sandy sediment (HBSS) as the research object and [...] Read more.
In the longstanding development of hydrate-bearing sediment (HBS) reservoirs, slow and permanent deformation of the formation will occur under the influence of stress, which endangers the safety of hydrate development projects. This paper takes hydrate-bearing sandy sediment (HBSS) as the research object and conducts triaxial compression creep tests at different saturation degrees (20%, 30%, and 40%). The results show that the hydrate-containing sandy sediments have strong creep characteristics, and accelerated creep phenomenon will occur under the long-term action of high stress. The longstanding destructive power of the specimen progressively raises with the increase in hydrate saturation, but the difference in the triaxial strength of the specimen progressively increases. This indicates that the damage to the hydrate structure during long-term loading is the main factor causing the strength decrease. Further, a new nonlinear creep constitutive model was developed by using the nonlinear Burgers model in series with the fractional-order viscoplastic body model, which can well describe the creep properties of HBSS at different saturation levels. Full article
(This article belongs to the Special Issue Advanced Research on Marine Geology and Sedimentology)
Show Figures

Figure 1

20 pages, 5113 KiB  
Article
Ensemble Learning Improves the Efficiency of Microseismic Signal Classification in Landslide Seismic Monitoring
by Bingyu Xin, Zhiyong Huang, Shijie Huang and Liang Feng
Sensors 2024, 24(15), 4892; https://doi.org/10.3390/s24154892 - 28 Jul 2024
Cited by 3 | Viewed by 1379
Abstract
A deep-seated landslide could release numerous microseismic signals from creep-slip movement, which includes a rock-soil slip from the slope surface and a rock-soil shear rupture in the subsurface. Machine learning can effectively enhance the classification of microseismic signals in landslide seismic monitoring and [...] Read more.
A deep-seated landslide could release numerous microseismic signals from creep-slip movement, which includes a rock-soil slip from the slope surface and a rock-soil shear rupture in the subsurface. Machine learning can effectively enhance the classification of microseismic signals in landslide seismic monitoring and interpret the mechanical processes of landslide motion. In this paper, eight sets of triaxial seismic sensors were deployed inside the deep-seated landslide, Jiuxianping, China, and a large number of microseismic signals related to the slope movement were obtained through 1-year-long continuous monitoring. All the data were passed through the seismic event identification mode, the ratio of the long-time average and short-time average. We selected 11 days of data, manually classified 4131 data into eight categories, and created a microseismic event database. Classical machine learning algorithms and ensemble learning algorithms were tested in this paper. In order to evaluate the seismic event classification performance of each algorithmic model, we evaluated the proposed algorithms through the dimensions of the accuracy, precision, and recall of each model. The validation results demonstrated that the best performing decision tree algorithm among the classical machine learning algorithms had an accuracy of 88.75%, while the ensemble algorithms, including random forest, Gradient Boosting Trees, Extreme Gradient Boosting, and Light Gradient Boosting Machine, had an accuracy range from 93.5% to 94.2% and also achieved better results in the combined evaluation of the precision, recall, and F1 score. The specific classification tests for each microseismic event category showed the same results. The results suggested that the ensemble learning algorithms show better results compared to the classical machine learning algorithms. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 3504 KiB  
Article
Creep Characteristics of Reconstituted Silty Clay under Different Pre-Loading Path Histories
by Bin Xiao, Peijiao Zhou and Shuchong Wu
Buildings 2024, 14(5), 1445; https://doi.org/10.3390/buildings14051445 - 16 May 2024
Cited by 1 | Viewed by 1303
Abstract
Due to the long-term deformation settlement of foundations, issues such as damage and functional failure of buildings and structures have long been a concern in the engineering field. The creep of soil is one of the primary causes leading to long-term deformation of [...] Read more.
Due to the long-term deformation settlement of foundations, issues such as damage and functional failure of buildings and structures have long been a concern in the engineering field. The creep of soil is one of the primary causes leading to long-term deformation of foundations. In this paper, the consolidation deformation, creep characteristics, and creep model of reconstituted saturated silty clay were studied using the isotropic consolidation creep test and triaxial compression creep test. The results show that for the isotropic consolidation creep test, although the applied load adopted different stages of loading, as long as the final applied confining pressure was the same, the number of stages applied by the confining pressure had little effect on the final isotropic consolidation deformation of the sample and the triaxial undrained shear strength after creep. However, for the triaxial shear creep test, it was found that under the same final deviatoric stress, the final deviatoric strain of the sample was closely related to the number of loading stages of deviatoric stress. The test showed that the more loading stages with the same deviatoric stress, the smaller the final deviatoric strain, and the triaxial undrained shear strength of the sample after creep increased. In addition, it was reasonable to set the pore pressure dissipation of the sample at 95% ((u0u)/u0 = 95%) as the time (t100) at which the primary consolidation of the soil sample was completed. The isotropic consolidation creep curves and the triaxial compression creep curves showed certain non-linearity. Then, the logarithmic model and the hyperbolic model were used to fit the creep curves of the samples. It was found that the hyperbolic model had a better fitting effect than the logarithmic model, but for the triaxial compression creep test, the creep parameters of the sample changed greatly. Therefore, studying the creep characteristics of soil under different pre-loading steps is of significant engineering importance for evaluating the long-term deformation of underground structures. Full article
(This article belongs to the Special Issue Construction in Urban Underground Space)
Show Figures

Figure 1

15 pages, 9961 KiB  
Article
A Material Stress–Strain–Time–Temperature Creep Model for the Analysis of Asphalt Cores in Embankment Dams
by Weibiao Wang
Appl. Sci. 2024, 14(8), 3399; https://doi.org/10.3390/app14083399 - 17 Apr 2024
Cited by 1 | Viewed by 1028
Abstract
Asphalt cores in embankment dams are subject to loading and temperature changes during construction and reservoir impounding. Asphalt samples were drilled out from the Quxue Dam and Laojiaoxi Dam cores during construction. The diameter of the samples was 100 mm, and the length [...] Read more.
Asphalt cores in embankment dams are subject to loading and temperature changes during construction and reservoir impounding. Asphalt samples were drilled out from the Quxue Dam and Laojiaoxi Dam cores during construction. The diameter of the samples was 100 mm, and the length was about 450 mm. The samples were cut into specimens measuring 200 mm in length. Long-term triaxial creep tests were conducted on the specimens. The tests were run systematically at different radial confining stresses in the range of 0.5–1.5 MPa and at different temperatures in the range of 5–30 °C. More than 3.5 years were required to complete the tests. Based on the systematic test results and the application of the viscoelastic theory, a material stress–strain–time–temperature creep model (SSTTC) is proposed. The performance of asphalt cores in dams is discussed. The proposed SSTTC model may be applied in the numerical analysis of asphalt cores in dams during dam construction and reservoir impounding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 3767 KiB  
Article
A Modified Plastic Burgers Model for the Non-Decaying Creep of Frozen Soils
by Xiaoliang Yao, Xueli Zhang, Xubo Lin, Long Jin and Wenli Wang
Appl. Sci. 2024, 14(5), 2092; https://doi.org/10.3390/app14052092 - 2 Mar 2024
Cited by 3 | Viewed by 1282
Abstract
A modified plastic Burgers model considering cohesion decay is proposed for frozen soils. A series of triaxial compression and creep tests were conducted on a kind of frozen silty clay for obtaining the model parameters. According to typical triaxial creep strain curves with [...] Read more.
A modified plastic Burgers model considering cohesion decay is proposed for frozen soils. A series of triaxial compression and creep tests were conducted on a kind of frozen silty clay for obtaining the model parameters. According to typical triaxial creep strain curves with only a decaying creep stage, a deformation parameter calibration method for a plastic Burgers model is proposed, and the validity of the method was further verified. When the original plastic Burgers model was incorporated with a cohesion decay function, it was shown that the successive development process of frozen soil creep strain from the decaying to non-decaying stage could be described reasonably. The modified model is applicable to frozen ground engineering cases with non-decaying creep involved. Full article
(This article belongs to the Special Issue Advanced Research on Tunnel Slope Stability and Land Subsidence)
Show Figures

Figure 1

16 pages, 4594 KiB  
Article
Creep Properties and Creep Modelling of Guilin Red Clay
by Hailong Wei, Zhanfei Gu, Zhikui Liu, Yipeng Wang and Yansong Shi
Appl. Sci. 2023, 13(21), 12052; https://doi.org/10.3390/app132112052 - 5 Nov 2023
Cited by 3 | Viewed by 1656
Abstract
In order to explore the creep characteristics of red clay under different pressures, the stress–strain curve and stress–strain–time curve of red clay under different pressures were obtained, and the triaxial shear and creep characteristics of red clay under different pressures were analysed. A [...] Read more.
In order to explore the creep characteristics of red clay under different pressures, the stress–strain curve and stress–strain–time curve of red clay under different pressures were obtained, and the triaxial shear and creep characteristics of red clay under different pressures were analysed. A triaxial shear test and creep test were carried out on red clay from Guilin as the research object under different pressures. The results show that: ➀ the cohesion and the angle of internal friction of red clay from Guilin, obtained from a triaxial shear test, are 57.20 kPa and 22.47°, respectively; ➁ according to the physical meaning of the parameters of the Burgers creep model, a simple and practical parameter inversion method is proposed, which can be used to obtain the parameters of the Burgers model for red clay under different perimeter pressures and differing deviatoric stress; and ➂ when comparing the calculation results with the test results, the correlation coefficients R2 of the two are above 0.9, with a good fitting effect, so the model can accurately describe the creep characteristics of red clay from Guilin. This study can provide a theoretical basis and technical support for engineering construction in the red clay area of Guilin. Full article
Show Figures

Figure 1

14 pages, 4279 KiB  
Article
True Triaxial Test and Research into Bolting Support Compensation Stresses for Coal Roadways at Different Depths
by Jianwei Yang, Jian Lin and Pengfei Jiang
Processes 2023, 11(11), 3071; https://doi.org/10.3390/pr11113071 - 26 Oct 2023
Cited by 2 | Viewed by 1204
Abstract
During the excavation and support construction process used in coal mine roadways, the stress path is the unloading of in situ stress and the compensation of support stress. The 150 mm × 150 mm × 150 mm coal mass samples were obtained in [...] Read more.
During the excavation and support construction process used in coal mine roadways, the stress path is the unloading of in situ stress and the compensation of support stress. The 150 mm × 150 mm × 150 mm coal mass samples were obtained in situ underground and prepared, the true triaxial loading–unloading–confining pressure restoring test method was used, and the mechanical response and deformation failure evolution characteristics of the coal seam during the excavation and support process of the shallow, medium depth, and deep coal roadways in the coal mine were simulated and studied. Based on the distribution law of the bolt and cable support stress field, the support compensation stress required for the stability of the surrounding rock after the excavation of the coal roadway with different burial depths was determined, and the corresponding roadways’ surrounding rock control technologies were proposed. This study’s results indicate that the compensation stress required for support in shallow coal roadways (with a burial depth of about 200 m) was much less than 0.1 MPa. A single rock bolt support can keep the surrounding rock of the roadway stable; the compensation stress required for support in the medium buried coal roadway (with a depth of about 600 m) is around 0.1 MPa, and the combined support of rock bolts and cables can meet the support requirements. Deep coal roadways under high stress (with a depth of about 1000 m) require support to provide compensation stress. Even if the compensation stress reaches 0.2 MPa, the surrounding rock of the roadway will experience varying degrees of creep. In this study, it was necessary to increase the support density and surface area of rock bolts and cables, the pre-tension forces of rock bolts and cables were improved, and in synergy with grouting modification, destressing and other technologies could control the large deformation of the surrounding rock of the roadway in 1000 m deep coal mines. This study’s results provide a theoretical basis for the selection of control technologies for use in coal roadways at different depths. Full article
(This article belongs to the Special Issue Advanced Technologies of Deep Mining)
Show Figures

Figure 1

Back to TopTop